

Effects of Dietary Protein Source and Feeding Regime on Growth Performance, Nutrient Digestibility, Fatty Acids and Fillet Quality Traits in Rainbow Trout (Oncorhynchus mykiss)

Journal:	Journal of the World Aquaculture Society
Manuscript ID	Draft
Manuscript Type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Gai, Francesco; CNR ISPA, Peiretti, Piergiorgio; CNR ISPA Brugiapaglia, Alberto; University of Torino, Department of Agriculture, Forestry, and Food Sciences Gasco, Laura; University of Turin,
Keywords:	bacterial protein meal, pea protein concentrate, fatty acid, fillet quality traits, rainbow trout

1	Effects of Dietary Protein Source and Feeding Regime on Growth Performance,
2	Nutrient Digestibility, Fatty Acids and Fillet Quality Traits in Rainbow Trout
3	(<u>Oncorhynchus mykiss</u>)
4	
5	FRANCESCO GAI, ¹ PIER GIORGIO PEIRETTI
6	
7	Institute of Science of Food Production, National Research Council, Grugliasco, Italy
8	
9	Alberto Brugiapaglia, Laura Gasco
10	
11	Department of Agriculture, Forestry, and Food Sciences, University of Torino, Grugliasco,
12	Italy
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	¹ Corresponding Author: Francesco Gai; Institute of Science of Food Production, National
24	Research Council, Largo Braccini 2, Grugliasco (TO), Italy, telephone: +39 0116709232; fax:
25	+39 0116709297; e-mail address: francesco.gai@ispa.cnr.it

Abstract

The aim of this study was to investigate the effects of feeding regime and of bacterial protein meal (BPM), pea protein concentrate (PPC) and a mixture thereof (MIX) compared to a control fish meal-based diet on growth performance, nutrient digestibility, fatty acid (FA) profile and fillet quality traits in rainbow trout. A stock of 1200 juvenile rainbow trout were individually weighed (mean weight 114.6±0.2 g) and randomly distributed into 24 fibre-glass tanks (4 diets x 3 replications x 2 feeding regimes). Statistical differences appeared among the diets in terms of crude protein digestibility, while no differences appeared for dry matter, ether extract and gross energy digestibility. Growth performance and somatic indexes were significantly affected by the diet effect, while only the condition factor was influenced by the feeding rate effect. None of the parameters appeared to be affected by the interaction effects. Differences appeared between the FA profiles of the dorsal muscle. Oleic, linoleic, α -linolenic, and docosahexaenoic acid contents were influenced by diet, while only minor FAs were influenced by feeding regime. Consumer tests showed that fillets of trout fed the MIX diet ad libitum were the most preferred. A similar ranking was obtained with the trout fed rationed diets.

 The use of alternative protein sources in aquaculture as fishmeal substitutes is an extensively studied subject (Bakke-McKellep and Refstie 2008; Médale and Kaushik 2008), since fishmeal will be a limited resource for fish feedstuff production in the future. In the past decade, in fact, a great deal of research into aquaculture nutrition has dealt with fishmeal and fish oil substitution with alternative sources. Various microbes (algae, fungi and bacteria) have been used to produce a wide range of single cell protein varieties (Anupama and Ravindra 2000). They can be used for fish or shellfish as a substitute for fish meal (4-5% substitution) and have been investigated as a feed ingredient in diets for rainbow trout (Øverland et al. 2006; Aas et al. 2006), Atlantic halibut (Aas et al. 2007), and Atlantic salmon (Storebakken et al. 2004). Among the protein concentrates derived from fermentation bacteria, noted for its use as an attractant in fish food and shellfish, Protorsan is a bacterial protein meal (BPM) which is a by-product of fermentation conducted by Corynebacterium melassecola that led to the

production of L-glutamic acid fermentation carried out using plant substrates, usually from beet molasses and/or starch hydrolysates. Fermentation takes place anaerobically, under optimal pH and temperature conditions for the growth of Corynebacterium melassecola, for about 36 hours, followed by heat treatment of fermentation broth at 75 C for 30 minutes to deactivate the bacteria. The bacterial mass is then separated from the liquid phase by centrifugation and subjected to washing and drying. The resulting product is used for animal feed. Protorsan contains 12% L-glutamic acid, around 7-7.5% of total nucleotides and 4.5% betaine, a methyl donor with high palatability. It also contains high levels of peptidoglycan as components of the bacterial cell wall. Protorsan has been tested as a feed stimulant in diets for sea bream (Chatzifotis et al. 2009), while no studies have been performed in rainbow trout (Oncorhynchus mykiss).

Journal of the World Aquaculture Society

As far as alternative protein sources are concerned, the best growth performances have been achieved using plant protein concentrates and plant protein mixture (De Francesco et al. 2004, 2007). Among the plant protein sources, field peas (Pisum sativum) have reported some success for different fish species such as Atlantic salmon (Øverland et al. 2009), rainbow trout (Thiessen et al. 2003), hybrid sturgeon (Sicuro et al. 2012), common carp (Davies and Gouveia 2010), gilthead seabream (Sánchez-Lozano et al. 2009, 2011), sea bass (Tibaldi et al. 2005, Tulli et al. 2007), African catfish (Davies and Gouveia 2008), and Nile tilapia (Schulz et al. 2007).

Øverland et al. (2009) showed that 20% air-classified pea protein concentrate (PPC)
could replace 20% of high-quality fish meal protein in feed without any adverse effect on
growth performance, carcass composition or distal intestine histology in Atlantic salmon. By
contrast, in another study, as PPC at high inclusion levels was shown to induce enteropathy in
the distal intestine of Atlantic salmon, the authors concluded that caution should be used
when including PPC in formulated feeds for Atlantic salmon (Penn et al. 2011).

Feeding PPC has been reported to support acceptable weight gain, feed intake, and feed conversion in both Atlantic salmon (Carter and Hauler 2000) and rainbow trout (Thiessen et al. 2003).

The aim of this study was to investigate the effects both of BPM, PPC and a mixture thereof compared to a control fish meal-based diet and of feeding regime on growth performance, nutrient digestibility, fatty acid (FA) profile and fillet quality traits in rainbow trout (<u>Oncorhynchus mykiss</u>).

