

Supporting Information

Synthesis and Biological Evaluation of N²-Substituted 2,4-Diamino-6-cyclohexylmethoxy-5-nitrosopyrimidines and Related 5-Cyano-NNO-azoxy Derivatives as Cyclin-Dependent Kinase 2 (CDK2) Inhibitors

Daniela Cortese,^[a] Konstantin Chegaev,^[a] Stefano Guglielmo,^[a] Lan Z. Wang,^[b] Bernard T. Golding,^[c] Céline Cano,^[c] and Roberta Fruttero*^[a]

cmdc_201600108_sm_miscellaneous_information.pdf

Table of contents

Supporting Experimental	Procedures	S2-S18
--------------------------------	-------------------	--------

Supporting References S19

Chemistry

Materials and methods. Chemicals were obtained from reputable suppliers used without any further purification. Anhydrous solvents were obtained from AcrosealTM or SureSealTM and stored under nitrogen. Synthetic-purity solvents dichloromethane (DCM), acetonitrile (CH₃CN), methanol (MeOH), diethyl ether (Et₂O), diisopropyl ether (*i*-Pr₂O), dimethylformamide (DMF) and 40-60 petroleum ether (PE) were used. Deuterated solvent for NMR analysis were purchased from Sigma-Aldrich. Thin layer chromatography was performed using plates precoated with Si F₂₅₄, NH₂ F_{254s} or RP-18 F_{254s} and visualized using ultraviolet light. Purifications were carried out using a Biotage SP4 automated purification system with UV monitoring at 290 nm and collection at 254 nm. Grace Resolv pre-packed flash cartridges were used for normal phase separations. Microwave-assisted synthesis was performed in sealed Biotage microwave vials, using the Biotage Initiator Sixty microwave system. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded at 500 MHz and 125 MHz, respectively, using a Bruker Advance III 500 spectrometer or at 300 MHz and 75 MHz, respectively on a Bruker Advance 300 spectrometer. CDCl₃, MeOH-d₄ or DMSO-d₆ were used as solvents. Chemical shift values (δ) are reported in parts per million (ppm) and are referenced against TMS (tetramethylsilane): multiplicities are indicated by s = singlet, d = doublet, t = triplet, d = quarted, m = multiplet or combination thereof; the prefix br = broad was used for broadened peaks. Liquid Chromatography-Mass Spectrometry (LC-MS) was carried out on a Waters Acquity UPLC system, with PDA and ELSD employing both positive and negative ionization modes. When a 2 min gradient was used, the sample was eluted on Acquity UPLC BEH C18, 1.7 μ m, 2.1 \times 50 mm, with a flow rate of 0.6 mL/min using 5-95% 0.1% HCOOH in MeCN. High resolution mass spectra were measured using a Finnigan MAT 95 XP or Finnigan MAT 900 XLT by the EPSRC National Mass Spectrometry Service, University of Wales, Swansea, Singleton Park. Melting points were determined using a Stuart Scientific SMP3 apparatus. Fourier Transform Infrared (FTIR) spectra were recorded on a Bio-Rad FTS 3000MX diamond ATR apparatus. Ultraviolet (UV) absorption data were obtained using a U-2001 Hitachi Spectrophotometer with the sample dissolved in ethanol. Compounds submitted for biological evaluation were obtained with a purity higher than 95%. Purity was determined using a Waters XTerra RP18, 5 µm (4.6 × 150 mm) column eluted at 1 mL/min under both basic (0.1% ag. ammonia and MeCN) and acidic (0.1% ag. HCOOH and MeCN) conditions with a gradient of 5-100% over 15 min.

5-Methyl-2-(propan-2-yl)cyclohexyl nitrite (Menthyl nitrite) was prepared following the reported procedure^[1] with slight modifications. Product was obtained from L-menthol using

NaNO₂ in a water/THF mixture and a solution of 4M HCl. The spectroscopic data are consistent with those reported. Pf 0.85 (PE); IR v_{max}/cm^{-1} : 2966, 2936, 2881, 1642; H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.74 (3H, d, J = 7.0 Hz, CH(C H_3)₂), 0.86 (3H, d, J = 7.0 Hz, CH(C H_3)₂), 0.89-0.91 (1H, m, CH₂(H4)), 0.92 (3H, d, J = 6.5 Hz, CHC H_3), 1.14-1.24 (2H, m, 1 × CH₂(H3) and 1 × CH₂(H6), 1.42-1.49 (1H, m, CH(H2)), 1-59-1.75 (4H, 1 × CH(H5), 1 × CH₂(H4), 1 × CH₂(H3) and 1 × CH(CH₃)₂), 1.95-2.02 (1H, m, CH₂(H6), 5.33 (1H, td, J = 11.2 and 4.5 Hz, CHO); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): 15.75, 20.42, 21.81, 22.99, 25.60, 30.95, 33.45, 41.37, 46.01, 80.09; MS (CI) m/z (%): 139 ([M-HONO+H⁺]).

6-(Cyclohexylmethoxy)-2-[(cyclohexylmethyl)sulfanyl]pyrimidin-4-amine (5). To 6-amino-2-thioxo-2,3-dihydropyrimidin-4(1H)-one 4 (1.00 g, 6.20 mmol) contained in a dry microwave vial was added anhydrous DMF (10 mL). Potassium carbonate (5.13 g, 37.2 mmol) and (bromomethyl)cyclohexane (2.16 mL, 2.74 g, 15.5 mmol) were added, the mixture was degassed with N₂ and then heated at 140 °C by microwave irradiation for 16 min. The solvent was removed under reduced pressure and the residue was taken up in water. The product was extracted with DCM (3 × 15 mL). The organic phases were combined, washed with brine and dried (MgSO₄). The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from 10/90 to 20/80 acetone/PE) to give the title compound as a white solid (1.65 g, 79%). R_f 0.45 (20/80 Acetone/PE); m.p. 111-112 °C; UV λ_{max} (EtOH/nm): 253.0, 224.0; IR v_{max}/cm^{-1} : 3392, 3293, 2915, 2842; ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.90-1.28 (10H, m, 5H × C₆H₁₁ and 5 × C₆H₁₁), 1.48-1.89 (12H, m, 6H × C₆H₁₁ and 6 × C_6H_{11}), 2.90 (2H, d, J = 6.8 Hz, CH_2S), 4.00 (2H, d, J = 6.5 Hz, CH_2O), 5.37 (1H, s, CH_2O), 6.60 (2H, s, NH₂); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm); 25.15, 25.57, 25.91, 25.98, 29.15, 32.09, 36.60, 36.82, 37.58, 70.21, 81.59, 165.12, 168.72, 169.29; MS (ES+) m/z 336.4 [M+H]+. 6-(Cyclohexylmethoxy)-2-[(cyclohexylmethyl)sulfonyl]pyrimidin-4-amine (cyclohexylmethoxy)-2-((cyclohexylmethyl)thio)pyrimidin-4-amine 5 (660 mg, 1.97 mmol) in DCM (15 mL) 3-chloroperbenzoic acid (1.70 g, 9.85 mmol) was added portionwise. The reaction mixture was stirred at room temperature for 17 h. The solvent was removed under reduced pressure and the residue was partitioned between water (20 mL) and EtOAc (3 × 15 mL). The combined organic extracts were washed with saturated ag. NaHCO₃, brine and dried (MgSO₄). The crude product was purified by flash chromatography (gradient from 10/90 to 20/80 acetone/PE) to give the title compound as a white powder (404 mg, 56%). Rf 0.28 (20/80 Acetone/PE); m.p. 139-140°C; UV λ_{max} (EtOH/nm): 245.0, 215.8; IR ν_{max}/cm⁻¹: 3494, 3412, 2923, 2851, 1364 (S=O), 1136 (S=O); ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.93-1.31 (10H,

m, $5H \times C_6H_{11}$ and $5 \times C_6H_{11}$), 1.51-1.93 (12H, m, $6H \times C_6H_{11}$ and $6 \times C_6H_{11}$), 3.34 (2H, d, J = 6.3 Hz, CH_2S), 4.04 (2H, d, J = 6.3 Hz, CH_2O), 5.81 (1H, s, CH arom.), 7.34 (2H, s, NH_2); $^{13}C-NMR$ (125 MHz, $DMSO-d_6$) δ (ppm): 25.15, 25.25, 25.40, 25.90, 29.03, 31.17, 32.27, 36.76, 55.83, 71.45, 86.87, 164.66, 166.07, 169.48; MS (ES+) m/z 368 [M+H]+.

