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Abstract. In the setting of contract theory, retractable contracts have
been defined to formalize binary session protocols where the partners can
go back to certain particular synchronization points when the session gets
stuck, looking for a successful state, if any.
In the present paper we propose a three-party game-theoretic interpre-
tation of client/server systems of retractable contracts. In particular, we
show that a client is retractable-compliant with a server if and only if
there exists a winning strategy for a particular player in a game-theoretic
model of contracts. Such a player can be looked at as a mediator, driving
the choices in the retractable points. We show that winning strategies
for the mediator player correspond to orchestrators in a system of or-
chestrated client/server sessions, and vice versa.

The notion of contract has been proposed as an abstraction to formally spec-
ify and check the behaviour of software systems, and especially of web services.
In particular, in the setting of service-oriented architectures the concept of agree-
ment, often called compliance, is of paramount importance while searching com-
ponents and ensuring that they will properly collaborate with each other. The
main challenge is that compliance has to meet the contrasting requirements of
guaranteeing correctness of interactions w.r.t. certain safety and liveness con-
ditions, while remaining coarse enough to maximize the possibilities of finding
compliant components in a library or services through the web.

The main conceptual tool to face the issue is that of relaxing the constraint
of a perfect correspondence among contracts through contract refinement, also
called sub-contract [9,8] and sub-behaviour [3] relations, that is pre-order rela-
tions such that processes conforming to more demanding contracts (which are
lower in the pre-order) can be safely substituted in contexts allowing more per-
missive ones. Indeed contract refinement closely resembles subtyping, as it is
apparent in the case of session types [10,3], and it is related to (but doesn’t co-
incide with) observational pre-orders and must-testing in process algebra [11,6].

However, since the first contributions to the theory of contracts [9], a rather
different approach has been followed, based on the idea of filtering out certain
actions that, althought unmatched on both sides of a binary interaction, can be
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neglected or prevented by the action of a mediating process called the orchestra-
tor [14,13], without compromising the reaching of the goals of the participants,
like the satisfaction of all client requests in a client-server architecture.

An alternative route for the same purpose is to change the semantics of
contracts so that interacting processes can adapt each other by means of a roll-
back mechanism: these are the retractable contracts proposed in [4]. Although
compliance can be decided in advance, interaction among processes exposing re-
tractable contracts undergoes a sequence of failures and backtracks that might
be avoided by extracting information from the compliance check.

The contribution of the present paper is to show that the two approaches
of orchestrated and retractable compliance are indeed equivalent, at least in the
case of session contracts (see [2,3], where they are dubbed “session behaviours”),
which are contracts that limit the non-determinism by constraining both external
and internal choices to a more regular form. More precisely, we consider contracts
that are syntactically the same as retractable ones, but instead of adding rollback
to the ususal contract semantics, we abstractly define outputs in an external
choice as affectible actions: their actual sent can be influenced by the partner
in a binary session or by some entity external to the system. Affectible actions
correspond to retractable actions in [4].

The essence of the construction is that (an appropriate restriction of) or-
chestrators correspond to winning strategies in certain concurrent games that
naturally model retractable contracts. In [5] the theory of contracts has been
grounded on games over event structures among multiple players; applying this
framework to retractable contracts, the interaction among a client and a server
can be seen as a play in a three-party game. Player A moves according to the
unaffectible actions of the client; player B moves according to the unaffectible
actions of the server, whereas moves by player C correspond to affectible ac-
tions on both sides, namely the retractable agreement points of the system. The
client ρ is hence affectible-compliant with the server σ whenever C has a win-
ning strategy in the game with players A and B, where player C wins when she
succeeds to lead the system ρ‖σ to a successful state (the client terminates) or
the interaction proceeds indefinitely without deadlocking.

The payoff of the game theoretic interpretation is that there is a precise
correspondence between winning strategies for player C and elements of a class
of orchestrators in the sense of [14]. Such a correspondence is of interest on
its own, since strategies are abstract entities while orchestrators are terms of
a process algebra and concrete witnesses of the agreement among participants
of a session. Moreover, we can decide whether a client-server pair is reversible-
compliant by means of an algorithm that synthesizes an orchestrator if any, or
reports failure.

1 Affectible contracts and retractable compliance

Affectible session contracts (affectible contracts for short) are a variant of re-
tractable contracts in [4]; they are syntactically the same, but affectible session
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contracts have a different, and more abstract semantics. Nonetheless compliance
coincides in both settings as we show in this section.

Definition 1 (Affectible session contracts). Let N (set of names) be some
countable set of symbols and let N = { a | a ∈ N } (set of conames), with
N ∩N = ∅. The set ASC of affectible session contracts is defined as the set of
the closed (with respect to the binder rec ) expressions generated by the following
grammar, σ, ρ := | 1 success

|
∑
i∈I ai.σi input

|
∑
i∈I ai.σi affectible output

|
⊕

i∈I ai.σi unaffectible output

| x variable

| recx.σ recursion

where I is non-empty and finite, the names and the conames in choices are
pairwise distinct and σ is not a variable in recx.σ.