Materials and Methods

Experimental plan

Journal of the World Aquaculture Society

92	Three experimental diets were obtained by including BPM, PPC or a mixture of both
93	protein concentrates (MIX), respectively, replacing fish meal. These experimental diets were
94	tested against a control fish meal (FM)-based diet; all the diets were isonitrogenous (CP 45
95	%) and isoenergetic (22 MJ/kg DM).
96	The feeds were manufactured in the laboratory at the Experimental Station of the
97	Department of Agriculture, Forestry, and Food Sciences of the University of Torino by means
98	of a pelleting process using a 3.5 mm diameter. Pellets were dried in a stove overnight at 50 C
99	and then refrigerated at 6 C until utilization.
100	
101	Digestibility trial
102	A stock of juvenile rainbow trout was obtained from a private hatchery (Bassignana,
103	Cuneo, Italy) and transferred to the facility at the Department of Agriculture, Forestry, and
104	Food Sciences at the University of Torino. An in vivo digestibility experiment was performed
105	in order to determine the apparent digestibility coefficient (ADC) of the diets following the
106	experimental design adopted in a previous study reported by Palmegiano et al. (2006). The
107	ADCs were measured using the indirect acid-insoluble ash (AIA) method; 1% celite® (Fluka,
108	Switzerland) was added to the diets as an inert marker. The faeces were collected from each
109	tank using a continuous automatic device, as reported by Palmegiano et al. (2006), six days
110	per week. The faeces were collected daily and frozen (-20 C) for three consecutive weeks.
111	The faeces were then dried in a stove in order to determine the dry matter (DM) content.
112	The ADC of the DM was calculated as follows:
113	ADC_{DM} (%) = (1-A/B) x 100
114	in which A and B represent the AIA concentrations in the feed and faeces, respectively.
115	The ADCs of the crude protein (CP), ether extract (EE) and gross energy (GE) were
116	calculated as follows:

117	ADCs (%) = [1-(A/B) x (SB/SA)] x 100
118	in which SA and SB represent the CP, EE or GE concentrations in the feed and faeces,
119	respectively.
120	
121	Growth trial
122	A selection of 1200 juvenile rainbow trout (initial mean body weight 114.6±0.2 g)
123	were individually weighed to obtain a homogeneous stock of fish and randomly distributed
124	into 24 fibre-glass tanks (0.5 m ³) supplied by an open-water circuit with a water flow rate of
125	25 l/min and a temperature of 13 ± 1 C while dissolved oxygen was 7.0 ± 0.5 mg/l.
126	The adopted experimental design was balanced, bi-factorial with four diets x three
127	replicates x two feeding regimes ($4x3x2$). The feeding trial lasted 77 days, after a 2-week
128	period of acclimatisation to the tanks and diets. The feedstuff was distributed by hand, 6 days
129	per week, twice a day with a daily feeding rate of 1.4% of the wet biomass or ad libitum,
130	respectively. Feed intake was checked each time and no feed reject events were recorded
131	during the trial. The biomass tanks were weighed in bulk every 15 days, in order to update the
132	daily feeding rate.
133	
134	Sampling and chemical analysis
135	At the end of the feeding trial, the fish were starved for one day, then the fish tanks
136	were weighed for final mean body weight. In order to determine the somatic indexes, five
137	trout per tank, with a body weight close to the mean body weight, were sampled and killed.
138	The gut and liver were separated from the rest of the body and weighed. The dorsal muscle
139	tissues from the same fish body were sampled and frozen until the subsequent chemical
140	determinations. The diet and fish muscle samples were freeze-dried before analysis. All the
141	diets were analyzed to determine proximate composition and AIA concentration according to

	7
142	standard methods (AOAC 1990). GE content was determined using an adiabatic calorimetric
143	bomb (IKA C7000, Staufen, Germany).
144	
145	Gas-chromatographic analysis of the fatty acids
146	FA composition was determined on the diets and fish flesh samples. The lipid
147	extraction of the samples was performed according to Peiretti and Meineri (2008); the extract
148	was expressed as crude fat and used for the trans-methylation of the FAs. The FA methyl
149	esters in hexane were then injected into a gas chromatograph (Dani Instruments S.P.A.
150	GC1000 DPC; Cologno Monzese, Italy) equipped with a flame ionization detector (FID). The
151	separation of the FA methyl esters was performed using a Famewax [™] fused silica capillary
152	column (30m×0.25mm [i.d.], 0.25 μm) (Restek Corporation, Bellefonte, PA, USA). The peak
153	area was measured using a Dani Data Station DDS 1000. Each peak was identified and
154	quantified on the basis of pure methyl ester standards (Restek Corporation, Bellefonte, PA,
155	USA).
156	
157	pH and Color flesh measurements
158	pH (pH ₂₄) was measured on muscles by means of a Crison MicropH 2001 (Crison
159	Instruments, Barcelona, Spain) equipped with a combined electrode and an automatic
160	temperature compensator.
161	The flesh colour measurements were taken on the inside fillet portion using a bench
162	colorimeter Chroma Meter CR-400 Konica Minolta Sensing (Minolta Sensing Inc, Osaka,
163	Japan) in the CIELAB colour space (CIE 1976). The lightness (L*), redness (a*) and
164	yellowness (b*) were recorded. Three readings were taken on each portion of the fillet and
165	averaged.
166	
	Journal of the World Aquaculture Society

2	
3	167
4 5 6	168
7	169
9 10	170
10 11 12	171
13 14	172
15 16	173
17 18	174
19 20	175
21 22 22	175
23 24 25	170
25 26 27	1//
28	178
29 30 31	179
32 33	180
34 35	181
36 37	182
38 39	183
40 41	184
42 43	185
44 45 46	186
40 47 48	187
49 50	188
51 52	189
53 54	190
55 56	191
57 58	171
59	

Consumer tests

A sensory panel of 36 untrained PhD students and staff members from the campus of the University of Torino and of the Italian National Research Council of Torino, 21 males and 15 females, ranging in age from 25 to 60 years, participated in this study. Panelists were regular consumers of fish flesh and were already involved in surveys on fish flesh preference/acceptability tests. Consumer tests were carried out in 6 distinct evaluation sessions over three days in the Sensory Evaluation Facility of the Department of Agriculture, Forestry and Food Science of Torino. In each session, a preference ranking test was performed to evaluate the preference of cooked fillets from trout fed with the four experimental diets offered ad libitum or rationed. Between sessions, panelists took a 15 min break. Sixteen trout (two fish from each diet), homogeneous for size and weight, were filleted. The fillets were wrapped in aluminum foil and cooked without additives in an air convection oven at 200 C until the core temperature reached 70 C (about 15 min). After cooking, the fillets were cut into equal portions. Each panelist received four warm samples corresponding to the 4 diets. Samples were labelled with three-digit numbers, and were offered using a Williams design to balance the

Panelists were asked to rank the samples from trout fed with the four diets in order of preference (most preferred =1; least preferred =4). Tap water was offered to the panelists to rinse their mouths between samples.

order of presentation (MacFie et al. 1989).

Statistical analysis

Statistical analyses were performed using the SPSS software package (version 11.5.1 for Windows, SPSS Inc., USA). Growth performance, FA profile and fillet quality traits were analysed by two-way ANOVA by considering dietary protein source, feeding regime and their

192	interaction as the main effects. The data were presented as the means for each group, together
193	with the significance levels of the main effects and interactions.
194	Analysis of variance was used to evaluate the diet effect on ADC. These data were
195	presented as the means for each group and the standard deviation (SD). Significance was
196	established at $P < 0.05$ for all data.
197	The results of the sensory analysis were analysed by Friedman's test. The Friedman
198	rank sum was performed to determine whether the panellists were able to discriminate
199	between samples. Then, the least significant ranked difference values were calculated to
200	ascertain which samples were significantly preferred to the others (Meilgaard et al. 1991). The
201	ranking data were analysed by box-plots and correspondence analysis.
202	
203	Results and Discussion
204	Composition and fatty acid profile of the diets
205	The ingredients and chemical composition of the four diets are shown in Table 1,
206	while the FA patterns for the four experimental diets are reported in Table 2.
207	The experimental diets were similar as concerned CP, crude fibre and GE, while the
208	dietary concentration of EE was lower in the BPM diet than in the other diets. Ash and
209	nitrogen-free extracts were higher and lower, respectively, in the FM diet.
210	The concentration of crude fat in the bacterial protein resembles that of fish meal,
211	while the composition of the lipid is different (Storebakken et al. 2004). Phospholipids are the
212	main lipid components of bacterial protein, consisting mainly of phosphatidylethanolamine
213	and phosphatidylglycerol (Müller and Skrede, 2003) with predominantly SFA and MUFA and
214	no PUFA.
215	The experimental diets showed a similar FA profile with slightly high values of
216	C20:5n-3 (EPA) and C22:6n-3 (DHA) in the FM diet. This diet also showed a slightly higher

saturated FA (SFA) and PUFA content than the other diets, while the lowest content ofMUFA was found in the MIX diet.

