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Abstract: In this study, murine Mesenchymal Stem Cells (MSCs) labeled with the clinically 

approved MRI agent Gadoteridol through a procedure based on the hypo-osmotic shock were 

successfully tracked in vivo in a murine model of Spinal Cord Injury (SCI). With respect to iso-

osmotic incubations, the hypo-osmotic labeling significantly increased the Gd
3+

 cellular uptake, 

and enhanced both the longitudinal relaxivity (r1) of the intracellular Gadoteridol and the Signal 

to Noise Ratio (SNR) measured on cell pellets, without altering the biological and functional 

profile of cells. A substantial T1 contrast enhancement after local transplantation of 3.0×10
5
 

labeled cells in SCI mice enabled to follow their migratory dynamics in vivo for about 10 days, 

and treated animals recovered from the motor impairment caused by the injury, indicating 

unaltered therapeutic efficacy. Finally, analytical and histological data corroborated the imaging 

results, highlighting the opportunity to perform a precise and reliable monitoring of the cell-

based therapy. 

Keywords: Magnetic Resonance Imaging; Spinal Cord Injury; Cell Tracking; Hypotonic 

Swelling; Mesenchymal Stem Cell. 

 

Introduction 

Traumatic events as Spinal Cord Injury (SCI) often lead to permanent neurological deficits, 

resulting in loss of sensory and motor function below the injury level (Silva et al., 2014; Karimi 

et al., 2014). After the initial trauma, the formation of the glial cyst is accompanied by the 

activation and the recruitment of the immune cells (Dumont et al., 2001). The presence of the 

glial scar (McGraw et al., 2001) biologically and physically hinders axonal regeneration and 

functional recovery (Silver and Miller, 2004; Fawcett and Asher, 1999). Since the regrowth of 

CNS (Central Nervous System) severed axons is naturally limited, the spinal cord fibers may 
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benefit from cell therapies promoting either circuit repair, or reorganization and axonal sprouting 

(Bowes and Yip, 2014). Specifically, stem cell (SC) transplantation strategies could represent a 

potential therapeutic approach in order to enhance cell/fiber rescue and functional recovery 

(Mortazavi et al., 2015), since (at least in animal models) they displayed a certain ability to 

differentiate into neural cells and replace lost populations, and to produce growth factors and 

anti-inflammatory cytokines enhancing the plasticity and supporting regenerative process 

(Garbossa et al., 2012). In particular, Mesenchymal SCs (MSCs) can exert a paracrine role, with 

positive significant effects on recovery (Schwab et al., 2002; Goldschlager et al., 2015).  

Tracking cells in vivo by using imaging approaches represents a reliable method to assess the 

characteristics of cell grafts and to monitor their fate after transplantation (Aarntzen et al., 2012, 

Wang and Moore, 2012). In that respect, minimally invasive techniques with high spatial 

resolution are desirable with a view of implementing therapeutic protocols in the clinical 

ordinary (Spiriev et al., 2013). Magnetic Resonance Imaging (MRI) is a leading imaging 

modality enabling the non-invasive visualization of cell populations and their movements after 

transplantation in living animals with superb resolution (Bulte, 2009; Long and Bulte, 2009; 

Aghayan et al., 2014). In order to be detectable, cells require to be adequately labeled with MRI 

contrast agents (CAs) (Srivastava et al., 2015; Rogers et al., 2006). Due to their excellent 

imaging efficiency, the superparamagnetic iron oxide nanoparticles (SPIONs) are regarded as the 

gold standard in cell-labeling (Jendelová et al., 2004; Syková and Jendelová, 2005; Lepore et al., 

2006; Zhang et al., 2013; Bach-Gansmo, 1993; Bull et al., 2014). However, some issues are 

associated to their contrast generation mechanism based on signal-loss (negative contrast) (Bach-

Gansmo, 1993).  
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As a promising alternative, paramagnetic CAs based on the metal Gadolinium (Gd) create a 

contrast increment (positive contrast) in T1-weighted (T1w-) images, overcoming several 

complications related to the use of SPIONs (Kraitchman et al., 2008; Shen et al., 2009). Even if 

toxic in the form of free aqueous ion, Gadolinium is generally considered safe when 

administered as a chelated compound and several agents have been approved for the clinical use 

so far. Differently from magnetic nanoparticles, large amounts of paramagnetic small molecules 

have to be delivered to target sites in order to be detected. Moreover, the process of cell 

internalization may reduce the CA efficiency by limiting its longitudinal relaxivity (r1): it has 

been shown that upon entering the endocytic pathway, the enclosure into the endosomal 

membranes of the agent importantly restricts the exchange rate of water molecules on the 

paramagnetic center (Terreno et al., 2006; Gianolio et al., 2011). 