Affectible as well as retractable contracts stem from session behaviours of [3]
also called session contracts in [6]. With respect to session behaviors, affectible
contracts add the affectible output construct, which is called retractable output
in [4]. The affectible output represents points where the client-server interaction
can be influenced by the partner process, or can be guided by a third party;
consequently they are represented by the CCS external choice operator as it is the
case of the input branching (which is always affectible). Outputs in an internal
choice are regarded as unaffectible actions and treated as unretractable in the
setting of retractable contracts. The transitions representing an internal choice
have no label; note that any

⊕
i∈I ai.σi just reduces to one of its summands.

In the following we consider recursion up-to unfolding, that is we equate recx.σ
with σ{x/recx.σ}. The symbol α will be used as a variable ranging over N ∪N .

Definition 2 (LTS for ASC). Let Act = N ∪N ∪ { a+ | a ∈ N }.

(+) a.σ + σ′
a−→ σ (+) a.σ + σ′

a+−→ σ

(⊕) a.σ ⊕ σ′ −→ a.σ (α) α.σ
α−→ σ

A client/server system (system for short) is a pair of contracts in ASC that we
denote by ρ ‖σ.

Definition 3 (LTS for systems). Let csAct = {+, τ }.
ρ −→ ρ′

ρ ‖σ −→ ρ′ ‖σ

σ −→ σ′

ρ ‖σ −→ ρ ‖σ′

ρ
a−→ ρ′ σ

a+−−→ σ′

ρ ‖σ +−→ ρ′ ‖σ′
ρ

a+−−→ ρ′ σ
a−→ σ′

ρ ‖σ +−→ ρ′ ‖σ′

ρ
α−→ ρ′ σ

α−→ σ′

ρ ‖σ τ−→ ρ′ ‖σ′
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We define =⇒=−→∗ ◦ τ−→ and
+

=⇒=−→∗ ◦ +−→ . In the last rule, α is the CCS
involution of names and co-names.

The semantics of ρ ‖σ is reminiscent of CCS parallel composition as used
to define testing preorders in [12], but for the usage of the labels + and τ and
for the absence of a success marker (there is a set of success states instead: see
below). We use labels + and τ to distinguish among affectible and unaffectible
communications respectively, altough they are both unobservable as the only
observable facts are termination and the resulting state.

Lemma 1. Let ρ, σ ∈ ASC. ρ ‖σ =⇒ and ρ ‖σ +
=⇒ can never both occur.

The affectible compliance relation can be now coinductively defined as follows.

Definition 4 (Affectible Compliance Relation aA).

i) Let H : P(ASC×ASC)→ P(ASC×ASC) be such that, for any R ⊆ ASC×ASC,
we get (ρ, σ) ∈ H(R ) if the following conditions hold:

1) [ ρ ‖σ 6=⇒ and ρ ‖σ 6+=⇒ ] implies ρ = 1;
2) ∀ρ′, σ′. [ ρ ‖σ =⇒ ρ′ ‖σ′ implies ρ′ R σ′ ];

3) ρ ‖σ +
=⇒ implies ∃ρ′, σ′. [ ρ ‖σ +

=⇒ ρ′ ‖σ′ and ρ′ R σ′ ].

ii) A relation R ⊆ ASC×ASC is an affectible compliance relation if R ⊆ H(R ).
aA is the greatest solution of the equation X = H(X), that is aA = νH.

In words the client ρ is affectible-compliant with the server σ if either ρ and σ
cannot communicate because ρ = 1, namely all client requirements have been
satisfied; or all unaffectible communications of the system ρ ‖σ lead to compli-
ant systems; or there exists an affectible communication leading to a compliant
system. By Lemma 1 the last two conditions cannot be simultaneously satisfied.

Because of conditions i2) and i3), the affectible compliance relation is an
abstract concept; but it can be made concrete via the characterization in terms
of retractable computations, provided in section 1.

Let us consider the following example from [4]. A Buyer is looking for a bag
(bag) or a belt (belt); she will decide how to pay, either by credit card (card)
or by cash (cash), after knowing the price from the Seller.

Buyer = bag.price.(card⊕ cash) + belt.price.(card⊕ cash)
The Seller does not accept credit card payments for items of low price, like belts,
but only for more expensive ones, like bags:

Seller = belt.price.cash + bag.price.(card + cash)
From the previous definition it is not difficult to check that Buyer aA Seller.

Retractable contracts. Let us recall the formalism of retractable contracts;
the following definitions and Theorem 1 below are from [4]. As said before, re-
tractable and affectible contracts are syntactically the same, but the operational
semantics of the formers is based on a rollback operation, acting on the record-
ing of certain discarded branches of an interaction. The notion of contracts with
histories is defined as follows:
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Definition 5 (Contracts with histories). Let Histories be the set of expres-
sions (referred to also as stacks) generated by the grammar:

γ ::= [ ] | γ :σ where σ ∈ ASC ∪ {◦}.
Then the set of contracts with histories is defined by:

RCH = {γ ≺ σ | γ ∈ Histories, σ ∈ ASC ∪ {◦} }.

Histories are finite lists of contracts representing the branches which have
been discarded because of a retractable synchronization action. The effect of
retracting such an action is modeled by restoring the last contract on the history
as the actual contract and by trying a different branch, if any. This is formalised
by the operational semantics of contracts with histories that is defined as follows.

Definition 6 (LTS of Contracts with Histories).