Digestibility of the experimental diets

As far as digestibility is concerned (Table 3), statistical differences appeared among the diets for CP, while no differences appeared for DM, EE and GE. The lowest CP digestibility coefficients were recorded in the BPM and MIX groups, both fed diets containing the bacterial protein meal. Similar ADC of nitrogen was found in studies carried out by Storebakken et al. (2004) and Øverland et al. (2006) in Atlantic salmon and rainbow trout, respectively. These authors recorded lower nitrogen digestibility with increasing BPM inclusion compared to a fish meal-based diet, with values of 87% and 83% in fish fed diets containing 193 and 147 g of bacterial protein meal per kg of diet, respectively. In contrast, even though this was lower than fish meal-based diets, higher values (91 and 88%) of ADC of nitrogen were found in trials with rainbow trout and Atlantic halibut fed diets containing 270 and 180 g of bacterial protein meal per kg of diet, respectively (Aas et al. 2006, 2007). The lower nitrogen digestibility values recorded in the BPM and MIX groups of this study and in the other trials utilising bacterial protein meal diets, could be due to a negative effect of bacterial membrane and cell wall components on protein digestibility, as observed in previous studies in rainbow trout fed single-cell proteins from brewer's yeast (Rumsey et al. 1991; Kiessling and Askbrandt 1993). Burel et al. (2000) found that extruded peas showed lower protein digestibility in trout (88%) than in turbot (92%).

Growth performance and somatic indexes

As far as the growth performance traits and the somatic indexes reported in Table 4 are concerned, all the parameters investigated were significantly affected by the diet effect

2 3	242	while only the condition factor (CF) was influenced by the feeding rate effect. None of the
4 5 6	243	parameters showed to be affected by the interaction between diet and feeding rate effect.
7 8	244	Compared to the FM group, the trout fed alternative protein source diets had lower
9 10	245	weight gain and specific growth rates (SGR). Similar results were found by de Francesco et
11 12	246	al. (2004) in a long-term feeding study where large rainbow trout were fed with a plant
13 14 15	247	protein mixture-based diet. In contrast, de Francesco et al. (2007) found similar weight gain
16 17	248	and SGR in gilthead sea bream fed with a plant protein high-level fish meal replacement diet.
18 19	249	In our trial, trout fed alternative protein source diets were characterised by a higher viscero-
20 21	250	and hepato-somatic index but a lower carcass yield. A decrease in dressed carcass and fillet
22 23	251	yield was also observed in a study carried out in trout fed plant proteins and guar gum as fish
24 25 26	252	meal replacements (Brinker and Reiter, 2011).
27 28	253	A similar effect on CF was observed in a study carried out in Atlantic salmon fed to
29 30	254	satiation or moderately reduced rations of high or low energetic feeds, in which the rationed
31 32	255	fish showed the lowest CF values (Johnsen et al. 2011).
33 34 35	256	
36 37	257	Fatty acid profile of the fillet
38 39	258	While it is common to see changes in the FA profile when dietary fat is modified
40 41	259	through changes in dietary lipid sources, there is little information as regards the effects of
42 43	260	changes in FA content as affected by dietary protein sources. Indeed, total replacement of fish
44 45 46	261	meal by plant protein ingredients modifies FA profiles to a certain extent with the consequent
47 48	262	changes seen in muscle FA profiles (Tables 5 and 6). As far as FA composition of different
49 50	263	fillets is concerned, C18:1n-9, C18:2n-6, C18:3n-3, and DHA contents and some minor FAs
51 52	264	(such as C15:0, C16:2n-4, C17:0, C16:3n-4, C18:3n-6, C20:1n9, C20:4n-6, C21:0 and
55 55	265	C22:1n-9) were influenced by diet, while only minor FAs (such as C16:1n-9, C16:2n-4,
56 57		

266 C16:3n-4, C18:3n-4, C20:1n9 and C22:1n-9) were influenced by feeding regime (Table 5).

267 An interaction was found only for two minor FAs (C16:2n-4 and C22:1n-9).

In common with other studies on rainbow trout (De Francesco et al. 2004; Morris et al. 2005) the FA content of trout muscle in the present study was significantly influenced by that of the feed. In fact, it is well known that dietary FA composition strongly influences flesh FA composition in fish (Sargent et al. 2002). As shown by Palmegiano et al. (2006), who evaluated the use of rice protein concentrate as a potential substitute of fish meal in rainbow trout, fillet FA profile reflects diet composition, but some FAs are not present in the same proportion and this induces one to suppose that an elongation and desaturation process has occurred. Numerous FAs were present at higher proportions in the flesh lipids than in the feeds, including C18:1n-9 and DHA. However, C18:2n-6, C18:3n-3 and EPA were all present at lower relative percentages in the flesh than in the feeds. Preferential accumulation and/or retention of selected FAs, including C18:2n-6, C20:4n-6 and DHA, has previously been recorded in rainbow trout (Greene and Selivonchick 1990).

In the present study, MUFA and PUFA content (total PUFA, PUFA n-3, PUFA n-6 and their ratio) were influenced by diet treatment, while only MUFA content was influenced by feeding regime without interaction between factors (Table 6), as previously demonstrated in rainbow trout fed with a plant protein mixture-based diet (De Francesco et al. 2004). They reported that SFA, MUFA and PUFA n-3 and the n-3/n-6 ratio were significantly higher in trout fed diet based on fish meal, while PUFA n-6 (above all in C18:2n-6) were significantly higher in trout fed diet based on mixture of plant protein sources (corn gluten meal, wheat gluten, extruded peas, and rapeseed meal), while the main difference observed in single FA was the higher incidence and content of C18:3n-3 in fillet of trot fed diet based on mixture of plant protein sources in comparison to those fed the fish meal, no differences were found for eicosapentaenoic (EPA) and the docosahexaenoic (DHA) acid levels. This result was

consistent with the data obtained by Gomes et al. (1993), who observed an increased level of
PUFA n-6, in particular of C18:2n-6, in muscle of rainbow trout fed diets with increasing
levels (5%, 10%, 15% and 45%) of a co-extruded plant protein (rapeseed and peas). It is
reassuring to note that at the same lipid level, EPA and DHA were no different between the
two groups of trout.