Recently, a promising procedure for cell labeling with paramagnetic complexes was proposed, 

based on the ‘hypo-osmotic shock’ (Di Gregorio et al., 2013). Briefly, when the labeling 

incubation is performed into hypotonic media, the cell membrane becomes permeable, and the 

overall cell volume increases (‘hypotonic swelling’). A water flow crosses the membrane bilayer, 

leading to a net income flux of small molecules present in the extracellular medium, such as the 

paramagnetic CAs. Because, in this way, CAs enter directly the cytoplasm, avoiding the 

endocytic vesicular transport chain, the ‘quenching effect’ on the r1 caused by the inclusion into 

intracellular organelles is then mitigated (Terreno et al., 2006; Gianolio et al., 2011; Di Gregorio 

et al., 2013).  

In the present study, we investigate the opportunity to efficiently label MSCs with the clinically 

approved positive agent Gadoteridol (Gd-HPDO3A) through the hypo-osmotic technique by 

comparing it with the correspondent labeling procedure performed into iso-osmotic environment. 
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Given that the hypotonically labeled MSCs are administered as therapeutic agents to SCI mice, a 

deep description of their biologic profile, functional status and therapeutic efficacy is provided 

into detail. Finally, results from in vivo imaging are illustrated, highlighting the applicative 

potential of the procedure in visualizing transplanted cells and tracking their movements over 

time.  

 

Materials and Methods 

A full description of the experimental methods can be found in the section Supplemental 

Experimental Procedures of the Supplemental Information; a brief summary is given in the 

following. 

Study design 

The objective of this study was to assess the efficacy of the hypo-osmotic labeling in providing 

MSCs with MRI positive contrast, and to test both their imaging potential and their therapeutic 

performance after transplantation in vivo. For in vitro experiments, sample sizes were selected 

prior to initiating the study on the basis of initial setting experiments (that were not included in 

the analysis), and other data previously reported by the research group. Data collection was 

stopped when a smaller sample size achieved statistical significance. For in vivo experiments, 

SCI mice were divided in three groups: mice transplanted with MSCs labelled by iso-osmotic 

incubation (Iso-MSC), or by hypo-osmotic incubation (Hypo-MSC), or control mice injected 

with a correspondent volume of saline in the spinal cord (Sham Operated, SO). Unless otherwise 

indicated, 6 to 8 animals per group were randomly assigned to each study group. Injured mice 

causing self-mutilation were excluded from study. The experimentalists were not blinded to the 

identity of the groups while assaying the multiple aspects in this study. 
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Animal Care and Use 

All procedures involving live animals were performed according to European Community 

Council Directive of 24 November 1986 (86/609/EEC) and University of Turin’s institutional 

guidelines on animal welfare (DL 116/92). C57BL/6J and Balb/c mice were used for the MSC 

extraction and SCI surgery, respectively. All animals were bred in the Center of Molecular 

Biotechnology (Torino, Italy), unless differently stated. In order to perform surgery and imaging, 

mice were anesthetized by intramuscular injection of a combination of tiletamine/zolazepam 

(Zoletil 100; Virbac, Milan, Italy) at 20 mg/kg and xylazine (Rompum; Bayer, Milan, Italy) at 5 

mg/kg. 

Chemicals 

Gadoteridol (Gd-HPDO3A, marketed as ProHance™) was kindly provided by Bracco Imaging 

S.p.A. (Colleretto Giacosa, Torino, Italy). All materials necessary for cell culture [culture media, 

fetal bovine serum (FBS), trypsin and penicillin-streptomycin mixture] were purchased from 

Lonza (Lonza Sales AG, Verviers, Belgium), unless differently specified. All other chemicals 

were purchased from Sigma Chemical Co. (St Louis, MO, USA) and used as received.  