2-{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino}propan-1-ol 6-(7a). To (cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 (250 mg, 0.68 mmol) contained in a dry microwave vial was added diglyme (3 mL). Ethanolamine (144 µL, 146 mg, 2.38 mmol) was added, the mixture was degassed with N2 and then heated to 170°C by microwave irradiation for 3h. The solvent was removed under reduced pressure and the residue was partitioned between water (20 mL) and EtOAc (3 × 15 mL). The organic extracts were washed with brine and dried (MgSO₄). The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 MeOH/CH₂Cl₂) to give the title compound as a white solid (118 mg, 65 %). R_f 0.17 (5/95 MeOH/CH₂Cl₂); m.p. 74-75 °C; UV λ_{max} (EtOH/nm): 268.6, 238,2, 208.4; IR $v_{\text{max}}/\text{cm}^{-1}$: 3428, 3322, 3274, 2918, 2851, 1552; ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.90-1.27 (5H, m, C₆H₁₁), 1.59-1.75 (6H, m, C₆H₁₁), 3.21-3.27 (2H, m, C*H*₂NH), 3.43-3.48 (2H, m, CH_2OH), 3.90 (2H, d, J = 6.5 Hz, CH_2O), 4.63 (1H, t, J = 5.4 Hz OH), 5.01 (1H, s, CH arom.), 6.02 (2H, s, NH₂), 6.15 (1H, t, J = 5.6 Hz, NH); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): 25.25, 26.03, 29.30, 36.98, 43.37, 60.37, 69.64, 75.85, 162.04, 165.79, 170.01; MS (ES+) m/z 267 $[M+H]^{+}$.

(2S)-2-[[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino}propan-1-ol (7b). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine **6** (300 mg, 0.82 mmol) contained in a dry microwave vial was added dry THF (2.5 mL). Yb(OSO₂CF₃)₃ (253 mg, 0.41 mmol) was added followed by (S)-(+)-2-amino-1-propanol (223 μL, 215 mg, 2.86 mmol), the mixture was degassed with N₂ and then heated to 120°C by microwave irradiation for 30 min. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂) to give the title compound as a sticky white solid (60 mg, 26 %). R_f 0.21 (5/95 MeOH/CH₂Cl₂); UV λ_{max} (EtOH/nm): 268.6, 238.6, 208.2; IR ν_{max}/cm^{-1} : 3334, 3217, 2921, 2849, 1566; ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 0.96-1.04 (2H, m, C₆H₁₁), 1.20 (3H, d, J = 6.86 Hz, CH₃), 1.13-1.30 (3H, m, C₆H₁₁), 1.66-1.81 (6H, m, C₆H₁₁), 3.56 (1H, dd, J = 10.69 and 7.78 Hz, CH₂OH), 3.72 (1H, dd, J = 10.70 and 2.79 Hz, CH₂OH), 3.91-3.99 (2H, m, CH₂O), 4.04-4.11 (1H, m, CH), 4.47 (2H, s, NH₂), 4.80 (1H, d, J = 5.63 Hz, NH), 5.19 (1H, s, CH arom.); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 17.92, 25.96, 26.65, 29.97, 37.63, 50.02, 69.91, 71.52, 78.00, 162.56, 164.92, 171.52; MS (ES⁺) m/z 281 [M+H]⁺.

(2*R*)-2-{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino}propan-1-ol (7c). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine **6** (300 mg, 0.82 mmol) contained in a dry microwave vial was added dry THF (2.5 mL). Yb(OSO₂CF₃)₃ (253 mg, 0.41 mmol) was added followed by (R)-(-)-2-amino-1-propanol (223 μL, 215 mg, 2.86 mmol), the mixture was degassed with N₂ and then heated to 120°C by microwave irradiation for 30 min. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂) to give the title compound as a sticky white solid (33 mg, 14%). R_f 0.21 (5/95 MeOH/CH₂Cl₂); UV λ_{max} (EtOH/nm): 269.0, 238.8, 208.2; IR ν_{max} /cm⁻¹: 3334, 3213, 2921, 2850, 1568; ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 0.94-1.05 (2H, m, C₆H₁₁), 1.19 (3H, d, J = 6.86 Hz, CH₃), 1.11-1.30 (3H, m, C₆H₁₁), 1.63-1.83 (6H, m, C₆H₁₁), 3.55 (1H, dd, J = 10.7 and 7.6 Hz, CH₂OH), 3.71 (1H, dd, J = 10.7 and 2.7 Hz, CH₂OH), 3.89-3.99 (2H, m, CH₂O), 4.02-4.11 (1H, m, CH), 4.53 (2H, s, NH₂), 4.88 (1H, d, J = 5.77 Hz, NH), 5.18 (1H, s, CH arom.); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 17.57, 25.80, 26.49, 29.83, 37.47, 49.31, 68.16, 71.34, 77.45, 162.10, 165.01, 171.24; MS (ES⁺) m/z 281 [M+H]⁺.

(2*R*)-2-{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino}butan-1-ol (7d). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine **6** (200 mg, 0.54 mmol) contained in a dry microwave vial dry THF (2.5 mL) was added. Yb(OSO₂CF₃)₃ (169 mg, 0.27 mmol) was added followed by (R)-(-)-2-amino-1-butanol (180 μL, 170 mg, 1.91 mmol), the mixture was degassed with N₂ and then heated to 120°C in the oil bath for 24 h. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (2/98 MeOH/CH₂Cl₂) to give the title compound as a white solid (90 mg, 59%). R_f 0.24 (5/95 MeOH/CH₂Cl₂); m.p. 79-80 °C; ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.84 (3H, t, J = 7.3 Hz, CH₃), 0.90-1.31 (5H, m, C₆H₁₁), 1.31-1.47 (1H, m, CH₂CH₃), 1.50-1.80 (7H, m, 6 × C₆H₁₁ and 1 × CH₂CH₃), 3.26-3.46 (2H, m, CH₂OH), 3.62-3.80 (1H, m, CHCH₂CH₃), 3.80-3.99 (2H, m, CH₂O), 4.59 (1H, br. s, OH), 5.00 (1H, s, CH arom.), 5.88 (1H, d, J = 8.4 Hz, NH), 5.99 (2H, s, NH₂); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 10.67, 23.90, 25.33, 26.09, 29.37, 37.03, 53.45, 63.18, 69.70, 75.81, 161.99, 165.75, 170.00; MS (ES⁺) m/z 295.5 [M+H]⁺.

2-{[4-amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino}-3-methylbutan-1-ol (7e). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 (300 mg, 0.82 mmol) contained in a dry microwave vial was added diglyme (3 mL). 2-amino-3-methyl-1-butanol (315 μ L, 295 mg, 2.86 mmol) was added, the solution was degassed with N₂ and then heated to 170 °C by microwave irradiation for 12 h. The solvent was removed under reduced pressure and the residue was partitioned between water (20 mL) and EtOAc (3 × 15 mL). The organic extracts were washed with brine and dried (MgSO₄). The crude product was purified by flash

chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂) to give the title compound as a white solid (131 mg, 52 %). R_f 0.2 (5/95 MeOH/CH₂Cl₂); m.p. 110-111 °C; UV λ_{max} (EtOH/nm): 269.4, 239.0, 208.2; IR ν_{max} /cm⁻¹: 3441, 3341, 3238, 2922, 2850, 1572; ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.85 (3H, d, J = 7.1 Hz, CH₃), 0.87 (3H, d, J = 7.1 Hz, CH₃) 0.90-1.02 (2H, m, C₆H₁₁), 1.09-1.29 (3H, m, C₆H₁₁), 1.59-1.77 (6H, m, C₆H₁₁), 1.84-1.94 (1H, m, C*H*CH₃) 3.39-3.46 (2H, m, C*H*₂OH), 3.69-3.76 (1H, m, C*H*CH₂OH), 3.87 (1H, dd, J = 10.2 and 6.6 Hz, CH₂O), 3.94 (1H, br.s., CH₂O), 4.47 (1H, t, J = 5.4 Hz, OH), 5.00 (1H, s, CH arom.), 5.77 (1H, d, J = 8.9 Hz, NH), 5.95 (2H, s, NH₂); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): 18.47, 19.52, 25.26, 26.04, 28.53, 29.30, 36.97, 56.80, 61.48, 69.62, 75.76, 162.25, 165.71, 169.93; MS (ES+) m/z 309 [M+H]⁺.