(+) γ ≺ α.σ + σ′
α−→ γ :σ′ ≺ σ (⊕) γ ≺ a.σ ⊕ σ′ τ−→ γ ≺ a.σ

(α) γ ≺ α.σ α−→ γ :◦ ≺ σ (rb) γ :σ′ ≺ σ rb−→ γ ≺ σ′

When selecting a branch of an external choice, the discarded branches are
memorised on top of the new stack (the last contract of the history) in the right-
hand side of rule (+); on the contrary, when an internal choice occurs, the stack
remains unchanged in rule (⊕). When a single action is executed, the history is
modified by adding a ‘◦’, meaning that the only available branch has been tried
and no alternative is left. Rule (rb) recovers the contract on the top of the stack
(if the stack is different than [ ]) by replacing the current one with it. Note that
the combined effect of rules (⊕) and (α) is that the alternative branches of an
internal choice are unrecoverable.

The interaction of a client with a server is modeled by the reduction of
their parallel composition, that can be either forward, consisting of CCS style
synchronisations and single internal choices, or backward if there is no possible
forward reduction, the client is different than 1 (the fulfilled contract) and rule
(rb) is applicable on both sides.

Definition 7 (TS of Client/Server Pairs). We define the relation −→ over
pairs of retractable contracts with histories by the following rules:

δ ≺ ρ α−→ δ′ ≺ ρ′ γ ≺ σ α−→ γ′ ≺ σ′
(comm)

δ ≺ ρ ‖γ ≺ σ −→ δ′ ≺ ρ′ ‖γ′ ≺ σ′

δ ≺ ρ τ−→ δ ≺ ρ′
(τ)

δ ≺ ρ ‖γ ≺ σ −→ δ ≺ ρ′ ‖γ ≺ σ

γ ≺ ρ rb−→ γ′ ≺ ρ′ δ ≺ σ rb−→ δ′ ≺ σ′ ρ 6= 1
(rbk)

γ ≺ ρ ‖ δ ≺ σ −→ γ′ ≺ ρ′ ‖ δ′ ≺ σ′

plus the rule symmetric to (τ) w.r.t. ‖. Moreover, rule (rbk) applies only if neither
(comm) nor (τ) do.
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Up to the rollback mechanism, compliance in the retractable setting is defined
as usually done with client/server contracts.

Definition 8 (Retractable Compliance, arbk).

i) The relation arbk on contracts with histories is defined as follows:
for any δ′, ρ′,γ′, σ′, δ ≺ ρ arbk γ ≺ σ holds whenever

δ ≺ ρ ‖γ ≺ σ ∗−→ δ′ ≺ ρ′ ‖γ′ ≺ σ′ 6−→ implies ρ′ = 1
ii) The relation arbk on contracts is defined by: ρ arbk σ if [ ] ≺ ρ arbk [ ] ≺ σ.

In Buyer/Seller example we have that, in case a belt is agreed upon and the
buyer decides to pay using her credit card, the system gets stuck in an unsuc-
cessful state. This causes a rollback enabling a successful state to be reached. So
Buyer arbk Seller.

Retractable compliance can be axiomatised in terms of derivability in a for-
mal system whose statements do not mention histories.

Definition 9 (Formal System B for Retractable Compliance).

(Ax) :
Γ B 1 a≺ σ (Hyp) : Γ, ρ a≺ σ B ρ a≺ σ

(+ ·+) :
Γ, α.ρ+ ρ′ a≺ α.σ + σ′ B ρ a≺ σ

Γ B α.ρ+ ρ′ a≺ α.σ + σ′

(⊕ ·+) :
∀i ∈ I. Γ,⊕i∈Iai.ρi a

≺ ∑
j∈I∪Jaj .σj B ρi a≺ σi

Γ B
⊕
i∈Iai.ρi a

≺ ∑
j∈I∪Jaj .σj

(+ · ⊕) :
∀i ∈ I. Γ,∑j∈I∪Jaj .σj a

≺ ⊕
i∈Iai.ρi B ρi a≺ σi

Γ B
∑
j∈I∪Jaj .σj a

≺ ⊕
i∈Iai.ρi

Let us formally show that ∅ B Buyer a≺ Seller

(Ax)
Γ ′′ B 1 a≺ 1

(Ax)
Γ ′′ B 1 a≺ 1

(⊕,+)
Γ ′ B card⊕ cash a≺ card + cash

(+,+)
Buyer′ a≺ Seller B price.(card⊕ cash) a≺ price.(card + cash)

(+,+)
B Buyer a≺ Seller

where Γ ′ = Buyer a≺ Seller, price.(card⊕ cash) a≺ price.(card + cash)

and Γ ′′ = Γ ′, card⊕ cash a≺ card + cash

The formal system B completely axiomatises retractable compliance:

Theorem 1 (Soundness and Completeness of system B w.r.t arbk).
ρ arbk σ if and only if B ρ a≺ σ.
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Equivalence of aA and arbk. As previously observed, the judgements of system
B abstract away from histories, which are essential in the definition of rollback.
This is possible because rollback is just a backtracking mechanism, which is
however limited to the exploration of alternative branches of the reduction tree of
a system rooted at retractable communications. Since affectible and retractable
communications are the same, it is natural to look at system B to establish the
equivalence among aA and arbk.

Lemma 2. If ρ aA σ, then one of the following conditions holds:

1. ρ = 1;
2. ρ =

∑
i∈I αi.ρi, σ =

∑
j∈J αj .σj and ∃h ∈ I ∩ J. ρh aA σh;

3. ρ =
⊕

i∈I ai.ρi, σ =
∑
j∈J aj .σj, I ⊆ J and ∀h ∈ I. ρh aA σh;

4. ρ =
∑
i∈I ai.ρi, σ =

⊕
j∈J aj .σj, I ⊇ J and ∀h ∈ J. ρh aA σh.