MSC culture and labeling 

MSCs were isolated from the bone marrow of male C57BL/6J mice (age: 7-9 weeks) weighting 

22-28 g, as reported in the Supplementary Materials. MSCs were cultured in Minimal Essential 

Medium Eagle Alpha Modification, supplemented with penicillin (100 U/ml), streptomycin (100 

μg/ml), FBS (10%) and glutamine (2 mM), with medium renewal every 2-3 days. A highly 

efficient protocol for hypo-osmotic labeling was adopted (33): MSCs were maintained in 

suspension for 30 minutes at 37°C in a sterile saline Gadoteridol (100 mM) solution with an 

overall osmolarity of 160 mOsm l
-1

. The external medium osmolarity was then restored by 
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adding a proper amount of 300 mOsm l
-1 

PBS, and cells were allowed to recover their 

physiologic status for 30 minutes. Finally, not internalized Gadoteridol molecules were removed 

by extensive washes with PBS.  

Cell viability, proliferation test and Gd
3+

 uptake test. 

Cell viability and proliferation rate were estimated by using the Trypan Blue exclusion assay in 8 

and 5 independent experiments respectively. A 0.4 % solution of Trypan Blue in PBS (pH 7.2-

7.3; 1:1 v/v) was added to harvested cells, before they were counted. The reported viability value 

and proliferation ability are expressed as: (i) the average ratio between the number of viable cells 

and the total number of cells (Nv/Nt × 100), and (ii) the ratio between the number of cells at each 

time point and the number of cells present at the beginning of the experiment (Nt/N0). For Gd 

quantification, labeled cells were sonicated (Bandelin Sonopuls Sonicator, 20kHz, power 30%, 

30 s), added with 1 ml of concentrated HNO3 (70%) and completely digested by microwave 

heating (Milestone MicroSYNTH, Microwave labstation, Bergamo, Italy). Samples were 

suspended in ultrapure water and analyzed by Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS, Thermo Scientific ELEMENT 2 ICP-MS -Finnigan, Rodano, Milano, Italy). 

Supernatant aliquots were treated as above indicated, but without applying the sonication. 

Evaluation of membrane resealing time 

The Methylene Blue dye (2.5 mM, for 5 minutes) was added to MSCs after different waiting 

times during the phase of the iso-osmolarity restoration which follows the hypotonic incubation. 

Stained cells were considered as owing a permeable membrane due to hypo-osmotic shock, and 

their percentage on the total population was reported.  

Flow cytometry 
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Cells were harvested, counted, divided into plastic tubes, resuspended with PBS supplemented 

with 0.1% Bovine Serum Albumin (BSA) and incubated with fluorochrome-conjugated 

monoclonal antibodies (mAb) for 30 min at 4°C. The following mAbs were used: anti-CD29-

(PE), anti-CD44-APC, anti-CD11b-FITC, anti-CD90-(PE) (BD Bioscience Pharmingen, San 

Jose, CA, USA), anti-Sca1-(PE) (Cedarlane, Burlington, Ontario, Canada), and anti-CD105-PE 

(MACS Milteny Biotec, San Diego, CA, USA). The fluorescence was quantitated on a 

FACSCalibur flow cytometer equipped with the CellQuest software (BD Biosciences).  

Cell differentiation 

Adipocytes and osteocytes were generated by culturing labeled cells in the adipogenic and 

osteogenic differentiation medium (Lonza, Biowhittaker, Belgium) respectively, with medium 

renewal performed each 2-3 days. Cell differentiation was then assessed by microscopic 

observation (DMI300B, Leica Microsystems, Nussloch, Germany) of cytoplasmic lipid droplets 

or calcium deposits (stained by Oil Red O and Alizarin Red, respectively). 