3-{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino}propan-1-ol (7f). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 (250 mg, 0.68 mmol) contained in a dry microwave vial was added dry THF (2.5 mL). Yb(OSO₂CF₃)₃ (211 mg, 0.34 mmol) was added followed by 3-amino-1-propanol (201 µL, 179 mg, 2.38 mmol), the solution was degassed with N₂ and then heated to 120°C by microwave irradiation for 30 min. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂) to give the title compound as a white solid (77 mg, 40%). R_f 0.18 (5/95 MeOH/CH₂Cl₂); m.p. 108-109°C; UV λ_{max} (EtOH/nm): 269.0, 238.4, 208.0; IR ν_{max}/cm⁻¹: 3439, 3334, 3249, 3207, 3095, 2918, 2849, 1574; ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 0.93-1.07 (2H, m, C₆H₁₁), 1.11-1.32 (3H, m, C₆H₁₁), 1.62-1.86 (8H, m, $6 \times C_6H_{11}$ and $2 \times CH_2OH$), 3.50-3.56 (2H, m, CH_2NH), 3.60-3.64 (2H, m, $CH_2CH_2CH_2$), 3.93 (2H, d, J = 6.5 Hz, CH₂O), 4.47 (2H, s, NH₂), 4.90 (1H, t, J = 6.5 Hz, NH) 5.17 (1H, s, CH arom.);¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 25.89, 26.60, 29.92, 33.52, 37.11, 37.56, 58.34, 71.47, 77.37, 162.94, 165.07, 171.58; MS (ES+) m/z 281 [M+H]+.

 N^2 -(2-Aminocyclohexyl)-6-(cyclohexylmethoxy)pyrimidine-2,4-diamine (7g). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 (400 mg, 1.09 mmol) contained in a dry microwave vial was added dry THF (3 mL). Yb(OSO₂CF₃)₃ (68 mg, 0.11 mmol) was added followed by (±)-*trans*-1,2-diaminocyclohexane (436 mg, 3.81 mmol) and the solution was degassed with N₂ then heated to 120 °C by microwave irradiation for 6.5 h. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from 5/95 to 30/70 MeOH/CH₂Cl₂) to give the title compound as a white solid (203 mg, 58 %). R_f 0.23 (10/90 MeOH/CH₂Cl₂); m.p. 90-91°C; UV λ_{max} (EtOH/nm): 266.8, 209.0; IR ν_{max}/cm^{-1} : 3483, 3432, 3354, 2922, 2851, 1569; ¹H-NMR (500 MHz, DMSO- d_6)

 δ (ppm): 0.85-1.26 (9H, m, 5 × C₆H₁₁ and 4 × C₆H₁₁), 1.53-1.75 (10H, m, 6 × C₆H₁₁ and 4 × C₆H₁₁), 2.57-2.65 (1H, m, C*H*NH₂), 3.39-3.51 (1H, m, C*H*NH), 3.81-3.90 (1H, m, CH₂O), 3.91-4.00 (1H, m, CH₂O), 4.19 (2H, br. s., NH₂), 5.02 (1H, s, CH arom.), 6.02 (2H, s, NH₂), 6.22 (1H, d, J = 8.1 Hz, NH); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): 24.52, 24.80, 25.24, 25.76, 26.03, 29.33, 31.87, 36.95, 53.65, 55.56, 69.71, 75.91, 162.04, 165.75, 169.94; MS (ES⁺) m/z 320 [M+H]⁺.

tert-Butyl {2-[(4-amino-6-(cyclohexylmethoxy)pyrimidin-2-yl)amino]cyclohexyl} carbamate (10). To N²-(2-aminocyclohexyl)-6-(cyclohexylmethoxy)pyrimidine-2,4-diamine **7g** (230 mg, 0.721 mmol) in dry THF (3 mL) was added di-*tert*-butyl dicarbonate ((Boc)₂O) (173 mg, 0.793 mmol) at room temperature. After 2 h the reaction was complete and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 MeOH/CH₂Cl₂) to give the title compound as a white solid (200 mg, 66 %). R_f 0.24 (5/95 MeOH/CH₂Cl₂); m.p. 86-87 °C; UV λ_{max} (EtOH/nm): 269.6, 238.6, 209.0; IR ν_{max} /cm⁻¹: 3343, 3238, 2922, 2851, 1697, 1571; ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.88-1.27 (9H, m, 5 × C₆H₁₁ and 4 × C₆H₁₁), 1.55-2.03 (10H, m, 6 × C₆H₁₁ and 4 × C₆H₁₁), 3.14-3.26 (1H, m, C*H*NH), 3.40-3.56 (1H, m, C*H*NH), 3.79-3.99 (2H, m, CH₂O), 5.00 (1H, s, CH arom.), 5.86 (1H, d, J = 7.2 Hz, NH), 6.02 (2H, s, NH₂), 6.66 (1H, d, J = 7.9 Hz, NH); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): 24.50, 25.21, 26.03, 28.16, 29.30, 31.87, 36.91, 54.18, 54.49, 69.73, 75.88, 77.53, 155.88, 161.85, 165.77, 169.87; MS (ES+) m/z 420 [M+H]⁺.

2-{1-[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]piperidin-4-yl}ethan-1-ol (7h). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine **6** (200 mg, 0.54 mmol) contained in a dry microwave vial was added dry THF (2 mL). Yb(OSO₂CF₃)₃ (169 mg, 0.27 mmol) was added followed by 4-piperydinethanol (246 mg, 1.91 mmol), the solution was degassed with N₂ and then heated to 120°C by microwave irradiation for 7 h. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from 1/99 to 2/98 MeOH/CH₂Cl₂) to give the title compound as a white solid (90 mg, 49 %). R_f 0.25 (5/95 MeOH/CH₂Cl₂); m.p. 89-90°C; ¹H-NMR (300 MHz, DMSO-d6) δ (ppm): 0.84-1.30 (9H, m, 5 × C₆H₁₁ and 4 × CH₂piperidine), 1.31-1.41 (2H, m, CH₂CH₂CH), 1.53-1.76 (7H, m, 6 × C₆H₁₁ and 1 × CH piperidine), 2.60-2.76 (2H, m, CH₂N), 3.40-3.50 (2H, m, CH₂OH), 3.91 (2H, d, J = 5.8 Hz, CH₂O), 4.36 (1H, t, J = 4.7 Hz, OH), 4.47-4.61 (2H, m, CH₂N), 5.00 (1H, s, CH arom.), 6.06 (2H, s, NH₂); ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 25.37, 26.07, 29.42, 31.86, 32.57, 38.61, 40.05, 43.58, 58.24, 69.68, 75.48, 160.94, 165.79, 169.94; MS (ES⁺) m/z 335 [M+H]⁺.

6-(Cyclohexylmethoxy)-2-(pyrrolidin-1-yl)pyrimidin-4-amine (7i). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine **6** (200 mg, 0.54 mmol) contained in a dry microwave vial was added dry THF (2 mL). Yb(OSO₂CF₃)₃ (169 mg, 0.27 mmol) was added followed by pyrrolidine (159 μL, 138 mg, 1.91 mmol), the solution was degassed with N₂ and then heated to 120°C by microwave irradiation for 2 h. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from 1/99 to 2/98 MeOH/CH₂Cl₂) to give the title compound as a white solid (120 mg, 80%). R_f 0.3 (5/95 MeOH/CH₂Cl₂); m.p. 140-141 °C; ¹H-NMR (300 MHz, DMSO- d_6) δ (ppm): 0.90-1.27 (5H, m, C₆H₁₁), 1.61-1.73 (6H, m, C₆H₁₁), 1.81-1.85 (4H, m, C*H*₂C*H*₂ pyrrolidine), 3.34-3.39 (4H, m, 2 × CH₂N pyrrolidine), 3.94 (2H, d, J = 6.0 Hz, CH₂O), 5.02 (1H, s, CH arom.), 6.02 (2H, s, NH₂); ¹³C-NMR (75 MHz, DMSO- d_6) δ (ppm): 24.99, 25.34, 26.07, 29.41, 37.14, 46.04, 69.52, 75.28, 160.00, 165.74, 169.71; MS (ES†) m/z 277 [M+H]†.

General procedure for synthesis of nitroso derivatives 8. The corresponding 6-(cyclohexylmethoxy)- N^2 -pyrimidine-2,4-diamine 7 was dissolved in DMSO and the appropriate alkyl nitrite (2.5 eq.) was added at r.t. The reaction mixture was stirred for 24 h when 200 mL of H₂O were added and product was extracted with EtOAc (3 × 15 mL). The organic fractions were combined, washed with brine and dried (MgSO₄). The solvent was removed under reduced pressure and the crude product purified by flash chromatography.

2-[(4-Amino-6-cyclohexylmethoxy-5-nitrosopyrimidin-2-yl)amino]ethan-1-ol (8a).