In Theorem 1, soundness and completeness of system B has been proved
when the symbol a≺ is interpreted as the retractable compliance relation arbk.
We now show that system B is sound and complete also when the symbol a≺
is interpreted as the affectible compliance relation aA. The equivalence of the
relations arbk and aA follows then as an immediate corollary.

Definition 10 (A aA-semantics for system B).
Let Γ be a set of statements of the form ρ a≺ σ. We define

i) |=A Γ if ∀(ρ′ a≺ σ′) ∈ Γ . [ ρ′ aA σ′ ];
ii) Γ |=A ρ a≺ σ if |=A Γ ⇒ ρ aA σ .

The proof of the following Lemma is inspired to [7].

Lemma 3 (Soundness of B w.r.t aA). If Γ B ρ a≺ σ, then Γ |=A ρ a≺ σ.

We write D :: Γ B ρ a≺ σ when D is a derivation in the system B with
conclusion Γ B ρ a≺ σ. We can easily implement a backward proof search (from
conclusion to premises) in the formal system B by means of a procedure Prove.

Lemma 4. i) Prove(Γ B ρ a≺ σ) = D 6= fail implies D :: Γ B ρ a≺ σ;
ii) Prove(Γ B ρ a≺ σ) terminates for all judgments Γ B ρ a≺ σ.

Lemma 5 (Completeness of B w.r.t aA). If ρ aA σ, then B ρ a≺ σ.

Proof. (Sketch) If ρ aA σ then by Lemma 2 there are four possibilities; disregard-
ing the contexts Γ ’s, we see that each of these cases corresponds exactly to one
rule in system B, where Prove is recursively applied to the respective premises,
but for rule (Hyp), that corresponds to an exit clause in Prove. It follows that
Prove(B ρ a≺ σ) 6= fail, so that the thesis follows by Lemma 4, since Prove
always terminates either returning a correct derivation or fail.

Corollary 1. arbk = aA

Proof. By Lemmas 3 and 5 and Theorem 1
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2 Game-theoretic interpretation of retractable contracts

Following [5] we interpret affectible contracts as certain games over event struc-
tures. This yields a game-theoretic interpretation of affectible contracts, and
hence of retractable contracts by Corollary 1. For the reader’s convenience we
briefly recall the basic notions of event structure and game associated to an LTS.

Definition 11 (Event structure [15]). Let E be a denumerable universe of
events and let A be a universe of action labels. Besides, let # ⊆ E × E be an
irreflexive and symmetric relation (called conflict relation).

i) The predicate CF on sets X ⊆ E and the set Con of finite conflict-free sets
are defined by CF(X) = ∀e, e′ ∈ X.¬(e#e′) Con = {X ⊆fin E | CF(X) }

ii) An event structure is a quadruple E = (E,#,`, l) where
– `⊆ Con × E is a relation such that sat(`) = ` (i.e. ` is saturated),

where sat(`) = { (Y, e) | X ` e & X ⊆ Y ∈ Con };
– l : E → A is a labelling function.

Given a set E of events, E∞ denotes the set of sequences (both finite and infinite)
of its elements. We denote by e = 〈e0e1 · · · 〉 a sequence of events3. Given e, we
denote by ê the set of its elements, by |e| its length (either a natural number or
∞) and by e/i for i < |e| the subsequence 〈e0e1 · · · ei−1〉 of its first i elements.
Given a set X we denote by |X| its cardinality. N is the set of natural numbers.

Definition 12 (LTS over configurations [5]). Given an event structure
E = (E,#,`, l), we define the LTS (Pfin(E), E,→E) as follows:

C
e−→ C ∪ { e } if C ` e, e 6∈ C and CF (C ∪ { e })

Given an LTS (S,→) and a state s ∈ S, we denote by (s,→) the restriction of
→ to the transitions starting with the state s, and by Tr(s,→) the set of the
(finite or infinite) traces in (s,→) out of s.

Multi-player games. All the subsequent definitions and terminology are from
[5], except in the case of games that we call multi-player instead of “contracts”,
which would be confusing in the present setting.

A set of partecipants (players) to a game will be denoted by P, whereas
the universe of partecipants is denoted by PU. We shall use A, B,. . . as variables
ranging over P or PU. The symbols A, B, . . . will denote particular elements of P
or PU. We assume that each event is associated to a player by means of a function
π : E→ PU. Moreover, given A ∈ PU we define EA = { e ∈ E | π(e) = A }.

Definition 13 (Multi-player game).

i) A game G is a pair (E , Φ) where E = (E,#,`, l) is an event structure and
Φ : PU ⇀ E∞ → {−1, 0, 1 } associates each participant and trace with a
payoff. Moreover, for all X ` e in E, Φ(π(e)) is defined. We say that G is a
game with partecipants P whenever ΦA is defined for any player A in P.

3 Differently than in [5], we use the notation e for sequences instead of σ, which refers
to a contract here.
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ii) A play of a game G = (E , Φ) is a (finite or infinite) trace of (∅,→E) i.e. an
element of Tr(∅,→E).