Cell pellet preparation and in vitro MRI  

After labeling, cells were collected by centrifugation, suspended in 50μl PBS and transferred to 

glass capillaries. Capillaries were centrifuged (5 minutes, 1500 rpm) and loaded onto an agar 

support for in vitro MRI. A Bruker Avance 300 spectrometer (Billerica, Massachusetts, USA) 

equipped with a micro-imaging probe was used to acquire images of capillaries on their axial 

section, at 7.1T. T1 values were measured by using a Saturation Recovery Spin Echo (SR-SE) 

sequence, while the percentage T1 Contrast Enhancement (T1-CE) was calculated on the T1w-

images. The mean Signal Intensity (SI0) was calculated on ROIs manually drawn on the cell 

pellets and then normalized with respect to the signal produced by the external agarose support 

of the MRI phantom (SIref), in order to obtain the normalized Signal Intensity of labeled cell 
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pellets, SIn-label. The T1-CE was calculated with respect to the normalized signal measured for 

MSCs incubated with neat iso-osmotic or hypo-osmotic PBS (SIn-ctrl), by applying the following 

expression: T1-CE [%]  = (SIn-label - SIn-ctrl) / SIn-ctrl × 100.  

SCI surgery and cell transplantation  

To induce acute SCI, male Balb/c mice (age: 10-12 weeks, weight: 27–30 g) were anesthetized, 

their lower thoracic and lumbar spinal cord was exposed, and its left side was hemisected at the 

level of the T13 vertebra (L2 neuromer) by using a 27½-gauge needle. One week later, Iso- or 

Hypo-MSC-containing suspensions (5.0×10
4
 cells/µl) or equivalent volumes of saline were 

injected into the white matter of the spinal cord by using a glass micropipette. 1.5 or 3.0×10
5
 

cells were injected for the experiments of cell graft visualization (see Fig. 3), whereas 3.0×10
5
 

cells were used to track the migration (see Fig. 4). The cell transplantation was performed one 

level caudal to the lesion (namely at L3 neuromer).  

In vivo imaging 

Anaesthesized animals were subjected to MRI scanning at 7.1 T (Bruker Avance 300 

spectrometer) to assess the T1 contrast in the spinal cord by different acquisition geometries. The 

percentage SNR variation was calculated as follows: SNR [%] = (SNRpost - SNRpre) / SNRpre × 

100, where SNRpre and SNRpost indicate the SNR calculated on the ROI before and after the 

transplantation, respectively. The SNR value was defined as the ratio between the Signal 

Intensity measured on the ROI (SIROI) and the standard deviation of the background (σBG). T1w-

images were acquired using a standard T1w-MSME (MultiSlice MultiEcho) sequence with the 

following parameters: TR=250ms, TE=4.7s, FOV=3.00×3.00cm, matrix=256×256pu, slice 

thickness=1mm, average number=10, with a final space resolution of 0.12mm/pu. T1 values were 

measured on sagittal images obtained by using a T1w-MSME sequence: TE=3.4ms, 10 variable 
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TR ranging from 50 to 5000ms, FOV=3.00×3.00cm, matrix=128×128pu, slice thickness=1mm. 

T2w-images endowed with high space resolution were used as anatomical references. 

Specifically, the anatomical  images were acquired using a T2w-TurboRARE (Turbo Rapid 

Acquisition with Refocused Echoes) sequence set with the same acquisition geometry selected 

for the correspondent T1w-image, and with following parameters: TR=2500ms, TE=12.000ms, 

FOV=3.00×3.00cm, matrix=384×384pu, slice thickness=1mm, average number=5, RARE 

factor=8, with a final space resolution of 0.08 mm/pu. 

Gd quantification in the spinal cord 

After sacrifice (1, 7 or 10 days after Hypo-MSC transplantation), the vertebral column was 

removed and the spinal cord was divided into three regions (length: ≈3mm), including: the lesion 

site, the cell transplantation site, or the adjacent caudal region as a control area. The amount of 

Gd
3+

 was measured by ICP-MS and normalized to the weight of the excised tissue.  

Behavioural tests 

SCI mice underwent a series of behavioural tests to evaluate their motor recovery: the Basso 

Mouse Scale (BMS), the Paw Grip Endurance (PaGE), the foot-fault and the hindlimb flexion 

tests (Basso et al., 2006; Weydt et al., 2003; Pitsikas et al., 2001; Takamatsu et al., 2002). Prior 

to the SCI (day -7) and transplantation (day 0) surgery, animals were trained for the various tasks 

to determine the reference value range used as comparison with data collected after the 

administration of the cell-therapy.  