Prepared starting from **7a** (44 mg, 0.165 mmol), using isopentyl nitrite (56 μL, 49 mg, 0.413 mmol). The crude product was purified by flash chromatography (gradient from 1/99 to 20/80 MeOH/CH₂Cl₂); to give the title compound as a purple solid (43 mg, 88 %). R_f 0.2 (5/95 MeOH/CH₂Cl₂); m.p. 146-148°C; UV λ_{max} (EtOH/nm): 339.2, 237.6; IR ν_{max}/cm^{-1} : 3236, 3144, 2923, 2852, 1569. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 2 / 1. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.99-1.32 (10H, m, 5 × C₆H₁₁ conformer 1 and 5 × C₆H₁₁ conformer 2), 1.61-1.91 (12H, m, 6 × C₆H₁₁ conformer 1 and 6 × C₆H₁₁ conformer 2), 3.35-3.40 (2H, m, C H_2 NH conformer 1), 3.41-3.46 (2H, m, C H_2 NH conformer 2), 3.49-3.57 (4H, m, 2 × C H_2 OH conformer 1 and 2 × C H_2 OH conformer 2), 4.29 (2H, d, J = 6.4 Hz, CH₂O conformer 1), 4.35 (2H, d, J = 6.4 Hz, CH₂O conformer 2), 4.70-4.76 (2H, m, 1 × OH conformer 1 and 1 × OH conformer 2), 7.89 (1H, d, J = 4.4 Hz, NH₂ conformer 2), 8.16 (1H, t, J = 5.8 Hz, NH conformer 1), 9.93 (1H, d, J = 4.4 Hz, NH₂ conformer 2), 10.28 (1H, d, J = 4.4 Hz, NH₂ conformer 1); 13 C-

NMR (125 MHz, DMSO- d_6) δ (ppm): conformer 1: 25.14, 25.95, 29.14, 36.69, 43.69, 59.32, 71.47, 139.54, 150.57, 161.49, 169.94; conformer 2: 25.24, 25.95, 29.20, 36.91, 43.88, 59.70, 71.55, 139.67, 150.57, 161.93, 170.71; MS (ES+) m/z 296 [M+H]+; HRMS calcd for C₁₃H₂₁N₅O₃ [M+H]+296.1717, found 296.1717.

(2S)-2-[(4-Amino-6-cyclohexylmethoxy-5-nitrosopyrimidin-2-yl)amino]propan-1-ol (8b). Prepared starting from **7b** (55 mg, 0.196 mmol), using menthyl nitrite (127 mg, 0.687 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 MeOH/CH₂Cl₂) to give the title compound as a purple solid (40 mg, 66%). R_f 0.3 (5/95) MeOH/CH₂Cl₂); m.p. 72-74°C; UV λ_{max} (EtOH/nm): 339.4, 238.0; IR ν_{max}/cm⁻¹: 3249, 2923, 2851. 1558. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 5 / 3, ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 1.01-1.34 (16H, m, 5 × C₆H₁₁ and 3 × CH₃ conformer 1, 5 × C₆H₁₁ and 3 \times CH₃ conformer 2), 1.53-2.02 (12H, m, 6 \times C₆H₁₁ conformer 1 and 6 \times C₆H₁₁ conformer 2), 2.84 (2H, br. s, 1 \times OH conformer 1 and 1 \times OH conformer 2), 3.60-3.68 (2H, m, 1 \times C H_2 OH conformer 1 and 1 \times CH₂OH conformer 2), 3.77 (1H, dd, J = 11.0 and 3.6 Hz, CH₂OH conformer 1), 3.85 (1H, dd, J = 10.7 and 3.0 Hz, CH_2OH conformer 2) 4.21-4.28 (1H, m, CHNH conformer 1), 4.30-4.37 (4H, m, 2 xCH₂O conformer 1, 1 x CH₂O conformer 2 and 1 x CHNH conformer 2), 4.41 (1H, dd, J = 10.4 and 6.5 Hz, CH₂O conformer 2), 5.59 (1H, br. s, NH₂ conformer 1), 5.81 (1H, d, J = 7.7 Hz, NH conformer 1), 6.00 (1H, br. s, NH₂ conformer 2), 6.54 (1H, br. s, NH conformer 2), 10.29 (1H, br. s, NH₂ conformer 2), 10.61 (1H, br. s, NH₂ conformer 1); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): conformer 1: 17.33, 25.79, 26.53, 29.88, 37.23, 49.55, 67.23, 73.07, 140.20, 150.81, 162.23, 171.12; conformer 2: 17.33, 25.86, 26.50, 29.98, 37.45, 49.44, 66.36, 73.28, 140.07, 151.08, 162.28, 171.80; MS (ES+) m/z 310 [M+H]+; HRMS calcd for C₁₄H₂₃N₅O₃ [M+H]+ 310.1874, found 310.1876.

(2*R*)-2-[(4-Amino-6-cyclohexylmethoxy-5-nitrosopyrimidin-2-yl)amino]propan-1-ol (8c). Prepared starting from 7c (46 mg, 0.164 mmol), using menthyl nitrite (106 mg, 0.575 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 MeOH/CH₂Cl₂) to give the title compound as a purple solid (30 mg, 60%). R_f 0.3 (5/95 MeOH/CH₂Cl₂); m.p. 94-96 °C; UV λ_{max} (EtOH/nm): 339.6, 237.8; IR ν_{max} /cm⁻¹: 3235, 2920, 2848, 1563. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 5 / 3. ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 1.00-1.35 (16H, m, 5 × C₆H₁₁ and 3 × CH₃ conformer 1, 5 × C₆H₁₁ and 3 × CH₃ conformer 2), 1.65-2.02 (12H, m, 6 × C₆H₁₁ conformer 1 and 6 × C₆H₁₁ conformer 2), 2.58 (1H, br. s, OH conformer 2), 2.78 (1H, br. s, OH conformer 1) 3.61-3.68 (2H, m, 1 × C*H*₂OH conformer 1 and 1 × C*H*₂OH conformer 2), 3.77 (1H, dd, J = 10.9 and 3.6 Hz, C*H*₂OH conformer 1), 3.84 (1H, dd, J = 10.9 and 3.6 Hz, C*H*₂OH conformer 2) 4.20-4.28 (1H,

m, C*H*NH conformer 1), 4.31-4.37 (4H, m, 2 × CH₂O conformer 1, 1 × CH₂O conformer 2 and 1 × C*H*NH conformer 2), 4.42 (1H, dd, J = 10.4 and 6.6 Hz, CH₂O conformer 2) 5.58 (1H, br. s, NH₂ conformer 1), 5.80 (1H, d, J = 7.6 Hz, NH conformer 1), 5.85 (1H, br. s, NH₂ conformer 2), 6.36 (1H, d, J = 7.6 Hz, NH conformer 2), 10.28 (1H, br. d, J = 4.7 Hz, NH₂ conformer 2), 10.61 (1H, br. s, NH₂ conformer 1); ¹³C-NMR (125 MHz, CDCl₃) δ (ppm): conformer 1: 17.34, 25.79, 26.53, 29.88, 37.23, 49.54, 67.25, 73.07, 140.18, 150.75, 162.21, 171.12; conformer 2: 17.34, 25.87, 26.50, 29.98, 37.46, 49.42, 66.44, 73.29, 140.15, 151.02, 162.31, 171.86; MS (ES+) m/z 310 [M+H]+; HRMS calcd for C₁₄H₂₃N₅O₃ [M+H]+ 310.1874, found 310.1875.

(2R)-2-{[4-Amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl]amino}butan-1-ol (8d). Prepared starting from 7d (70 mg, 0.238 mmol), using isopentyl nitrite (80 µL, 70 mg, 0.595 mmol). The crude product was purified by flash chromatography (2/98 MeOH in CH₂Cl₂) to give the title compound as a purple solid (58 mg, 75 %). R_f 0.27 (5/95 MeOH/CH₂Cl₂); m.p. 84-86 °C. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 2 / 1. ¹H-NMR (300 MHz, DMSO- d_6) δ (ppm): 0.78-0.92 (6H, m, 3 × CH₃ conformer 1 and 3 × CH₃ conformer 2). 0.94-1.34 (10H, m, $5 \times C_6H_{11}$ conformer 1 and $5 \times C_6H_{11}$ conformer 2), 1.36-1.51 (2H, m, CH_2CH_3 conformer 1) 1.54-1.92 (14H, m, $6 \times C_6H_{11}$ conformer 1, $6 \times C_6H_{11}$ and $2 \times C_6H_{22}CH_{32}$ conformer 2), 3.38-3.49 (4H, m, 2 × CH₂OH conformer 1 and 2 × CH₂OH conformer 2), 3.86-4.07 (2H, m, 1 x CHNH conformer 1 and 1 x CHNH conformer 2), 4.24-4.42 (4H, m, 2 x CH₂O conformer 1 and 2 x CH₂O conformer 2), 4.66-4.78 (2H, m, 1 x OH conformer 1, 1 x OH conformer 2), 7.81 (1H, br. d, J = 4.0 Hz, NH₂, conformer 2), 8.00 (1H, d, J = 8.7 Hz, NH, conformer 2), 8.06-8.18 (2H, m, 1 × NH, conformer 1, 1 × NH₂, conformer 1) 9.96 (1H, br. d, J = 4.0 Hz, NH₂, conformer 2), 10.27 (1H, br. d, J = 4.0 Hz NH₂, conformer 1); ¹³C-NMR (75 MHz, DMSO- d_6) δ (ppm): conformer 1: 10.50, 23.53, 25.20, 26.00, 29.19, 36.74, 54.60, 62.60, 71.58, 139.56, 150.75, 161.63, 169.89; conformer 2: 10.67, 23.86, 25.30, 26.00, 29.19, 36.92, 55.26, 62.97, 71.58, 139.66, 150.66, 162.10, 170.59; MS (ES+) m/z 324 [M+H]+; HRMS calcd for C₁₅H₂₅N₅O₃ [M+H]+ 324.2030, found 324.2044.