Definition 14 (Strategy and conformance). A strategy Σ for a partecipant
A in a game G is a function which maps each finite play e = 〈e0 · · · en〉 to a
(possibly empty) subset of EA such that: e ∈ Σ(e) ⇒ ee is a play of G.
A play e = 〈e0e1 · · · 〉 conforms to a strategy Σ for a partecipant A in G if, for
all i ≥ 0, ei ∈ EA ⇒ ei ∈ Σ(e/i).

Although events, namely moves, are associated to players via the map π, this
is not injective in general, so that players can share moves. In general there are
neither a turn rule nor alternation of players, similarly to concurrent games in
[1]. A strategy Σ provides “suggestions” to some player on how to legally move
continuing finite plays (also called “positions” in game-theoretic literature). But
Σ may be ambiguous at some places, since Σ(e) may contain more than an
event; in fact it can be viewed as a partial mapping which is undefined when
Σ(e) = ∅.

We refer to [5] for the general definition of winning strategy for multi-player
games (briefly recalled also in Remark 1 below), since it involves the conditions
of fairness and innocence, which will be trivially satisfied in our interpretation of
affectible client/server systems, where the notion of winning strategy corresponds
to the one given in Def. 19.

Turn-based operational semantics and compliance. Toward the game
theoretic interpretation of a client/server system ρ ‖σ, we introduce a slightly
different description of the semantics of affectible contracts, making explicit the
idea of a three-player game. We interpret the internal choices and the input
actions of the client as moves of a player A and the internal choices and the
input actions of the server as moves of a player B. The synchronisations due to
affectible choices are instead interpreted as moves of the third player C.

From a technical point of view this is a slight generalization and adaptation
to our scenario of the turn-based semantics of “session types” in [5], §5.2. The
changes are needed both because we have three players instead of two, and be-
cause session types are just session contracts, that is affectible contracts without
affectible outputs.

Definition 15 (Single-buffered ASC). The set ASC[ ] of single-buffered affectible

contracts is defined by ASC[ ] = ASC ∪ {0 } ∪ { [ak]σk | ⊕i∈Iai.σi ∈ ASC, k ∈ I }

We use the symbols ρ̃, σ̃, ρ̃′, σ̃′ . . . to denote elements of ASC[ ]. A turn-based con-
figuration (configuration for short) is a pair ρ̃ ||| σ̃, where ρ̃, σ̃ ∈ ASC[ ].

As in [5], we have added the “single buffered” contracts [a]σ to represent the
situation in which a is the only output offered after an internal choice. Since the
actual synchronization takes place in a subsequent step, a is “buffered” in front
of the continuation σ.
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⊕i∈Iai.ρi ||| σ̃
A:ak−→−→ [ak]ρk ||| σ̃ Σi∈Iai.ρi ||| [ak]σ

A:ak−→−→ ρk ||| σ

ρ̃ ||| ⊕i∈Iai.σi
B:ak−→−→ ρ̃ ||| [ak]σk [ak]ρ ||| Σi∈Iai.σi

B:ak−→−→ ρ ||| σk

a.ρ+ ρ′ ||| a.σ + σ′
C:a−→−→ ρ ||| σ a.ρ+ ρ′ ||| a.σ + σ′

C:a−→−→ ρ ||| σ

1 ||| ρ̃ C:3−→−→ 0 ||| ρ̃
where (k ∈ I)

Fig. 1. Turn-based operational semantics of turn-based configurations

Definition 16 (Turn-based operational semantics of configurations).
Let tbAct = {A,B,C} × (Act ∪ {3 }). In Figure 1 we define the LTS −→−→

over turn-based configurations, with labels in tbAct.

Comparing −→−→ with the LTS for affectible contracts, we observe that [a]σ
is a duplicate of a.σ, with the only difference that now there is a redundant step

in ⊕i∈Iai.ρi ||| σ̃
A:ak−→−→ [ak]ρk ||| σ̃ when I is the singleton { k }. Also we have the

new reduction 1 ||| ρ̃ C:3−→−→ 0 ||| ρ̃ to signal when player C wins.

Let β=〈β1 · · ·βn〉∈tbAct∗. We shall use the notation
β−→−→ =

β1−→−→ ◦ · · · ◦ βn−→−→

Definition 17 (Turn-Based Compliance Relation atb).

i) Let H : P(ASC[ ] × ASC[ ]) → P(ASC[ ] × ASC[ ]) be such that, for any

R ⊆ASC[ ]×ASC[ ], we get (ρ̃, σ̃) ∈ H(R ) if:
1) ρ̃ ||| σ̃ 6−→−→ implies ρ = 0;

2) ∀ρ̃′, σ̃′. [ ρ̃ ||| σ̃ β−→−→ ρ̃′ ||| σ̃′ implies ρ̃′ R σ̃′ ],
where β ∈ {A:a,A:a,B:a,B:a | a ∈ N};

3) ∃a ∈ N .ρ̃ ||| σ̃ C:a−→−→ implies ∃ρ̃′, σ̃′, a. [ρ̃ ||| σ̃ C:a−→−→ ρ̃′ ||| σ̃′ and ρ̃′ R σ̃′];

ii) A relation R ⊆ ASC[ ]×ASC[ ] is a turn-based compliance relation if R ⊆ H(R).
atb is the greatest solution of the equation X = H(X), that is atb = νH.

iii) For ρ, σ ∈ ASC, we say that ρ is turn-based compliant with σ if ρ atb σ.