Morris et al. (2005) reported that, with the exception of five individual FAs (C16:2n-6; C20:4n-6; C20:4n-3; DHA and C24:1n-9), the FA profile of the rainbow trout flesh responded linearly to changing proportions of individual FAs in the feed formulated with extracted soya (7.5%) and full-fat soya (0–25%). Although the percentage of DHA and PUFA n-3 in the fillet was not significantly influenced by the level of soya in the feeds, the relative proportions of the fish and soybean derived PUFA n-3 shifted towards the latter, i.e. higher relative percentages of C18:3n-3, in response to a higher proportion of soya-derived fat in the feeds.

The challenges of creating new plant-based feed ingredients for salmonid diets are providing high-quality protein and providing a source of PUFA n-3 (Drew et al. 2005). Fish oil is the most widely-used source of PUFA n-3, required by salmonids to maximize growth potential and maintain the PUFA n-3 content of the fish carcass desired by consumers. Rainbow trout can elongate and desaturate C18:3n-3 into EPA and DHA (Owen et al. 1975), but most plant oils are poor sources of C18:3n-3.

Fillet quality traits

Parameters of fillet pH and colour are reported in Table 7; all the parameters investigated were significantly affected by the treatments except redness for the diet effect and yellowness for the feeding rate effect, respectively. None of the parameters appeared to be affected by the interaction between diet and feeding rate effect.

The fillet pH level after 24h was slightly higher for fish fed BPM and MIX diets while similar values were found for the FM and PPC groups. Brinker and Reiter (2011) observed a reduction in pH 24h <u>post mortem</u> in fillets of trout fed a mixture of fish meal and plant protein-based feeds and they attribute the observed reduction in pH to the differences in fillet energy stores. The same authors found that the pure plant diet appears to increase undesirable yellowness in the trout fillets, in agreement with the results of the present trial where we found a similar trend in fish fed the PPC and MIX diets.

In our trial, the feeding rate modified the redness values of the trout fillets with the higher values recorded in rationed fish while satiation feeding induced higher red colour intensity (a*-value) compared to restricted feeding in a study carried out in Atlantic salmon (Johnsen et al. 2011). The same authors did not find any differences in the lightness values, in contrast to the findings from the present trial where lightness values decreased in fillets from the rationed groups.

Fillet composition in terms of DM, CP, EE, and ash content is reported in Table 8. The results for fillet composition showed that only CP content was affected by the diet effect with an increased content in fish fed fish meal-alternative protein sources. A similar increase was also observed by De Francesco et al. (2004) in large rainbow trout fed with plant protein mixtures in replacement of fish meal. The same effect was also reported in rainbow trout fed diets where 25, 50, 75, or 100% of the fish meal protein was replaced with a mixture of rendered animal protein ingredients (Lesiow et al. 2009). DM and ash content were affected by feeding rate effect, fillets from rationed fish groups showed an increased content of DM and a decreased ash content compared to ad libitum groups.

Consumer tests

Journal of the World Aquaculture Society

The results of the preference ranking test concerning the trout fillets fed ad libitum

with the four diets are reported in Fig. 1. Fillets of trout fed the MIX diet ad libitum obtained the highest number of most preferred votes as well as the best median value (Fig. 2). Fillets of trout fed the FM diet ad libitum obtained the largest number of least preferred and the smallest number of most preferred votes. Fillets of trout fed the BPM and PPC diets ad libitum had the majority of votes in 2nd and 3th preference votes, 75% and 53% respectively. The Friedman's test showed that there was a significant difference ($P \le 0.05$) in preference between the fillets (Table 9). Fillets of trout fed the MIX diet ad libitum were the most preferred (rank sum = 72), followed by the BPM diet <u>ad libitum</u> (rank sum = 89), PPC diet ad libitum (rank sum = 90) and FM diet ad libitum (rank sum = 109). A similar ranking was obtained with the rationed trout, although no significant difference in preference between the four fillets was observed (Table 9). Fillets of trout fed the rationed MIX diet obtained the highest number of most preferred votes (Fig.3). Fillets of trout fed the rationed PPC diet obtained the same number of most and least preferred votes. The rationed BPM diet had the majority of 2nd preference votes while the rationed FM diet received the largest number of least preferred votes. The rationed FM and PPC diets showed the worst median values (Fig. 2). The overall results can be represented in the correspondence analysis plot (Fig. 4). Dimensions 1 and 2 explain 58% and 39% of the inertia, respectively. Fillets of trout fed the MIX diet ad libitum and 1st preference votes, and, fillet of trout fed the rationed FM diet and 4th preference votes, showing the highest deviation from the origin, gave the main contribution to the inertia of dimension 1 and dimension 2, respectively. According to the distribution of samples in the plane, it can be seen that the samples preferred by the consumers are found to the right in the plot and near the 1st preference votes. The next two groups, rationed BPM diet and BPM diet ad libitum, are found on the left near the 2nd

364	preference votes. Less- preferred fillets were from FM diet ad libitum and rationed FM diet
365	near the 4 th preference votes, while rationed PPC diet and PPC diet <u>ad libitum</u> , near the 3 th
366	preference votes, are found between the 1^{st} and 4^{th} preference votes.

Acknowledgements

Financial support for this work was provided by the MIPAAF (Ministero delle Politiche Agricole e Forestali, Italy) RENAI project. The authors thank Dr. Marco Ortoffi (Institute of Science of Food Production, National Research Council), Luciano Sola and Dario Sola for their careful management of the fish and Vanda Malfatto (Department of Agriculture, Forestry, and Food Sciences, University of Torino) for their technical assistance during the laboratory analysis. All the authors contributed equally to the work described in this paper.

1 2		
3 4	376	Literature Cited
5 6	377	Aas, T. S., B. Hatlen, B. Grisdale-Helland, B. F. Terjesen, A. M. Bakke-McKellep
7 8	378	and S. J. Helland. 2006. Effects of diets containing a bacterial protein meal on growth
9 10	379	and feed utilisation in rainbow trout (Oncorhynchus mykiss). Aquaculture 261:357-368.
11 12	380	Aas, T. S., B. Hatlen, B. Grisdale-Helland, B. F. Terjesen, M. Penn, A. M. Bakke-
13 14 15	381	McKellep and S. J. Helland. 2007. Feed intake, growth and nutrient utilization in
15 16 17	382	Atlantic halibut (Hippoglossus hippoglossus) fed diets containing a bacterial protein meal.
18 19	383	Aquaculture Research 38:351–360.
20 21	384	Anupama and P. Ravindra. 2000. Value-added food: single cell protein. Biotechnology
22 23	385	Advances 18:459–479.
24 25 26	386	AOAC. 1990. Official Method of Analysis, 15th Edn. Association of Official Analytical
20 27 28	387	Chemists, AOAC, Washington, DC.
29 30	388	Bakke-McKellep, A. M. and S. Refstie. 2008. Alternative protein sources and digestive
31 32	389	function alterations in teleost fishes. Pages 445-478 in J.E.P. Cyrino, D.P. Bureau and
33 34	390	B.G. Kapoor, editors. Feeding and Digestive Functions of Fishes. Science Publishers,
35 36 37	391	Enfield, NH, USA.
38 39	392	Brinker, A. and R. Reiter. 2011. Fish meal replacement by plant protein substitution and
40 41	393	guar gum addition in trout feed, Part I: Effects on feed utilization and fish quality.
42 43	394	Aquaculture 310:350–360.
44 45 46	395	Burel, C., T. Boujard, F. Tulli, S. J. Kaushik. 2000.Digestibility of extruded peas,
40 47 48	396	extruded lupin, and rapeseed meal in rainbow trout (Oncorhynchus mykiss) and turbot
49 50	397	(Psetta maxima). Aquaculture 188:285–298.
51 52	398	Carter, C. G. and R. C. Hauler. 2000. Fish meal replacement by plant meals in extruded
53 54	399	feeds for Atlantic salmon, Salmo salar L. Aquaculture 185:299-311.
55 56 57		
ว/ 58 50		
59 60		