2-{[4-Amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl]amino}-3-methylbutan-1-ol

(8e). Prepared starting from **7e** (70 mg, 0.227 mmol), using menthyl nitrite (147 mg, 0.795 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂) to give the title compound as a purple solid (43 mg, 56 %). R_f 0.3 (5/95 MeOH/CH₂Cl₂); m.p. 176-177 °C; UV λ_{max} (EtOH/nm): 340.4, 238.4; IR ν_{max}/cm^{-1} : 3242, 2922, 2851, 1561. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 5 / 3. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.83-0.92 (12H, m, 6 × CH₃ conformer 1 and 6 × CH₃ conformer 2), 1.00-1.32 (10H, m, 5 × C₆H₁₁ conformer 1 and 5 × C₆H₁₁ conformer 2), 1.62-1.95

(14H, m, $6 \times C_6H_{11}$ and $1 \times CH(CH_3)_2$ conformer 1, $6 \times C_6H_{11}$ and $1 \times CH(CH_3)_2$ conformer 2), 3.43-3.58 (4H, m, $2 \times CH_2OH$ conformer 1 and $2 \times CH_2OH$ conformer 2), 3.87-3.93 (1H, m, CHNH conformer 1), 3.95-4.02 (1H, m, CHNH conformer 2), 4.25-4.35 (3H, m, $2 \times CH_2O$ conformer 1 and $1 \times CH_2O$ conformer 2), 4.39 (1H, dd, J = 10.6 and 6.2 Hz, CH_2O conformer 2), 4.57-4.63 (2H, m, $1 \times OH$ conformer 1 and $1 \times OH$ conformer 2), 7.76 (1H, d, J = 4.3 Hz, NH_2 conformer 2), 8.01 (1H, d, J = 9.2 Hz, NH conformer 2), 8.08-8.13 (2H, m, $1 \times NH_2$ conformer 1 and $1 \times NH$ conformer 1), 9.96 (1H, d, J = 4.5 Hz, NH_2 conformer 2), 10.25 (1H, d, J = 4.5 Hz, NH_2 conformer 1); ^{13}C - 1

3-{[4-Amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yllamino}propan-1-ol (8f). Prepared starting from 7f (130 mg, 0.464 mmol), using menthyl nitrite (301 mg, 1.625 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 MeOH/CH₂Cl₂) to give the title compound as a purple solid (80 mg, 56 %). R_f 0.2 (5/95 MeOH/CH₂Cl₂); m.p. 168-169 °C; UV λ_{max} (EtOH/nm): 339.2, 238.2; IR ν_{max} /cm⁻¹: 3301, 2921, 2846, 1580. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 2 / 1. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 1.00-1.32 (10H, m, 5 × C₆H₁₁ conformer 1 and 5 × C₆H₁₁ conformer 2), 1.62-1.91 (16H, m, $6 \times C_6H_{11}$ and $2 \times CH_2CH_2CH_2$ conformer 1, $6 \times C_6H_{11}$ and 2 \times CH₂CH₂CH₂ conformer 2), 3.33-3.39 (2H, m, CH₂NH conformer 1), 3.40-3.50 (6H, m, 2 \times CH₂OH conformer 1, 2 × CH₂OH and 2 × CH₂NH conformer 2), 4.28 (2H, d, J = 6.4 Hz, CH₂O conformer 1), 4.36 (2H, d, J = 6.4 Hz, CH₂O conformer 2), 4.46 (1H, t, J = 5.1 Hz, OH conformer 1), 4.49 (1H, t, J = 5.1 Hz, OH conformer 2), 7.85 (1H, d, J = 4.2 Hz, NH₂ conformer 2), 8.16-8.25 (2H, m, 1 \times NH₂ conformer 1 and 1 \times NH conformer 2), 8.33 (1H, t, J = 5.6 Hz, NH conformer 1), 9.93 (1H, d, J = 4.2 Hz, NH₂ conformer 2), 10.29 (1H, d, J = 4.4 Hz, NH₂ conformer 1); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): conformer 1: 25.14, 25.95, 29.14, 31.94, 36.70, 38.38, 58.44, 71.49, 139.50, 150.61, 161.31, 169.88; conformer 2: 25.22, 25.93, 29.19, 32.51, 36.86, 38.55, 58.50, 71.55, 139.85, 150.61, 161.77, 170.17; MS (ES+) m/z 310 [M+H]+; HRMS calcd for C₁₄H₂₃N₅O₃ [M+H]⁺ 310.1874, found 310.1874.

tert-Butyl {2-[(4-amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl)amino]cyclohexyl} carbamate (11). Prepared starting from 10 (200 mg, 0.477 mmol), using menthyl nitrite (309 mg, 1.67 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 2/98 MeOH/CH₂Cl₂) to give the title compound as a purple solid (140 mg, 65 %). R_f 0.4

(2.5/97.5 MeOH/CH₂Cl₂); m.p. 119-120 °C; UV λ_{max} (EtOH/nm): 341.0, 237.8, 205.2; IR v_{max}/cm⁻¹: 3294, 2922, 2851, 1688, 1562. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 2 / 1. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.97-1.42 (36H, m, 5 × C_6H_{11} , $4 \times C_6H_{11}$ and $9 \times CH_3$ conformer 1, $5 \times C_6H_{11}$, $4 \times C_6H_{11}$ and $9 \times CH_3$ conformer 2), 1.60-1.92 (20H, m, $6 \times C_6H_{11}$ and $4 \times C_6H_{11}$ conformer 1, $6 \times C_6H_{11}$ and $4 \times C_6H_{11}$ conformer 2), 3.33-3.41 (2H, m, 1 \times CHNHCO conformer 1 and 1 \times CHNHCO conformer 2), 3.69-3.85 (2H, m, 1 \times CHNH conformer 1 and 1 x CHNH conformer 2), 4,20-4,31 (3H, m, 2 x CH₂O conformer 1 and 1 x CH₂O conformer 2), 4.35-4.43 (1H, m, CH₂O conformer 2), 6.50 (1H, d, J = 8.7 Hz, NHCO conformer 2), 6.57 (1H, d, J = 8.7 Hz, NHCO conformer 1), 7.81 (1H, d, J = 4.2 Hz, NH₂ conformer 2), 7.97 (1H, d, J = 8.6 Hz, NH conformer 2), 8.00 (1H, d, J = 8.6 Hz, NH conformer 1), 8.12 (1H, d, J = 4.2 Hz, NH₂ conformer 1), 9.94 (1H, d, J = 4.2 Hz, NH₂ conformer 2), 10.27 (1H, d, J = 4.2 Hz, NH₂ conformer 1); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): conformer 1: 24.36, 24.55, 25.11, 25.94, 28.07, 29.11, 31.21, 31.99, 36.61, 53.34, 55.12, 71.41, 77.54, 139.54, 150.62, 155.60, 161.23, 169.85; conformer 2: 24.55, 24.50, 25.23 (C-1, C-5), 25.96, 28.08, 29.34, 31.24, 32.03, 36.92, 53.30, 55.05, 71.71, 77.54, 139.66, 150.57, 155.60, 161.62, 169.79; MS (ES+) m/z 449 [M+H]+; HRMS calcd for C₂₂H₃₆N₆O₄ [M+H]+ 449.2871, found 449.2861.