Turn-based compliance is equivalent to affectible compliance

Theorem 2. Let ρ, σ ∈ ASC. ρ atb σ ⇔ ρ aA σ.

Three-player game interpretation for ASC client/server systems. Using
the turn-based semantics, we associate to any client/server system an event
structure, and then a three-player game4, extending the treatment of session
types with two-player games in [5]. For our purposes we just consider the LTS
of a given client/server system instead of an arbitrary one.

4 Such interpretation is called semantic-based in [5] and it applies quite naturally to
our context. Instead the syntax-based approach (which is equivalent to the semantic-
based one in a two-players setting; see [5] §5.3.2) cannot be straightforwardly ex-
tended to a three-player game.
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Definition 18 (ES of affectible-contracts systems).
Let ρ ‖σ be a client/server system of affectible contracts. We define the event

structure [[ρ ‖σ]] = (E,#,`, l), where

– E = { (n, β) | n ∈ N, β ∈ tbAct }
– # = { ((n, β1), (n, β2)) | n ∈ N, β1, β2 ∈ tbAct, β1 6= β2 }
– `= sat( ρ̀‖σ)

where ρ̀‖σ= { (X, (n, β)) | ρ ||| σ snd(X)−→−→ ρ̃′ ||| σ̃′ β−→−→ and n = |X|+ 1 }
– l(n, β) = β

where the partial function snd(-) maps any X = { (i, βi) }i=1..n to 〈β1 · · ·βn〉,
and it is undefined over sets not of the shape of X.

Events in [[ρ ‖σ]] are actions in tbAct paired with time stamps. Two events
are in conflict if different actions should be performed at the same time, so that
configurations must be linearly ordered w.r.t. time. The relation X ρ̀‖σ (n, β)
holds if X is a trace in the LTS of ρ ‖σ of length n − 1; therefore the enabling
Y ` (n, β) holds if and only if Y includes a trace of length n − 1 that can be
prolonged by β, possibly including (n, β) itself and any other action that might
occur after β in the LTS.

So, by the above, `Buyer‖Seller in [[Buyer ‖ Seller]] corresponds to{
∅ `Buyer‖Seller (1, (C : belt)), ∅ `Buyer‖Seller (1, (C : bag)),
{(1, (C:belt))} `Buyer‖Seller (2, (B:price)), {(1, (C:bag))} `Buyer‖Seller (2, (B:price)),
{(1, (C:belt)), (2, (Seller:price))} `Buyer‖Seller (3, (A:price)), . . .
. . . X1 `Buyer‖Seller (6, (C,3))

}
where X1 = {(1, (C:bag)), (2, (B:price)), (3, (A:price)), (4, (A:cash)), (5, (B:cash)) }
The ρ̀‖σ of this simple example is finite . It is not so in general for systems with
recursive contracts.

The following definition is a specialisation of Definitions 4.6 and 4.7 in [5].
We use MaxTr(s,→) and FinMaxTr(s,→) to denote the set of maximal traces
and finite maximal traces, respectively, of Tr(s,→).

Definition 19. Given ρ, σ ∈ ASC, we define the game Gρ‖σ as ([[ρ ‖σ]], Φ), where
π(n, β) = A if β = A:α, ΦA is defined only if A ∈ {A,B,C } and

ΦAe =

{
1 if P(A, e)
−1 otherwise

where P(A, e) holds whenever
e∈Tr(∅,→[[ρ‖σ]]) & [e∈FinMaxTr(∅,→[[ρ‖σ]]) ⇒ ∃e′,n. e = e′(n,(A:3))] A

player A wins in the sequence of events e if ΦA e > 0. A strategy Σ for player
A is winning if A wins in all plays conforming to Σ.

Note that, P(A, e) holds for any A and infinite element e of Tr(∅,→[[ρ‖σ]]).
For the game GBuyer ‖ Seller, it is possible to check that, for instance,

ΦCs1 = 1, ΦAs1 = −1, ΦBs2 = −1, WCs3 = −1
where s1 =(1, (C:bag))(2, (B:price))(3, (A:price))(4, (A:cash))(5, (B:cash))(6, (C,3)),
s2 = (4, (A:bag))(1, (C:price))

s3 = (1, (C:bag))(2, (B:price))(3, (A:price))(4, (A:cash))(5, (B:cash))

11



Let us define a particular strategy Σ̃ for C in GBuyer ‖ Seller as follows:

Σ̃(s) =

{ (1, (C:bag)) } if s = 〈〉
{ (6, (C,3)) } if s = s3
∅ for any other play

The strategy Σ̃ for C in GBuyer ‖ Seller is winning.

Remark 1. According to [5], A wins in a play if WAe > 0, where WAe = ΦAe
if all players are “innocent” in e, while if A is “culpable”, WAe = −1, and if
A is innocent and someone else culpable, WAe = +1. A strategy Σ of A is
winning if A wins in all fair plays conforming to Σ. A play e is “fair” for a
strategy Σ of a player A if any event in EA which is infinitely often enabled
is eventually performed. Symmetrically A is “innocent” in e if she eventually
plays all persistently enabled moves of her in e, namely if she is fair to the other
players, since the lack of a move by A might obstacle the moves by others; she
is “culpable” otherwise. As said above, Definition 19 is a particularisation of the
general definitions in [5]. In fact in a game Gρ‖σ no move of any player can occur
more than once in a play e because of time stamps. Therefore no move can be
“persistently enabled”, nor it can be prevented since it can be enabled with a
given time stamp only if there exists a legal transition in the LTS with the same
label. Hence any player is innocent in a play e of Gρ‖σ and all plays are fair.
Therefore W coincides with Φ.