400	Chatzifotis, S., Arias, M. V., Papadakis, I. E., and P. Divanach. 2009. Evaluation of
401	feed stimulants in diets for sea bream (Sparus aurata). The Israeli Journal of Aquaculture -
402	Bamidgeh, 61(4):315-321.
403	CIE. 1976. Commission internationale de l'éclairage. Colorimetry. Publication 15,
404	Bureau Central de la CIE, Vienna, Austria.
405	Davies, S. J. and A. Gouveia. 2008. Enhancing the nutritional value of pea seed meals
406	(Pisum sativum) by thermal treatment or specific isogenic selection whit comparison to
407	soybean meal for African catfish (Clarias gariepinus). Aquaculture 283:116–122.
408	Davies, S. J. and Gouveia, A. 2010. Response of common carp fry fed diets containing a
409	pea seed meal (Pisum sativum) subjected to different thermal processing methods.
410	Aquaculture 305:117–123.
411	De Francesco, M., G. Parisi, F. Médale, P. Lupi, S.J. Kaushik and B. M. Poli. 2004.
412	Effect of long-term feeding with a plant protein mixture based diet on growth and
413	body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture
414	236:413–429.
415	De Francesco, M., G. Parisi, J. Pérez-Sánchez, P. Gómez-Réqueni, F. Médale, S. J.
416	Kaushik, M. Mecatti and B. M. Poli. 2007. Effect of high-level fish meal replacement
417	by plant proteins in gilthead sea bream (Sparus aurata) on growth and body/fillet quality
418	traits. Aquaculture Nutrition 13: 361–372.
419	Drew, M. D., V. J. Racz, R. Gauthier and D. L. Thiessen. 2005. Effect of adding
420	protease to coextruded flax:pea or canola:pea products on nutrient digestibility and growth
421	performance of rainbow trout (Oncorhynchus mykiss). Animal Feed Science and
422	Technology 119:117–128.
423	Gomes, E. F, G Corraze and S.J Kaushik. 1993. Effects of dietary incorporation of a
424	co-extruded plant protein (rapeseed and peas) on growth, nutrient utilization and muscle

2 3	425	fatty acid composition of rainbow trout (Oncorhynchus mykiss). Aquaculture 113:339-
4 5 6	426	353.
7 8	427	Greene, D. H. S. and D. P. Selivonchick. 1990. Effects of dietary vegetable, animal and
9 10	428	marine lipids on muscle lipid and haematology of rainbow trout (Oncorhynchus mykiss).
11 12	429	Aquaculture 89:165–182.
13 14	430	Kiessling, A. and S. Askbrandt. 1993. Nutritive value of two bacterial strains of single-
15 16 17	431	cell protein for rainbow trout (Oncorhynchus mykiss). Aquaculture 109:119–130.
18 19	432	Johnsen, C. A., Ø. Hagen, M. Adler, E. Jönsson, P. Kling, R. Bickerdike, C. Solberg,
20 21	433	B. T. Björnsson and E. Bendiksen. 2011. Effects of feed, feeding regime and growth
22 23	434	rate on flesh quality, connective tissue and plasma hormones in farmed Atlantic salmon
24 25	435	(Salmo salar L.). Aquaculture 318:343–354.
20 27 28	436	Lesiow, T., H. W. Ockerman and K. Dabrowski. 2009. Composition, properties and
29 30	437	sensory quality of rainbow trout affected by feed formulations. Journal of the World
31 32	438	Aquaculture Society 40:678–686.
33 34	439	MacFie, H. J., N. Bratchell, K. Greenhoff and L. V. Vallis. 1989. Designs to balance
35 36 27	440	the effect of order of presentation and first-order carry-over effects in hall tests. Journal of
38 39	441	Sensory Studies 4(2):129–148.
40 41	442	Médale, F. and S. Kaushik. 2008. Evolution of INRA research in the field of fish
42 43	443	nutrition : exploring alternatives to marine fishery-derived ingredients. INRA Productions
44 45	444	Animales 21:87–94.
46 47 48	445	Meilgaard, M., G. V. Civille and B. T. Carr. 1991. Sensory evaluation techniques (2nd
49 50	446	ed.). Boca Raton, Florida: CRC Press.
51 52	447	Morris, P. C., P. Gallimore, J. Handley, G. Hide, P. Haughton and A. Black. 2005.
53 54	448	Full-fat soya for rainbow trout (Oncorhynchus mykiss) in freshwater: Effects on
55 56 57 58		

performance, composition and flesh fatty acid profile in absence of hind-gut enteritis.

Aquaculture 248:147–161. Müller, H. and A. Skrede. 2003. Lipids from natural gas-utilising bacteria reduce plasma cholesterol concentrations in mink compared with soybean oil. Int. Symp. on Triglycerides, Metabolic Disorders, and Cardiovascular Disease, New York, July 10–13, Abstract Book, p. 50. Øverland, M., O. H. Romarheim, M. Hovin, T. Storebakken and A. Skrede. 2006. Apparent total tract digestibility of unprocessed and extruded diets containing basic and autolyzed bacterial protein meal grown on natural gas in mink and rainbow trout. Animal Feed Science and Technology 129:237–251. Øverland, M., M. Sørensen, T. Storebakken, M. Penn, Å. Krogdahl and A. Skrede. 2009. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)-Effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture 288:305–311.

- 463 Owen, J. M., J. W. Adron, C. Middleton and C. B. Cowey. 1975. Elongation and
 464 desaturation of dietary fatty acids in turbot (<u>Scophthalmus maximus</u>) and rainbow trout
 465 (Salmo gairdneri). Lipids 10:528–531.
- 466 Palmegiano, G. B., F. Daprà, G. Forneris, F. Gai, L. Gasco, K. Guo, P. G. Peiretti, B.
 - 467 Sicuro and I. Zoccarato. 2006. Rice protein concentrate meal as a potential ingredient in
 468 practical diets for rainbow trout (<u>Oncorhynchus mykiss</u>). Aquaculture 258:357–367.
 - 469 Peiretti, P. G. and G. Meineri. 2008. Effects on growth performance, carcass
 470 characteristics, and the fat and meat fatty acid profile of rabbits fed diets with chia (Salvia
 471 <u>hispanica</u> L.) seed supplements. Meat Science 80:1116–1121.