 N^2 -(2-Aminocyclohexyl)-6-cyclohexylmethoxy-5-nitrosopyrimidine-2,4-diamine (8g). To 11 (138 mg, 0.308 mmol) in CH₂Cl₂ was added TFA (2 mL / mmol). The reaction was stirred at r.t. for 2 h. The solvent was removed under reduced pressure then the free base was triturated with saturated ag. NaHCO₃ (10 mL) and the product extracted with CH₂Cl₂. The organic extracts were washed with brine and dried (MgSO₄). The solvent was removed under reduced pressure and the crude product purified by flash chromatography (gradient from 0/100 to 5/95 MeOH/CH₂Cl₂) to give the title compound as a purple solid (73 mg, 68 %). R_f 0.25 (5/95 MeOH/CH₂Cl₂); m.p. 122-123 °C; UV λ_{max} (EtOH/nm): 341.0; IR ν_{max} /cm⁻¹: 3235, 3128, 2918, 2847. 1561. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 5 : 2. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 1.00-1.32 (18H, m, 5 × C₆H₁₁ and 4 × C₆H₁₁ conformer $1.5 \times C_6H_{11}$ and $4 \times C_6H_{11}$ conformer 2), 1.60-1.93 (24H, m, $6 \times C_6H_{11}$, $4 \times C_6H_{11}$ and $2 \times NH_2CH$ conformer 1, 6 × C₆H₁₁, 4 × C₆H₁₁ and 2 × N H_2 CH conformer 2), 2.57-2.65 (2H, m, 1 × CHNH₂ conformer 1 and 1 x CHNH2 conformer 2), 3.54-3.64 (2H, m, 1 x CHNH conformer 1 and 1 x CHNH conformer 2), 4.26-4.34 (3H, m, 2 x CH₂O conformer 1 and 1 x CH₂O conformer 2), 4.43 (1H, dd, J = 10.6 and 6.2 Hz, CH₂O conformer 2), 7.78 (1H, d, J = 4.1 Hz, NH₂ conformer 2), 8.14 (1H, d, J = 4.4 Hz, NH₂ conformer 1), 8.20 (1H, d, J = 8.5 Hz, NH conformer 2), 8.28 (1H, d, J = 8.5 Hz, NH conformer 1), 9.96 (1H, d, J = 4.1 Hz, NH₂ conformer 2), 10.27 (1H, d, J = 4.4

Hz, NH₂ conformer 1); 13 C-NMR (125 MHz, DMSO- d_6) δ (ppm): conformer 1: 24.53, 24.70, 25.12, 25.94, 29.14, 31.40, 34.27, 36.66, 53.36, 57.24, 71.52, 139.57, 150.68, 161.52, 169.85; conformer 2: 24.63, 24.75, 25.19, 25.94, 29.28, 31.88, 34.37, 36.85, 53.19, 57.24, 71.57, 139.65, 150.58, 161.89, 170.52; MS (ES+) m/z 349 [M+H]+; HRMS calcd for C₁₇H₂₈N₆O₂ [M+H]+ 349.2347, found 349.2348.

2-{1-[4-Amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl]piperidin-4-yl}ethan-1-ol

(8h). Prepared starting from **7h** (80 mg, 0.240 mmol), using isopentyl nitrite (80 μL, 70 mg, 0.60 mmol). The crude product was purified by flash chromatography (gradient from 2/98 to 5/95 MeOH/CH₂Cl₂) to give the title compound as a purple solid (60 mg, 69 %). R_f 0.3 (5/95 MeOH/CH₂Cl₂); m.p. 204-205 °C; ¹H-NMR (300 MHz, DMSO- d_6) δ (ppm): 0.98-1.33 (9H, m, 5 × C₆H₁₁ and 4 × CH₂ piperidine), 1.33-1.42 (2H, m, CH₂CH₂CH), 1.57-1.91 (7H, m, 6 × C₆H₁₁, 1 × CH piperidine), 2.86-3.07 (2H, m, CH₂N), 3.41-3.51 (2H, m, CH₂OH), 4.31 (2H, d, J = 6.1 Hz, CH₂O), 4.39 (1H, t, J = 5.0 Hz, OH), 4.68-4.84 (2H, m, CH₂N), 8.06 (1H, d, J = 4.4 Hz, NH₂) 10.07 (1H, d, J = 4.4 Hz, NH₂); ¹³C-NMR (75 MHz, DMSO- d_6) δ (ppm): 25.28 (C-1, C-5), 25.95 (C-6), 29.25 (C-2, C-4), 31.78 (2 × C-piperidine), 32.08 (C-14), 36.91 (C-3), 38.82 (C-17), 44.15 (C-piperidine), 44.52 (C-piperidine) 58.14(C-18), 71.58(C-7), 139.03 (C-arom.), 150.36 (C-arom.), 150.06 (C-arom.), 170.13 (C-arom.); MS (ES⁺) m/z 364 [M+H]⁺.

6-(Cyclohexylmethoxy)-5-nitroso-2-(pyrrolidin-1-yl)pyrimidin-4-amine (8i). Prepared starting from **7i** (100 mg, 0.360 mmol), using isopentyl nitrite (121 μL, 105 mg, 0.91 mmol). The crude product was purified by flash chromatography (1/99 MeOH/CH₂Cl₂) to give the title compound as a purple solid (86 mg, 78 %). R_f 0.4 (5/95 MeOH/CH₂Cl₂); m.p. 172-173 °C; ¹H-NMR (300 MHz, DMSO- d_6) δ (ppm): 1.04-1.27 (5H, m, C₆H₁₁), 1.63-1.83 (10H, m, 6 × C₆H₁₁ and 4 × CH₂CH₂ pyrrolidine), 3.49-3.53 (2H, m, CH₂N pyrrolidine), 3.61-3.66 (2H, m, CH₂N pyrrolidine), 4.33 (2H, d, J = 6.2 Hz, CH₂O), 8.10 (1H, d, J = 4.3 Hz, NH₂), 10.13 (1H, d, J = 4.3 Hz, NH₂); ¹³C-NMR (75 MHz, DMSO- d_6) δ (ppm): δ 24.58, 24.71, 25.25, 25.95, 29.26, 36.89, 47.03, 47.23, 71.48, 139.23, 150.27, 158.46, 169.65; MS (ES+) m/z 306 [M+H]+.

General procedure for the synthesis of cyano-NNO-azoxyderivatives. To a stirred suspension of the nitroso species (1 eq.) and cyanamide (NH₂CN) (3 eq.) in CH₃CN, (diacetoxyiodo)benzene (IBA) (2 eq.) was added portion-wise at r.t. The reaction mixture gradually changed in colour from purple to yellow. After 2 h solvent was removed under reduced pressure and the crude product was purified by flash chromatography.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[(2-hydroxyethyl)amino]-6-

cyclohexylmethoxypyrimidine (9a). Prepared starting from 8a (58 mg, 0.197 mmol). The crude product was purified by flash chromatography (gradient from 2/98 to 10/90 MeOH/CH₂Cl₂) to give the title compound as a yellow solid (33 mg, 50 %). R_f 0.3 (5/95 MeOH/CH₂Cl₂); m.p. 161-162°C; UV λ_{max} (EtOH/nm): 397.6, 247.8, 209.0; IR ν_{max}/cm⁻¹: 3360, 2924, 2851, 2197, 1558. The compound exists as two conformers, conformer 1 / Conformer 2 ratio = 2 / 1. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.99-1.30 (10H, m, 5 × C₆H₁₁ conformer 1 and 5 × C₆H₁₁ conformer 2), 1.60-1.80 (12H, m, $6 \times C_6H_{11}$ conformer 1 and $6 \times C_6H_{11}$ conformer 2), 3.32-3.37 (4H, m, 2 × CH₂NH conformer 1 and 2 × CH₂NH conformer 2), 3.47-3.53 (4H, m, 2 × CH₂OH conformer 1 and 2 \times CH₂OH conformer 2), 4.13 (2H, d, J = 6.3 Hz, CH₂O conformer 1), 4.19 (2H, d, J = 6.1 Hz, CH₂O conformer 2), 4.67-4.72 (2H, m, 1 × OH conformer 1 and 1 × OH conformer 2), 7.83 (1H, t, J = 5.8 Hz, NH conformer 2), 7.93 (1H, t, J = 5.7 Hz, NH conformer 1), 8.05 (2H, s, NH₂ conformer 2), 8.29 (2H, s, NH₂ conformer 1); ¹³C-NMR (125 MHz, DMSO d_6) δ (ppm): conformer 1: 25.17, 22.93, 28.96, 36.49, 43.51, 59.36, 72.20, 106.20, 112.44, 159.15, 159.18, 163.64; conformer 2; 25.26, 25.93, 29.02, 36.66, 43.74, 59.67, 72.20, 106.14, 112.36, 158.73, 159.48, 164.23; MS (ES+) m/z 336 [M+H]+; HRMS calcd for C₁₄H₂₁N₇O₃ [M+H]+ 336.1779, found 336.1782.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-{[(2S)-1-hydroxypropan-2-yl]amino}-6-