Histological examination and immunofluorescence  

For in vivo experiments, murine GFP
+
 MSCs were used. Under anaesthesia, injured Hypo-

GFP
+
MSC mice were transcardially perfused with buffered 4% PFA, pH 7.4, before the T12-L3 

vertebral segment of spinal cord was dissected. Samples were transferred into 30% sucrose in 
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0.1M PB at 4°C for cryoprotection, embedded in cryostat medium (Killik; Bio-Optica, Milan, 

Italy) and cut on the cryostat (Microm HM 550) in longitudinal 35 μm-thick sections. Before any 

further processing, all sections were mounted from PBS onto a slide, coverslipped and examined 

with a Nikon Eclipse E800 epifluorescence microscope, using an FITC-filter, in order to check 

the cell presence.  

For immunofluorescence, the following antibodies were used: anti-GFP, anti-SMI32, anti-IBA1, 

and anti-GFAP. After washing in PBS, sections were incubated in cyanine-3- or cyanine-2- 

conjugated anti-rabbit or anti-mouse secondary antibodies, as appropriate. The lesion, the 

transplantation site and the cell migratory flow were photographed by using the Coolpix digital 

camera.  

Statistical analysis 

All data were presented as Mean Values ± Standard Deviation (MV±SD), unless noted 

otherwise. Significant differences among experimental conditions were identified by applying 

the unpaired Student’s t-test, the repeated measures one-way or two-way ANOVA tests (p-values 

< 0.05 and 0.01 were marked as * and ** respectively). 

 

Results 

Cell labeling and retention of the contrast agent  

Murine bone marrow-derived MSCs were labeled with Gadoteridol (Fig. 1A and B) by applying 

the labeling conditions demonstrating good performances in terms of cell safety and 

internalization efficiency (30 min, 160 mOsm l
-1

, 37°C) (Di Gregorio et al., 2013). The direct 

quantification of Gd in the cytoplasm (expressed as number of Gd
3+

 atoms per cell) revealed a 

significantly (≈ 4-fold) higher uptake of the CA in MSCs labeled by hypo-osmotic procedure 
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(Hypo-MSCs) than in control cells undergoing the correspondent iso-osmotic incubation with 

Gadoteridol dissolved at the same concentration (Iso-MSCs, Fig. 1C). Even until 2 weeks after 

labeling, an evident difference in Gd content between the two labeling procedures was 

maintained, with Iso-MSCs almost completely losing their cargo about one week before Hypo-

MSCs.  

To deepen the evaluation concerning the fate and possible release of the CA, the culture medium 

was also analyzed (Fig. 1D). Several days after labeling, a different content of Gd was found in 

the supernatants of equivalent numbers of Hypo-MSCs and Iso-MSCs: even though ISO-MSCs 

were assumed to have internalized lower initial CA amounts, their medium always displayed the 

higher concentration values. The peak in loss of ion content was reached after 48h (2.9% for 

Hypo-MSCs vs. 18.6% for Iso-MSCs; ANOVA p-value < 0.05). Coherently to the hypothetical 

occurrence of release mechanisms, for both labeling procedures the metal concentration into the 

medium tended to increase in time. Based on the presented data, it is arguable that in the case of 

iso-osmotic uptake, easier and/or faster release processes are involved, possibly depending on the 

specific endosomal internalization route.  

In vitro MRI  

The MRI performance of the labeled cells was tested in vitro (Fig. 1E and F): on T1w-images, 

the pellets of Hypo-MSCs produced a ≈ 2.6-fold increased percentage in T1 Contrast 

Enhancement (T1-CE) with respect to the control incubation. As expected (Di Gregorio et al., 

2013), the r1 characterizing the Gadoteridol internalized by Hypo-MSCs (3.70 ± 0.55 mM
-1

 s
-1

) 

was found to be statistically higher (t-test p-value < 0.01) than the one calculated for Iso-MSCs 

(1.88 ± 0.29 mM
-1

 s
-1

), and more similar to the value of the free molecules in a simple water 

solution (r1 = 4.2 ± 0.11 mM
-1

 s
-1

 in the same experimental condition, i.e. 0.5 T and 25°C), thus 
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indicating that the quenching effect of the relaxivity may occur, though at a much lower extent 

than the iso-osmotic labeling.  