1		
2 3 4	472	Penn, M. H., E. Å. Bendiksen, P. Campbell and Å. Krogdahl. 2011. High level of
- 5 6	473	dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.).
7 8	474	Aquaculture 310:267–273.
9 10	475	Rumsey, G. L., Hughes, S. G., Smith, R. R., Kinsella, J. E., Shetty, K. J. 1991.
11 12	476	Digestibility and energy values of intact, disrupted and extracts from brewers yeast fed to
13 14 15	477	rainbow trout (Oncorhynchus mykiss). Animal Feed Science Technology 33: 185-193.
16 17	478	Sánchez-Lozano, N. B., S. Martínez-Llorens, A. Tomás-Vidal and M. Jover Cerdá.
18 19	479	2009. Effect of high-level fish meal replacement by pea and rice concentrate protein on
20 21	480	growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata L.)
22 23	481	Aquaculture 298:83–89.
24 25 26	482	Sánchez-Lozano, N. B., S. Martínez-Llorens, A. Tomás-Vidal and M. Jover Cerdá.
20 27 28	483	2011. Amino acid retention of gilthead sea bream (Sparus aurata L.) fed with pea protein
29 30	484	concentrate. Aquaculture Nutrition 17:e604–e614.
31 32	485	Sargent, J. R., D. R. Tocher and G. J. Bell, 2002. The lipids. In: Halver, J.E., Hardy, R.
33 34	486	(Eds.), Fish Nutrition, Third edition. Academic Press, San Diego, CA, pp. 181–257.
35 36 37	487	Schulz, C., M. Wickert, C. Kijora, J. Ogunji and B. Rennert. 2007. Evaluation of pea
38 39	488	protein isolate as alternative protein source in diets for juvenile tilapia (Oreochromis
40 41	489	niloticus). Aquaculture Research 38:537–545.
42 43	490	Sicuro, B., F. Gai, F. Daprà and G. B. Palmegiano. 2012. Hybrid sturgeon 'AL'
44 45	491	(Acipenser naccarii x Acipenser baeri) diets: the use of alternative plant protein sources.
40 47 48	492	Aquaculture Research 43:161–166.
49 50	493	Storebakken, T., G. Baeverfjord, A. Skrede, J. J. Olli and G. M. Berge. 2004.
51 52	494	Bacterial protein grown on natural gas in diets for Atlantic salmon, Salmo salar, in
53 54 55 56	495	freshwater. Aquaculture 241:413–425.
57 58		

- Thiessen, D. L., G. L. Campbell, and P. D. Adelizi. 2003. Digestibility and growth
 performance of juvenile rainbow trout (<u>Oncorhynchus mykiss</u>) fed with pea and canola
 products. Aquaculture Nutrition 9:67–75.
- Tibaldi, E., F. Tulli, M. Messina, C. Franchin and E. Badini. 2005. Pea protein
 concentrate as a substitute for fish meal protein in sea bass diet. Italian Journal of Animal
 Science 4: 597–599.
- 502 Tulli, F., M. Messina, M. Calligaris and E. Tibaldi. 2007. Growth performance of sea
 503 bass fed increasing levels of pea-wheat protein in diets varying in fish meal quality. Italian
 504 Journal of Animal Science 6: 833–835.

3

4 5

6 7

8 9

10 11

12 13 14

15 16

17 18

19 20

21 22 23

24 25

26 27

32 33 34

35 36

37 38

39 40

41 42

43

44 45

46 47

48 49

50 51

52 53

54 55

56

57

58 59 60 506 TABLE 1. Ingredients and proximate composition of experimental diets. Diets FM BPM PPC MIX Ingredients (%) Herring fish meal^a 50.00 25.00 25.00 25.00 Protorsan^b 0.00 25.00 0.00 12.50 Pea protein concentrate^c 0.00 0.00 30.00 15.00 1.5(Corn meal 23.00 24.00 12.00 17.50 Fish oil 10.00 11.00 12.50 12.00 Corn gluten 8.00 6.00 12.00 9.00 Lignum sulphate 6.00 6.00 6.00 6.00 Mineral mixture^d 1.50 1.50 1.25 1.50 Vitamin mixture^e 1.50 1.50 1.25 1.50 Proximate composition (%DM) Dry matter (% fresh matter) 96.6 92.5 95.9 96.1 45.4 45.9 45.2 Crude protein 45.2 Ether extract 17.3 14.6 16.5 17.0 12.0 8.9 9.2 Ash 9.2 Crude fiber 1.9 2.0 1.9 1.9 Nitrogen free extracts^f 28.6 26.7 23.4 27.2 Gross energy (MJ/kg DM)^g 21.5 21.8 22.2 22.1 507 ^a Mangimi Monge, Torre San Giorgio, Italy: DM 91.2%, CP 69%, EE 8.2%, ash 9.6%, CF 0.5%. 508 ^b Mazzoleni Prodotti Zootecnici, Cologno al Serio, Italy: DM 92%, CP 67%, EE 6%, ash 3.8%, CF 1%. 509 ^c AgriMarin Nutrition, Stavanger, Norway: DM 90%, CP 55%, starch 9%, EE 2%, ash 6%. 510 ^d Mineral mixture (g or mg/kg diet): bicalcium phosphate 500 g, calcium carbonate 215 g, sodium salt 511 40 g, potassium chloride 90 g, magnesium chloride 124 g, magnesium carbonate 124 g, iron sulphate 20 g, zinc

Journal of the World Aquaculture Society

- sulphate 4 g, copper sulphate 3 g, potassium iodide 4 mg, cobalt sulphate 20 mg, manganese sulphate 3 g,
- sodium fluoride 1g, (Granda Zootecnica, Cuneo, Italy).
 - ^e Vitamin mixture (IU or mg/kg diet): DL-a tocopherol acetate, 60 IU; sodium menadione bisulphate, 5
- mg; retinyl acetate, 15000 IU; DL-cholecalciferol, 3000 IU; thiamin, 15 mg; riboflavin, 30 mg; pyridoxine, 15
- mg; B12, 0.05 mg; nicotinic acid, 175 mg; folic acid, 500 mg; inositol, 1000 mg; biotin, 2.5 mg; calcium
- panthotenate, 50 mg; choline chloride, 2000 mg (Granda Zootecnica, Cuneo, Italy).
- ^f Calculated as 100-(%Crude protein +%Ether extract +%Ash +%Crude fiber).
 - mined by caro ^g Determined by calorimetric bomb.