cvclohexylmethoxypyrimidine (9b). Prepared starting from 8b (40 mg, 0.129 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂) to give the title compound as a yellow solid (35 mg, 78 %). R_f 0.4 (5/95 MeOH/CH₂Cl₂); m.p. 165-167°C; UV λ_{max} (EtOH/nm): 400.0, 247.6, 207.2; IR ν_{max} /cm⁻¹: 3346, 2922, 2850, 2191, 1554. The compound exists as two conformers, conformer 1 / Conformer 2 ratio = 2 / 1. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.98-1.29 (16H, m, 5 × C₆H₁₁ and 3 × CH₃ conformer 1, $5 \times C_6H_{11}$ and $3 \times CH_3$ conformer 2), 1.60-1.80 (12H, m, $6 \times C_6H_{11}$ conformer 1 and 6 \times C₆H₁₁ conformer 2), 3.33-3.36 (2H, m. 1 \times CH₂OH conformer 1 and 1 \times CH₂OH conformer 2), 3.33-3.36 (2H, m, 1 \times C H_2 OH conformer 1 and 1 \times C H_2 OH conformer 2), 3.39.3.45 (2H, m, 1 × C H_2 OH conformer 1 and 1 × C H_2 OH conformer 2), 3.97-4.09 (2H, m, 1 × CHNH conformer 1 and 1 \times CHNH conformer 2), 4.13 (2H, d, J = 6.3 Hz, CH₂O conformer 1), 4.19 (2H, d, J = 6.0 Hz, CH₂O conformer 2), 4.69-4.74 (2H, m, 1 × OH conformer 1 and 1 × OH conformer 2), 7.68 (1H, d, J = 8.3 Hz, NH conformer 2), 7.79 (1H, d, J = 8.3 Hz, NH conformer 1), 8.01 (2H, br. s, NH₂ conformer 2), 8.28 (2H, s, NH₂ conformer 1); 13 C-NMR (125 MHz, DMSO- d_6) δ (ppm): conformer 1: 17.00, 25.17, 25.95, 28.97, 36.49, 48.56, 64.09, 72.23, 106.15, 112.52, 158.64, 159.22, 163.65; conformer 2: 17.06, 25.28, 25.94, 29.02, 36.68, 49.10, 64.27, 72.23, 106.15, 112.52, 158.71, 159.02, 163.69; MS (ES+) *m/z* 350 [M+H]+; HRMS calcd for C₁₅H₂₃N₇O₃ [M+H]+ 350.1935, found 350.1937.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-{[(2R)-1-hydroxypropan-2-yl]amino}-6-

cyclohexylmethoxypyrimidine (9c). Prepared starting from **8c** (30 mg, 0.097 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂); to give the title compound as a yellow solid (26 mg, 76 %). R_f 0.4 (5/95 MeOH/CH₂Cl₂); m.p. 172-173 °C; UV λ_{max} (EtOH/nm): 400.0, 249.2; IR ν_{max} /cm⁻¹: 3345, 3300, 2922, 2849, 2190. The compound exists as two conformers, conformer 1 / Conformer 2 ratio = 5 / 3. ¹H-NMR (500 MHz, CD₃OD) δ (ppm): 1.06-1.38 (16H, m, 5 × C₆H₁₁ and 3 × CH₃ conformer 1, 5 × C₆H₁₁ and 3 × CH₃ conformer 2), 1.67-1.89 (12H, m, 6 × C₆H₁₁ conformer 1 and 6 × C₆H₁₁ conformer 2), 3.51-3.61 (4H, m, 2 × CH₂OH conformer 1 and 2 × CH₂OH conformer 2), 4.13-4.21 (4H, m, 2 × CH₂O and 1 × CHNH conformer 1, 1 × CHNH conformer 2), 4.25 (1H, d, J = 6.0 Hz, CH₂O conformer 2); ¹³C-NMR (125 MHz, CD₃OD) δ (ppm): conformer 1: 17.17, 26.88, 27.53, 30.71, 38.46, 49.97, 66.21, 74.14, 108.10, 113.47, 160.89, 161.18, 165.69; conformer 2: 17.41, 26.94, 27.53, 30.74, 38.62, 50.32, 66.21, 74.37, 108.10, 113.29, 160.98, 161.18, 166.34; MS (ES⁺) m/z 350 [M+H]⁺; HMRS calcd for C₁₅H₂₃N₇O₃ [M+H]⁺ 350.1935, found 350.1937.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-{[(2R)-1-hydroxybutan-2-yl]amino}-6-

cyclohexylmethoxypyrimidine (9d). Prepared starting from 8d (170 mg, 0.526 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 MeOH/CH₂Cl₂) to give the title compound as a yellow solid (90 mg, 47 %). R_f 0.33 (5/95 MeOH/CH₂Cl₂); m.p. 152-154 °C; UV λ_{max} (EtOH/nm): 400.0, 248.0, 207.8; IR ν_{max}/cm⁻¹: 3341, 2922, 2850, 2192, 1554. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 5 / 3. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.84 (6H, t, J = 7.4 Hz, 3 × CH₃ conformer 1 and 3 × CH₃ conformer 2), 1.00-1.28 (10H, m, $5 \times C_6H_{11}$ and $5 \times C_6H_{11}$ conformer 2), 1.36-1.46 (2H, m, CH₃C H_2 conformer 1), 1.57-1.78 (14H, m, 6 × C₆H₁₁ conformer 1, 6 × C₆H₁₁ and 2 × CH₃C H_2 conformer 2), 3.36-3.45 (4H, m. 2 × CH₂OH conformer 1 and 2 × CH₂OH conformer 2), 3.82-3.93 (2H, m, 1 \times CHNH conformer 1 and 1 \times CHNH conformer 2), 4.14 (2H, d, J = 6.3 Hz, CH₂O conformer 1), 4.16-4.22 (2H, m, CH₂O conformer 2), 4.66 (1H, t, J = 5.5 Hz, OH conformer 1), 4.67 (1H, t, J = 5.5 Hz, OH conformer 2), 7.65 (1H, d, J = 8.9 Hz, NH conformer 1), 7.76 (1H, d, J = 8.9 Hz, NH conformer 1), 8.01 (2H, br. s, NH₂, conformer 2), 8.25 (2H, s, NH₂, conformer 1); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): conformer 1: 10.43, 23.53, 25.18, 25.96, 28.97, 36.50, 54.31, 62.58, 72.24, 112.54, 159.16, 159.24, 163.60; conformer 2: 10.60, 23.79, 25.27, 25.93, 29.06, 36.64, 55.04, 62.91, 72.21, 112.45, 158.68, 159.58, 164.12; MS (ES+) m/z 363 [M+H]+; HRMS calcd for C₁₆H₂₅N₇O₃ [M+H]⁺ 364.21, found 364.21.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[(1-hydroxy-3-methylbutan-2-yl)amino]-6-

cyclohexylmethoxypyrimidine (9e). Prepared starting from 8e (60 mg, 0.178 mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂) to give the title compound as a yellow solid (15 mg, 22%). R_f 0.4 (5/95 MeOH/CH₂Cl₂); m.p. 156-157 °C; UV λ_{max} (EtOH/nm): 400.0, 249.2; IR ν_{max}/cm⁻¹: 3278, 2920, 2848, 2187, 1548. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 5 / 3. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.82-0.90 (12H, m, 6 × CH₃ conformer 1 and 6 × CH₃ conformer 2), 0.99-1.30 (10H, m, $5 \times C_6H_{11}$ conformer 1 and $5 \times C_6H_{11}$ conformer 2), 1.60-1.81 (12H, m, $6 \times C_6H_{11}$ conformer 1 and $6 \times C_6H_{11}$ conformer 2), 1.83-1.93 (2H, m, $1 \times CH(CH_3)_2$ conformer 1 and 1 \times CH(CH₃)₂ conformer 2), 3.43-3.54 (4H, m, 2 \times CH₂OH conformer 1 and 2 \times CH₂OH conformer 2), 3.81-3.91 (2H, m, 1 \times CHNH conformer 1 and 1 \times CHNH conformer 2), 4.12-4.18 (3H, m, 2 × CH₂O conformer 1 and 1 × CH₂O conformer 2), 4.21 (1H, dd, J = 10.7) and 5.7 Hz, CH₂O conformer 2), 4.54-4.61 (2H, m, 1 × OH conformer 1 and 1 × OH conformer 2), 7.66 (1H, d, J = 9.2 Hz, NH conformer 2), 7.77 (1H, d, J = 9.2 Hz, NH conformer 1), 8.00 (2H, s, NH₂ conformer 2), 8.24 (2H, s, NH₂ conformer 1); 13 C-NMR (125 MHz, DMSO- d_6) δ (ppm): conformer 1: 18.67, 19.35, 25.18, 25.95, 28.64, 28.97, 36.52, 58.06, 60.94, 72.23, 106.09, 112.54, 159.09, 159.51, 163.57; conformer 2: 18.40, 19.53, 25.25, 25.91, 28.64, 29.06, 36.59, 58.61, 61.10, 72.19, 106.27, 112.43, 158.65, 159.80, 164.04; MS (ES+) m/z 378 [M+H]+; HRMS calcd for $C_{17}H_{27}N_7O_3$ [M+H]⁺ 378.2248, found 378.2249.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[(3-hydroxypropyl)amino]-6-