Cell profile after labeling 

In order to prove the safety of the hypo-osmotic incubation, the biological profile of the labeled 

MSCs was tested in many aspects. First, cell viability resulted unaltered immediately, several 

hours or days after labeling (Fig. 2A and S1), with a very low fraction of apoptotic cells in the 

population (Fig. S1). Second, no alteration of the proliferation ability was observed neither in 

Iso-MSCs nor in Hypo-MSCs, when compared to control unlabeled cells (Fig. 2B).  Moreover, 

as Methylene Blue does not cross intact cell membranes, such cell staining was considered as a 

positive indicator of altered membrane permeability, enabling to estimate its resealing time (Fig. 

2C). In fact, after the hypotonic incubation, a ‘resealing phase’ was carried out by restoring an 

external condition of iso-osmolarity: over longer resealing phases, the number of blue cells 

sensitively decreased (from ≈ 46% at t = 0, to ≈ 6% at t = 20 min) with a decay constant of ≈ 8 

minutes, indicating a fast recovery of the cell membrane physiological state. Finally, no evidence 

of alteration was found neither in the expression profile of surface markers (as MSC signature), 

nor in the differentiation potential of Hypo-MSCs (Fig. 2D, E, S2, S3, S4), suggesting that the 

labeling protocol could be suitable for safe in vivo translation.   

In vivo imaging: visualization and tracking of grafted cells  

For in vivo experiments, mice underwent the hemisection of the spinal cord at the level of the L2 

neuromer, following the experimental outline shown in Fig. S5. Seven days after SCI, MSCs 

were transplanted caudally to the injury (at L3 level) in order to elicit the assessment of cell 

distribution and homing induced by the lesion. 
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In a first set of experiments, a preliminary evaluation of the positive contrast generated by Iso- 

and Hypo-MSC grafts was carried out onto T1w-images acquired with sagittal geometry. In mice 

receiving the cells, labeled MSCs were clearly discerned on T1w-images 24 h after the 

transplantation Fig. 3 and S6) and could be localized within a limited area (≈ 1 mm
2
) 

surrounding the injection site. Regions of interest (ROIs) corresponding to that specific area were 

drawn in order to calculate the percentage variation of the Signal to Noise Ratio (SNR) produced 

by a different number of transplanted cells: the SNR enhancement generated by Hypo-MSCs was 

≈ 2.5 and 2.1-fold higher than that one determined by the Iso-MSCs when 1.5×10
5
 or 3.0×10

5
 

cells were administered respectively (ANOVA p-values < 0.01 and 0.05). Importantly, this 

experiment points out a significant in vivo efficacy, considering that in some reports, the MRI 

detection threshold in presence of optimal labeling conditions was found to be 2.5×10
5
 and 

5.0×10
5
 cells for SPIONs and other Gd-complexes (i.e. Gd-DTPA) (Shen et al., 2009; Mathiasen 

et al., 2015).  

In a second set of experiments, in vivo imaging was carried out for several days after the 

transplantation of 3.0×10
5
 MSCs in order to verify whether the procedure could be useful in 

tracking cell migration. Indeed, MSCs are expected to move towards the injured tissue, attracted 

by the presence of lesion (Boido et al., 2009). Axial images were acquired along the longitudinal 

axes of the spinal cord, with the central image positioned onto the injection site (‘slice 0’), and 

other images covering equal distances in caudal and rostral directions, as illustrated in Fig. 4A. 

The SNR values in each slice were calculated 1, 3, 5, 7, and 10 days after transplantation, and 

then graphed as time and position-dependent variations of the contrast (Fig. 4B, C, D, E, F). At 

day 1, both Iso- and Hypo-MSCs-transplanted mice showed a SNR peak in the central slice, 

reflecting the highly circumscribed signal arising from the cell graft. The difference in the SNR 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

15 

 

enhancement calculated between the two groups confirmed the data acquired in previous 

experiments. In the following days, high SNR values were calculated in rostral slices, but not in 

caudal slices, thus suggesting that cell movements mobilizing the contrast source occur in 

direction of the target lesion. Importantly, for Hypo-MSCs the acquisition of significant SNR 

values reached and did not exceed the imaging slice containing the injury, with the T1 signal 

progressively fading in time, and becoming weak and diffused at day 10. On the contrary, the 