Journal of the World Aquaculture Society

	FM	BPM	PPC	MIX
C14:0	4.70	4.66	4.19	4.56
C15:0	0.34	0.32	0.30	0.32
C16:0	13.39	13.15	12.08	13.00
C16:1n-9	0.20	0.21	0.18	0.21
C16:1n-7	5.13	5.23	4.79	5.17
C16:2n-4	0.62	0.23	0.15	0.15
C17:0	0.27	0.24	0.24	0.24
C16:3n-4	0.69	0.69	0.71	0.61
C17:1n-7	0.18	0.17	0.19	0.22
C18:0	3.57	3.27	3.14	3.15
C18:1n-9	19.53	21.90	20.79	22.09
C18:1n-7	2.86	2.81	2.70	2.81
C18:2n-6	9.56	10.85	11.03	11.20
C18:3n-6	0.21	0.23	0.34	0.19
C18:3n-4	0.16	0.18	0.52	0.18
C18:3n-3	2.36	2.62	2.99	2.83
C18:4n-3	1.66	1.69	1.70	1.71
C20:0	0.26	0.26	0.25	0.30
C20:1n-9	2.24	2.49	2.55	2.66
C20:2n-6	0.44	0.48	0.49	0.47
C20:3n-3	0.14	0.15	0.41	0.11
C20:4n-6	0.67	0.59	0.62	0.62

CO 1 T **a b**: (· • • • 1/0/ 0/ 10/ · 1) • , •

C21:0	0.22	0.23	0.24	0.11					
C20:4n-3	0.81	0.85	0.81	0.82					
C20:5n-3	9.55	9.00	8.51	8.73					
C22:1n-9	1.68	1.90	1.87	1.90					
C22:2n-6	0.45	0.43	1.69	0.70					
C22:5n-3	1.91	1.88	1.79	1.84					
C22:6n-3	11.01	8.80	9.02	8.80					
SFA ^a	22.74	22.14	20.44	21.69					
MUFA ^b	31.83	34.72	33.07	35.05					
PUFA ^c	39.81	38.24	39.11	38.27					
PUFA n-3 ^d	27.44	24.99	25.23	24.85					
PUFA n-6 ^e	11.34	12.58	14.19	13.17					
n-3/n-6	2.42	1.99	1.78	1.89					
^a Satur	rated fatty acids.								
^b Mon	ounsaturated fatty ac	cids.							
^c Polyunsaturated fatty acids.									
^d Polyunsaturated fatty acids serie n-3.									
^e Poly	unsaturated fatty aci	ds serie n-6.							

523	^b Monounsaturated fatty acids
-----	--

3	
4	
5 6	
7	
8	
9	
10	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
23	
24	
25	
26	
28	
29	
30	
31	
33	
34	
35	
30 37	
38	
39	
40	
41	
43	
44	
45	
40 47	
48	
49	
50 51	
51 52	
53	
54	
55	
50 57	
58	
50	

60

530

528 TABLE 3. Apparent digestibility coefficients (%) of nutrients and gross energy of the

529 experimental diets (means \pm SD; n=9).

	Diets	FM	BPM	PPC	MIX
	Dry matter	69.97±0.67	69.23±0.25	70.33±1.29	67.33±1.92
	Crude protein	90.30±0.28 ^a	84.20 ± 0.28^{b}	88.90±0.28 ^a	85.40±1.13 ^b
	Ether extract	97.35±0.78	96.90±0.28	95.70±0.28	96.35±0.21
	Gross energy	79.93±1.62	77.00±2.26	78.50±3.04	74.87±2.97
)	In the row	v, different letters m	ean statistical diffe	rence at P≤0.05.	

	<u>ad libitı</u>	<u>um</u>			Ratione	d			Significance	Significance		
	FM	BPM	PPC	MIX	FM	BPM	РРС	MIX	Diet effect	F.R. effect	Interaction	
WG ^a	113.5	39.5	99.4	102.5	100.4	40.6	99.8	91.8	0.000	0.082	0.250	
SGR ^b	0.90	0.40	0.80	0.80	0.85	0.40	0.80	0.77	0.000	0.360	0.815	
PER ^c	1.63	0.67	1.75	1.63	1.60	0.80	1.77	1.57	0.000	0.790	0.459	
FCR ^d	1.40	3.53	1.25	1.33	1.40	2.70	1.23	1.40	0.000	0.246	0.213	
VSI ^e	10.8	12.4	11.7	13.0	9.8	10.8	11.5	12.3	0.025	0.095	0.790	
$\mathrm{HSI}^{\mathrm{f}}$	1.02	1.17	1.08	1.40	1.04	1.13	1.20	1.25	0.007	0.803	0.418	
CF ^g	1.20	1.15	1.26	1.26	1.09	0.99	1.18	1.22	0.002	0.005	0.577	
CY^{h}	88.2	86.4	87.2	85.6	89.1	88.1	87.3	86.5	0.015	0.107	0.774	
	^a Weight ga	ain, (g) =[F	BW (final	body weight	, g) –IBW (i	nitial body	weight, g)].				
1	^b Specific g	growth rate	(%) =[(lnl	FBW-lnIBW	/)/number of	feeding da	uys]*100.					
	^c Protein ef	ficiency ra	tio =[WG	(weight gain,	g)/total prot	ein fed (g I	DM)].					
	^d Feed conv	version rati	o=[total fe	ed supplied ((g DM)/WG	(weight ga	in, g)].					
	^e Visceroso	matic inde	x, (%) =[g	ut weight (g)	/ fish weight	z (g)]*100.						
				L	ournal of the	e World A	nuaculture	Society				

TABLE 4. Growth performance, feed utilization and whole body composition (n=5) in rainbow trout fed experimental diets.

1 2 3 4 5 6 7 8 9	537 538	^f Hepatosomatic index, (%) =[liver weight (g)/ fish weight (g)]*100. ^g Condition factor, (%) =[fish weight (g)/ fish length (cm) ³]*100.
10	539	^h Carcass yield, (%) =[carcass weight (g)/ fish weight (g)]*100.
$\begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 1\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 1\\ 42\\ 43\\ 44 \end{array}$	540	
45 46 47 48		Journal of the World Aquaculture Society

2	
3	
4	
5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
აა ე₄	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
 /0	
40	

1

ad libitum					Ratione	Rationed				Significance		
	FM	BPM	PPC	MIX	FM	BPM	PPC	MIX	Diet effect	F.R. effect	Interaction	
C14:0	3.35	3.33	2.94	3.47	3.17	3.11	3.15	3.23	0.375	0.374	0.523	
C15:0	0.28	0.29	0.24	0.28	0.27	0.27	0.25	0.27	0.026	0.410	0.482	
C16:0	14.60	14.70	14.06	15.06	14.56	14.34	14.82	14.50	0.618	0.783	0.085	
C16:1n-9	0.25	0.24	0.24	0.26	0.14	0.25	0.23	0.19	0.332	0.032	0.136	
C16:1n-7	4.28	4.20	3.83	4.39	4.01	4.06	4.01	3.94	0.590	0.231	0.484	
C16:2n-4	0.27	0.21	0.39	0.41	0.21	0.15	0.14	0.17	0.000	0.000	0.000	
C17:0	0.28	0.30	0.21	0.28	0.28	0.27	0.26	0.27	0.005	0.663	0.053	
C16:3n-4	0.25	0.24	0.27	0.29	0.18	0.14	0.12	0.21	0.010	0.000	0.142	
C18:0	3.29	3.26	3.14	3.37	3.20	3.40	3.21	3.33	0.279	0.805	0.611	
C18:1n-9	19.23	20.06	18.96	20.30	18.19	19.57	17.59	19.95	0.022	0.082	0.849	
C18:1n-7	2.80	2.68	2.54	2.05	2.68	2.64	2.53	2.63	0.300	0.514	0.387	
C18:2n-6	12.01	13.79	16.13	12.88	12.41	14.71	15.82	13.11	0.001	0.603	0.904	
C18:3n-6	0.27	0.34	0.35	0.29	0.30	0.29	0.34	0.31	0.005	0.714	0.117	