It is possible to characterize affectible and retractable compliance in terms
of the existstence of a winning strategy for C in Gρ‖σ.

Theorem 3. ρ aA σ (or, equivalently, ρ arbk σ) if and only if player C has a
winning strategy in the three-player game Gρ‖σ.

3 Strategies as orchestrators

In the present section we show that a client ρ is retractable-compliant with a
server σ if and only if their interactions can be led to a successful state by means
of the mediation of an orchestrator. To do that we show how an orchestrator can
be obtained out of a “univocal” winning strategy (see Def. 24 below) for player
C in the game Gρ‖σ, and vice versa. For a detailed discussion on orchestra-
tors for contracts and orchestrators for session-contracts, we refer to [14,13] and
[2] respectively. In the present setting, our orchestrators, that we dub strategy-
orchestrators, are defined as a variant of the session-orchestrators of [2], which in
turn are a restriction of orchestrators in [14]. The task of a strategy orchestrator
is to mediate the interactions between two affectible session contracts by select-
ing one of the possible affectible choices and constraining non-affectible ones.
We consider two sorts of orchestration actions, having the following shapes:
〈α,α〉, enabling the unaffectible synchronization ρ ‖σ τ−→ ρ′ ‖σ′;
〈α,α〉+, enabling the affectible synchronization ρ ‖σ +−→ ρ′ ‖σ′.

12



Definition 20 (Strategy Orchestrators).

i) The set OrchAct of strategy-orchestration actions is defined by
OrchAct = { 〈α,α〉 | α ∈ N ∪N } ∪ { 〈α,α〉+ | α ∈ N ∪N }

We let µ, µ′, . . . range over elements of OrchAct with the shape 〈α,α〉, and
µ+, µ′

+
, . . . range over elements of OrchAct with the shape 〈α,α〉+ .

ii) We define the set Orch of strategy orchestrators, ranged over by f, g, . . ., as
the closed (with respect to the binder rec ) terms generated by the following
grammar: f, g ::= 1 idle

| µ+.f prefix
| µ1.f1 ∨ . . . ∨ µn.fn disjunction
| x variable
| recx.f recursion

where the µi in a disjunction are pairwise distinct. Moreover, we impose
strategy orchestrators to be contractive, i.e. the f in recx.f is assumed not
to be a variable.

We write
∨
i∈I µi.fi as short for µ1.f1 ∨ . . . ∨ µn.fn, where I = { 1, . . . , n }.

If not stated otherwise, we consider recursive orchestrators up-to unfolding, that
is we equate recx.f with f{x/recx.f}. We omit trailing 1’s.

Strategy orchestrators are “simple orchestrators” in [14] and “synchronous
orchestrators” in [13], but for the kind of prefixes which are allowed in a single
prefix or in a disjunction. In fact a prefix 〈α,α〉+ cannot occur in disjunctions,
where all the orchestrators must be prefixed by 〈α,α〉 actions.

Definition 21 (Strategy orchestrators LTS).
We define the labelled transition system (Orch,OrchAct, 7→) by

µ+.f
µ+

7→ f (
∨
i∈I µi.fi)

µk7→ fk (k ∈ I)

An orchestrated system, represented by ρ ‖f σ, is client/server system whose
interaction is mediated by an orchestrator.

Definition 22 (LTS for orchestrated-systems).
Let ρ, σ ∈ ASC and f ∈ Orch.

ρ −→ ρ′

ρ ‖f σ −→ ρ′ ‖f σ

σ −→ σ′

ρ ‖f σ −→ ρ ‖f σ′

ρ
a−→ ρ′ f

〈a,a〉+7→ f ′ σ
a+−−→ σ′

ρ ‖f σ
+−→ ρ′ ‖f ′ σ′

ρ
a+−−→ ρ′ f

〈a,a〉+7→ f ′ σ
a−→ σ′

ρ ‖f σ
+−→ ρ′ ‖f ′ σ′

ρ
α−→ ρ′ f

〈α,α〉7→ f ′ σ
α−→ σ′

(α ∈ N ∪N )
ρ ‖f σ

τ−→ ρ′ ‖f σ′

Moreover, we define =⇒=−→∗ ◦ (
τ−→ ∪ +−→ ).
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In both transitions
+−→ and

τ−→ synchronization may happen only if the
orchestrator has a transition with the appropriate pair of actions. This is be-
cause in an orchestrated interaction both client and server are committed to
the synchronizations allowed by the orchestrator only. It is then clear that an
orchestrator always selects one synchronisation of affectible actions on client and
server side, while the disjunction of orchestrators represents the constraint that
only certain synchronisations of unaffectible actions are permitted.

Definition 23 (Strategy-orchestrated Compliance).

i) f : ρ aaOrch σ if for any ρ′ and σ′, the following holds:

ρ ‖f σ =⇒∗ ρ′ ‖f ′ σ′ 6=⇒ implies ρ′ = 1.

ii) ρ aaOrch σ if ∃f. [ f : ρ aaOrch σ ].