Iso-MSC signal appeared as considerably decreased by day 5 and almost exhausted by day 7. At 

day 10, the SNR enhancement generated in proximity of the lesion (‘slice 3’) in the Hypo-MSCs-

mice was limited (≈10.14% ± 6.16) but still significantly higher than that observed in Iso-MSCs-

mice (≈1.09% ± 2.63, ANOVA p-value < 0.05). Furthermore, in control experiments performed 

in the absence of lesion, no cell movements have been detected, confirming that homing is only 

triggered by lesion (Fig. S7). Coherently, T1 values calculated by T1-measurement MR 

sequences in the same spinal cord regions were in good accordance with the T1w-imaging data 

(Fig. 4G), thus confirming that the source of the increased signal intensities corresponded to the 

Gd-dependent effects on the T1 relaxation time, and other artifacts or disturbances in the signal 

could be excluded. Importantly, at day 1 the Hypo-MSCs grafts induced a T1 decrease of ≈33.9% 

and 0.7% in the sites of transplantation and lesion, respectively, with respect to the average 

endogenous T1 value of the spinal cord tissue (1671.9±32.9 ms, Fig. 4G). At day 7, a mild but 

still distinguishable effect was present, determining a similar T1 decrease in the two regions 

(≈9.43% and 5.6% in the transplantation and lesion site, respectively). Finally, the tissue 

distribution of Gd in Hypo-MSCs-animals quantitatively supported the imaging results at some 

extent (Fig. 4H): a considerable metal content was found at day 1 in the spinal cord portion 

(≈3mm in length) in proximity of the transplantation site. At day 7, the amounts of Gd measured 
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in the transplantation and the lesion-portion were almost equivalent, but statistically higher than 

that found in the caudal region (ANOVA p-value < 0.05). At day 10, no relevant Gd traces were 

detected in none of the considered regions. Representative T1w-images collected during the cell 

tracking experiments are reported in Fig. 5 and S8, and highlight the visual differences that can 

be obtained on the axial geometry of the spinal cord.  

Therapeutic effects 

To verify whether the labeling procedure could alter the therapeutic efficacy of MSCs, 

behavioural studies were carried out on the three groups of SCI animals that respectively 

received 3.0×10
5
 Iso- or Hypo-MSCs in 6µl of saline, or an equivalent volume of saline (Sham 

Operated, SO; Fig. 6). The tests were designed to evaluate the motor recovery (Basso et al., 

2006; Weydt et al., 2003; Pitsikas et al., 2001; Takamatsu et al., 2002) until 40 days after 

transplantation (performed at day 0, one week after the hemisection surgery). Few days after 

MSC or saline injection, a slight and expected spontaneous recovery was observed in all groups. 

During the first week of monitoring, the behavioural outcome in all tests was very variable, so 

that no evident differences were noticed among the cohorts. Nevertheless, while untreated 

animals continued to obtain similar scores during the following weeks, the performances of cell-

transplanted mice were associated to a significant positive outcome, without any relevant 

difference between Iso- or Hypo-MSCs. 

In all injured animals, evident trunk instability, abnormal posture but extensive ankle movements 

were present before cell transplantation (Fig. 6A). The injection (cells/saline) at day 0 possibly 

caused an initial transitory worsening of the locomotor conditions, further reducing the ankle 

motility for few days. However, 10 days after graft/saline, only transplanted mice obtained 

increasing BMS scores, culminating in values at day 40 that were statistically higher than those 
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obtained by the control mice (ANOVA p-value < 0.05), and indicate frequent plantar stepping 

with a certain degree of coordination (6.00±1.00, 5.33±0.58 and 3.33±0.58 for Iso-, Hypo-MSC 

and SO mice, respectively).  

In the foot-fault test (Weydt et al., 2003), Iso- and Hypo-MSCs-mice performed 6.67±1.15 and 

6.67±0.58 foot-faults at the day they were sacrificed, improving their ability to execute a correct 

stepping by 41.19% and 42.85% with respect to day 0 (vs. 21.07%-improvement achieved by SO 

mice, Fig. 6B). Statistical relevance was documented only when the foot-fault scores (day 40) of 

transplanted mice were compared to those of the untreated ones (ANOVA p-value < 0.05 and 

0.01 for Iso- and Hypo-MSC mice, respectively).   