TABLE 5 Fatty acids in fillets (n=5): composition (% of total fatty acid)

											31
C18:3n-4	0.34	0.38	0.40	0.37	0.29	0.28	0.29	0.31	0.731	0.000	0.576
C18:3n-3	1.69	2.11	1.93	2.00	1.70	2.05	1.71	1.91	0.000	0.068	0.400
C18:4n-3	0.99	1.14	0.95	1.05	0.93	1.04	1.00	1.04	0.101	0.441	0.586
C20:0	0.08	0.19	0.14	0.19	0.18	0.19	0.16	0.12	0.371	0.640	0.158
C20:1n-9	2.11	2.02	1.64	2.19	1.69	2.02	1.34	1.94	0.001	0.019	0.482
C20:2n-6	0.69	0.67	0.76	0.71	0.65	0.74	0.64	0.71	0.688	0.454	0.082
C20:3n-3	0.38	0.37	0.50	0.39	0.56	0.47	0.48	0.38	0.554	0.259	0.503
C20:4n-6	0.70	0.63	0.62	0.65	0.70	0.63	0.64	0.64	0.001	0.796	0.909
C21:0	0.21	0.21	0.18	0.22	0.15	0.17	0.04	0.21	0.006	0.003	0.162
C20:4n-3	0.95	0.93	0.91	1.01	0.96	0.92	0.84	0.85	0.299	0.049	0.188
C20:5n-3	5.59	5.77	5.17	5.59	5.48	5.39	5.56	5.44	0.749	0.727	0.479
C22:1n-9	1.04	1.13	0.76	1.10	0.82	0.29	0.21	0.28	0.000	0.000	0.001
C22:2n-6	0.46	0.48	0.34	0.40	0.91	0.38	0.37	0.38	0.210	0.466	0.366
C22:5n-3	2.15	2.11	2.07	2.11	2.15	2.03	2.24	1.98	0.293	0.810	0.139
C22:6n-3	18.60	15.44	17.38	16.31	19.77	16.08	18.32	17.46	0.013	0.189	0.993

Journal of the World Aquaculture Society

	ad libitu	m			Rationed				Significance		
	FM	BPM	PPC	MIX	FM	BPM	PPC	MIX	Diet effect	F.R. effect	Interaction
SFA ^a	22.09	22.28	20.90	22.87	21.82	21.73	21.90	21.91	0.147	0.504	0.126
MUFA ^d	29.71	30.34	27.97	30.30	27.52	28.82	25.91	28.94	0.049	0.019	0.971
PUFA ^c	44.87	44.12	47.84	44.05	46.30	44.92	48.16	44.51	0.004	0.299	0.945
PUFA n-3 ^d	30.34	27.87	28.91	28.46	31.56	27.97	30.15	29.05	0.037	0.294	0.934
PUFA n-6 ^e	14.13	15.91	18.21	14.93	14.96	16.76	17.82	15.14	0.002	0.536	0.868
n-3/n-6	2.18	1.76	1.64	1.91	2.15	1.69	1.70	1.93	0.003	0.952	0.962
^a Sat											
^b Mo											

- ^b Monounsaturated fatty acids.
- ^c Polyunsaturated fatty acids.
- ^d Polyunsaturated fatty acids series n-3.
- ^e Polyunsaturated fatty acids series n-6.

550 TABLE 7. Parameters of fillet pH (n=12) and colour (n=24) in rainbow trout fed experimental diets.

	ad libitum					Ratione	d			Significance				
		FM	BPM	PPC	MIX	FM	BPM	PPC	MIX	Diet effect	F.R. effect	Interaction		
	pH ₂₄	6.56	6.76	6.58	6.63	6.65	6.74	6.67	6.75	0.000	0.000	0.063		
	L ^a	44.9	46.4	47.8	48.9	44.2	45.5	45.6	44.8	0.004	0.000	0.051		
	a ^b	1.14	1.84	1.00	0.84	1.84	1.83	1.33	1.84	0.066	0.007	0.234		
	b ^c	5.08	3.12	6.71	6.33	4.33	3.14	7.19	5.53	0.000	0.435	0.460		
551		^a Lightness.				C								
552		^b Redness.												
553		^c Yellowness.												
554	4													
					Journa	al of the V	Vorld Aqu	aculture	Society					

555 TABLE 8. Composition (% dry matter) of fillets (n=5).

		ad libitum				Rationed				Significance					
		FM	BPM	PPC	MIX	FM	BPM	PPC	MIX	Diet effect	F.R. effect	Interaction			
	Dry matter ^a	24.1	23.0	23.4	24.5	25.9	24.3	26.9	24.8	0.480	0.017	0.451			
	Crude protein	89.7	92.3	90.3	90.2	88.5	92.0	88.1	88.9	0.021	0.085	0.836			
	Ether extract	8.0	14.5	10.8	8.6	9.8	7.7	10.1	10.6	0.440	0.357	0.018			
	Ash	6.7	7.6	7.5	7.3	6.3	6.5	6.1	6.8	0.056	0.000	0.076			
56															

Journal of the World Aquaculture Society

TABLE 9. Preferences of flesh expressed as Rank sums. ad libitum Rationed MIX BPM PPC FM MIX BPM PPC FM Rank Rank sum 72a 89ab 90ab 109b Rank sum of the preference ranking test for each trout flesh. II. Rank sums with different superscripts indicate significant differences among treatments ($P \le 0.05$).

FIGURE 1. Results from ranking test of fillets from trout fed <u>ad libitum</u> (where 1 = most
preferred and 4 = least preferred). <u>Legend:</u> FM = Fish meal diet; BPM = Bacterial protein
diet; PPC = Pea protein diet; MIX = Bacterial protein diet+Pea protein diet.

Journal of the World Aquaculture Society

FIGURE 2. Box-plot of ranks. <u>Legend</u>: Feeding regime <u>ad libitum</u>: FM ad l. = Fish meal diet;
BPM ad l. = Bacterial protein diet; PPC ad l. = Pea protein diet; MIX ad l. = Bacterial protein
diet+Pea protein diet. Rationed feeding regime: FM r =Fish meal diet; BPM r =Bacterial
protein diet; PPC r = Pea protein diet; MIX r = Bacterial protein diet+Pea protein diet.

- FIGURE 3. Results from ranking test of fillets from trout fed rationed diets (where 1 = most
 preferred and 4 = least preferred). <u>Legend:</u> FM = Fish meal diet; BPM = Bacterial protein
 diet; PPC = Pea protein diet; MIX = Bacterial protein diet+Pea protein diet.

Journal of the World Aquaculture Society

FIGURE 4. Correspondence analysis of sensory data. Position of the fillets of trout and ranks
in the plane formed by the first two dimensions. <u>Legend</u>: Feeding regime <u>ad libitum</u>: FM ad
I. = Fish meal diet; BPM ad I. = Bacterial protein diet; PPC ad I. = Pea protein diet; MIX ad I.
Bacterial protein diet+Pea protein diet. Rationed feeding regime: FM r =Fish meal diet;
BPM r =Bacterial protein diet; PPC r = Pea protein diet; MIX r = Bacterial protein diet+Pea
protein diet.

Journal of the World Aquaculture Society