cyclohexylmethoxypyrimidine (9f). Prepared starting from **8f** (65 mg, 0.210 mmol). The crude product was purified by flash chromatography (gradient from 20/80 to 40/60 EtOAc /CH₂Cl₂) to give the title compound as a yellow solid (12 mg, 16 %). R_f 0.3 (5/95 MeOH/CH₂Cl₂); m.p. 171-172 °C; UV λ_{max} (EtOH/nm): 401.0; IR ν_{max} /cm⁻¹: 3350, 3144, 2922, 2850, 2193, 1556. The compound exists as two conformers, conformer 1 / conformer 2 ratio = 5 / 3. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.98-1.31 (10H, m, 5 × C₆H₁₁ conformer 1 and 5 × C₆H₁₁ conformer 2), 1.61-1.82 (16H, m, 6 × C₆H₁₁ and 2 × CH₂CH₂CH₂ conformer 1, 6 × C₆H₁₁ and 2 × CH₂CH₂CH₂ conformer 2), 3.32-3.38 (4H, m, 2 × CH₂NH conformer 1 and 2 × CH₂NH conformer 2), 3.41-3.48 (4H, m, 2 × CH₂OH conformer 1 and 2 × CH₂OH conformer 2), 4.12 (2H, d, J = 6.3 Hz, CH₂O conformer 1), 4.21 (2H, d, J = 5.8 Hz, CH₂O conformer 2) 4.39-4.49 (2H, m, 1 × OH conformer 1 and 1 × OH conformer 2), 7.90 (1H, t, J = 5.8 Hz, NH conformer 2), 8.00 (1H, t, J = 5.8 Hz, NH conformer 1), 8.03 (2H, br. s, NH₂ conformer 2), 8.30 (2H, s, NH₂ conformer 1); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): conformer 1: 25.18, 25.94, 28.96, 31.97, 36.50, 38.19, 58.47, 72.22, 106.16, 112.50, 159.01, 159.19, 163.62; conformer 2: 25.25, 25.94, 29.02, 32.44,

36.63, 38.41, 58.51, 72.22, 106.34, 112.41, 158.73, 159.34, 164.22; MS (ES+) *m/z* 350 [M+H]+; HRMS calcd for C₁₅H₂₃N₇O₃ [M+H]+ 350.1935, found 350.1938.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[(2-aminocyclohexyl)amino]-6-

cyclohexylmethoxypyrimidine (9g). Prepared starting from 8g (70 mg, 0.20 mmol), cyanamide (25 mg, 0.60 mmol), IBA (129 mg, 0.40 mmol) and CH₃CN (2 mL). Purification by flash chromatography (gradient from 0/100 to 30/70 MeOH/CH₂Cl₂) gave a mixture of products. A second flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂ + HCOOH 0.1 %) was performed to obtain the title compound as a yellow solid (10 mg, 13 %). R_f 0.2 (20/80 MeOH/CH₂Cl₂); m.p. 203-204 °C dec.; UV λ_{max} (EtOH/nm): 400.0, 248.2, 209.6; IR ν_{max} /cm⁻¹: 3293, 3145, 2924, 2853, 2191, 1555. ¹H-NMR Spectrum: The compound exists as two conformers, conformer 1 / conformer 2 ratio = 5 / 3. 1 H-NMR (500 MHz, CD₃OD) δ (ppm): 1.07-1.52 (18H, m, $5 \times C_6H_{11}$ and $4 \times C_6H_{11}$ conformer 1, $5 \times C_6H_{11}$ and $4 \times C_6H_{11}$ conformer 2), 1.66-2.14 (20H, m, $6 \times C_6H_{11}$ and $4 \times C_6H_{11}$ conformer 1, $6 \times C_6H_{11}$ and $4 \times C_6H_{11}$ conformer 2), 2.92-2.99 (2H, m, 1 × CHNH₂ conformer 1 and 1 × CHNH₂ conformer 2), 3.88-3.95 (2H, m, 1 × CHNH conformer 1 and 1 \times CHNH conformer 2), 4.21 (2H, d, J = 6.2 Hz, CH₂O conformer 1), 4.26-4.32 (1H, m, CH₂O conformer 2), 4.32-4.37 (1H, m, CH₂O conformer 2); ¹³C-NMR (125 MHz, CD₃OD) δ (ppm): conformer 1: 25.59, 27.72, 26.88, 27.54, 30.72, 32.93, 33.14, 38.46, 55.75, 59.57, 74.20, 113.43, 117.69, 161.32, 161.42, 165.80; conformer 2: 25.54, 27.72, 26.94, 27.54, 30.78, 32.78, 33.14, 38.63, 55.96, 58.81, 74.57, 113.19, 117.34, 161.06, 161.50, 166.41; MS (ES⁺) m/z 389 [M+H]⁺; HRMS calcd for C₁₈H₂₈N₈O₂ [M+H]⁺ 389.2408, found 389.2408.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[4-(2-hydroxyethyl)piperidin-1-yl]-6-

cyclohexylmethoxypyrimidine (9h). Prepared starting from **8h** (110 mg, 0.30 mmol). Purification by flash chromatography (20/80 acetone/PE) gave a mixture of products. A second flash chromatography (gradient from 0/100 to 10/90 MeOH/CH₂Cl₂) was performed to obtain the title compound as a yellow solid (20 mg, 16%). R_f 0.4 (5/95 MeOH/CH₂Cl₂); m.p. 135-137 °C (dec.); UV λ_{max} (EtOH/nm): 400.0; IR ν_{max}/cm^{-1} : 3483, 3441, 3355, 2922, 2852, 2190. ¹H-NMR (300 MHz, DMSO- d_6) δ (ppm): 0.94-1.43 (9H, m, 5 × C₆H₁₁ and 4 × CH₂ piperidine), 1.56-1.85 (9H, m, 2 × CH₂CH₂CH, 6 × C₆H₁₁ and 1 × CH piperidine), 2.81-3.04 (2H, m, CH₂N), 3.39-3.55 (2H, m, CH₂OH), 4.16 (2H, d, J = 5.3 Hz, CH₂O), 4.40 (1H, t, J = 4.5 Hz, OH), 4.55-4.75 (2H, m, CH₂N), 8.24 (2H, s, NH₂); ¹³C-NMR (75 MHz, DMSO- d_6) δ (ppm): 25.34, 25.98, 29.08, 31.76, 32.08, 36.69, 43.86, 44.23, 58.14, 72.33, 105.82, 112.55, 156.99, 158.88, 163.89; MS (ES+) m/z 404 [M+H]+; HRMS calcd for C₁₉H₂₉N₇O₃ [M+H]+ 404.2405, found 404.2403.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-(pyrrolidin-1-yl)-6-cyclohexylmethoxypyrimidine

(9i). Prepared starting from **8i** (40 mg, 0.131 mmol). The crude product was purified by flash chromatography (gradient from 5/95 to 20/80 acetone/PE) to give the title compound as a yellow solid (18 mg, 40%). R_f 0.5 (5/95 MeOH/CH₂Cl₂); m.p. 181-183 °C; UV λ_{max} (EtOH/nm): 399.8, 258.4; IR ν_{max} /cm⁻¹: 3464, 3339, 2937, 2851,2183, 1554. ¹H-NMR (500 MHz, DMSO- d_6) δ (ppm): 0.99-1.29 (5H, m, C₆H₁₁), 1.60-1.81 (6H, m, C₆H₁₁), 1.86-1.95 (4H, m, C H_2 C H_2 pyrrolidine), 3.46-3.52 (2H, m, C H_2 N pyrrolidine), 3.53-3.59 (2H, m, CH₂N pyrrolidine), 4.19 (2H, d, J = 6.0 Hz, CH₂O), 8.24 (2H, s, NH₂); ¹³C-NMR (125 MHz, DMSO- d_6) δ (ppm): 24.63, 24.76, 25.26, 25.94, 29.06, 36.64, 46.74, 46.88, 72.19, 106.10, 112.47, 156.32, 158.67, 163.40; MS (ES⁺) m/z 346 [M+H]⁺; HRMS calcd for C₁₆H₂₃N₇O₂ [M+H]⁺ 346.1986 found 346.1988.

References

- [1] B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, in *Vogel's Textbook of Practical Organic Chemistry*. (Fifth ed.), Longman Scientific & Technical, **1989**, p 413.
- [2] M. Holan, U. Jahn, Org. Lett. 2014, 16, 58-61.