Definition 24 (Univocal strategies). Σ is univocal if ∀e. |Σ(e)| ≤ 1.

The strategy Σ̃ for C in GBuyer ‖ Seller, defined in the previous section, is univocal.
The proof of the following theorem relies on the fact that any orchestrator f

such that f : ρ aaOrch σ corresponds to a univocal winning strategies for player C in
Gρ ‖σ. Vice versa a univocal winning strategy Σ for C always induces an orches-
trator fΣ . It is not restrictive to look at univocal strategies only, as established
in the next lemma.
We say that Σ refines Σ′, written Σ ≤ Σ′, if and only if Σ(e) ⊆ Σ′(e) for all e.

Lemma 6. If C has a winning strategy Σ, then C has a univocal winning strategy
Σ′ such that Σ′ ≤ Σ.

Theorem 4.
∃f. [ f : ρ aaOrch σ ] ⇔ there exists a winning strategy for player C in Gρ ‖σ.
In particular, a winning strategy for player C in Gρ ‖σ can be obtained out of an
orchestrator f such that f : ρ aaOrch σ, and vice versa.

The orchestrator that can be obtained out of the strategy Σ̃ is
〈bag, bag〉+.〈price, price〉(〈cash, cash〉 ∨ 〈card, card〉).

Remark 2. Univocal strategies correspond to strategy-orchestrators and are tech-
nically easier to work with. On the other hand, we can recover a full correspon-
dence among C strategies and orchestrators by allowing disjunctions of affectible
synchronization actions 〈α,α〉+. In a session-based scenario, however, we expect
any nondeterminism to depend solely on either the client or the server. By al-
lowing f = 〈a, a〉+.f1 ∨ 〈b, b〉+.f2 in the system a.ρ1 + b.ρ2 ‖f a.σ1 + b.σ2, the
nondeterminism would depend on the orchestrator too.

Based on the formal system of Definition 9, the algorithm Synth in Figure 3
takes a (initially empty) set of assumptions Γ , and the affectible contracts ρ and
σ, and it returns a set O of orchestrators (and hence a set of strategies by the
above) if any, such that for any f ∈ O we have f : ρ aaOrch σ; the algorithm returns
the empty set otherwise. In the algorithm Synth we consider orchestrators as
explicit terms, that is we do not consider recursion up-to unfolding.
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Synth(Γ, ρ, σ) =

if x : ρ aOrch σ ∈ Γ then {x }

else if ρ = 1 then {1 }

else if ρ =
∑
i∈I αi.ρi and σ =

∑
j∈J αj .σj (where α ∈ N ∪N ) then

let Γ ′ = Γ, x:ρ aOrch σ in⋃
i∈I{ recx.〈αi, αi〉

+.f | f ∈ Synth (Γ ′, ρi, σi) }

else if ρ =
⊕

i∈I ai.ρi and σ =
∑
j∈I∪J aj .σj then

let Γ ′ = Γ, x:ρ aOrch σ in
{ recx.

∨
i∈I〈ai, ai〉.fi | ∀i ∈ I.fi ∈ Synth(Γ ′, ρi, σi }

else if ρ =
∑
j∈I∪J aj .ρi and σ =

⊕
i∈I ai.σi then

let Γ ′ = Γ, x:ρ aOrch σi in
{ recx.

∨
i∈I〈ai, ai〉.fi | ∀i ∈ I.fi ∈ Synth(Γ ′, ρi, σi }

else ∅
Fig. 2. The algorithm Synth.

Theorem 5 (Soundness and Completeness of Synth).
The algorithm Synth is correct and complete in the following sense:

i) Synth(Γ, ρ, σ) terminates for any Γ, ρ and σ.
ii) If f ∈Synth(∅, ρ, σ) 6= ∅ then f : ρ aaOrch σ.

iii) If f : ρ aaOrch σ then there exists g ∈Synth(∅, ρ, σ) 6= ∅ such that the
(possibly infinite) unfolding of f and g yields the same regular tree.

It is not difficult to check that by computing Synth(∅,Buyer,Seller) we get a set

just consisting of the orchestrator corresponding to the strategy Σ̃, namely
Synth(∅,Buyer,Seller)=

{
〈bag,bag〉+.〈price,price〉(〈cash,cash〉 ∨ 〈card, card〉)

}
Using the previous results and Lemma 6 we get the following:

Corollary 2. i) The relation aaOrch is decidable.
ii) For any ρ, σ ∈ ASC, it is decidable whether there exists a winning strategy

for player C in Gρ ‖σ.
Moreover, in case a winning strategy exists, it is possible to effectively com-
pute a univocal winning strategy.

4 Conclusion and Future Work

We have studied two approaches to loosening compliance among a client and
a server in contract theory, based on the concepts of dynamic adaptation and
of mediated interaction respectively. We have seen that these induce equivalent
notions of compliance, which can be shown via the abstract concept of winning
strategy in a suitable class of games.

The byproduct is that the existence of the agreement among two contracts
specifying adaptive behaviours is established by statically synthesizing the proper
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orchestrator, hence avoiding any trial and error mechanism at run time. The
study in this paper has been limited to the case of binary sessions since this
is the setting in which both orchestrators and retractable contracts have been
introduced. However strategy based concepts of agreement have been developed
in the more general scenario of multiparty interaction, which seems a natural
direction for future work.
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