The Paw Grip Endurance (PaGE) test was used to assess the resistance force of the injured 

hindlimb (Pitsikas et al., 2001). At day 0, the resistance time was similar among all mice 

(average time ≈ 55.83±1.93 s, Fig. 6C). Even though a full recovery was never observed, at day 

40 both transplanted groups displayed a greater performance outcome (65.3±4.36 s and 

72.9±9.26 s for Iso- and Hypo-MSC mice, respectively) compared to SO mice (54.07±1.76 s, 

ANOVA p-value < 0.05). 

The last test (Fig.6D) provided a general assessment of the flexion movement and the retractile 

force of the damaged hindlimb (score 3 refers to maximum hindlimb impairment, and score 0 to 

the physiological condition) (Takamatsu et al., 2002). At the end of monitoring, both Iso- and 

Hypo-MSC-transplanted groups displayed ≈4.15-fold decreased scores, reflecting better 

therapeutic outcomes (ANOVA p-value < 0.05) in comparison to untreated mice (≈1.15-fold 

decreased score).    

Histological examination 
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In order to gain deeper insights at a cellular level, immunofluorescence was carried out on 

animals treated with Hypo-GFP
+
-MSCs. The coronal T1w-imaging (Fig. 7A) acquired 7 days 

after the transplantation illustrates the positive contrast generated by cells that appeared as 

diffused along a migratory stream extending between the injection and the lesion site. T2w-

imaging, used as anatomical reference, could provide a clear representation of the lesion. The 

GFP immunofluorescence on the spinal cord of the same animal revealed a similar cell 

distribution, suggesting the co-localization of the MSCs with the MRI-responsive agent (Fig. 

7B). The stream extension measured on the T1w-image (≈2.9 mm) was consistent with the size 

observed in the microscopic images. Both at the transplantation and lesion sites, IBA
+
 microglial 

cells (Fig. 7C and D) and GFAP
+
 astrocytes (Fig. 7E and F) were detected, suggesting that 

neuroinflammatory events were ongoing, even though to a moderate extent. Moreover, Fig. 7E 

clearly shows the glial scar surrounding the glial cyst (empty of astrocytes) at the hemisection 

site. Distribution and morphology of hypo-GFP+-MSCs are visible in Fig. 7G-I. 7 days after 

graft, a remarkable number of cells survived and integrated into the host tissue. Concerning the 

morphology, cells either showed fibroblast-like shape (Fig. 7G) or appeared elongated (Fig. 7H-

I). Similarly, Fig. 7J-M displays GFP
+
 cells lined up following the SMI32-positive fibers 

orientation, indicating that the elongated MSC shape reflected their arrangement along the axons 

and that transplantation was actually performed inside the spinal cord white matter: this means 

that extensive cell dispersion in the liquor of the central canal did not occur. Taken together, 

these observations confirm the MRI results and show the ability of Hypo-GFP
+
-MSCs to survive 

and integrate into the spinal cord, as previously demonstrated with unlabelled cells (Boido et al., 

2009). 
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Discussion  

The visualization of grafted cells represents an appealing objective to pursue in the cell-based 

regenerative treatment of SCI, where SCs play an active role in providing a positive therapeutic 

outcome (Bowes and Yip, 2014; Mortazavi et al., 2015; Garbossa et al. 2012; Schwab, 2002). So 

far, the SPIONs have been extensively exploited for MRI tracking of therapeutic cells in the SCI, 

showing excellent imaging efficiency (Jendelová et al., 2004; Syková and Jendelová, 2005; 

Lepore et al., 2006; Zhang et al., 2013). However, on T2- and T2
*-weighted MRI (T2w- and T2w

*
-

MRI), SPIONs appear as hypointense regions, namely signal voids producing a negative contrast 

(Bach-Gansmo, 1993), thus making arduous the detection of the labeled cells into anatomic areas 

endowed with low intrinsic MRI signal. After surgery, tissues frequently display low signal 

intensities due to hemorrhage and micro air bubbles deposition. As a consequence, it proves 

challenging to state whether the intracellular SPIONs are the real source of the observed negative 

contrast. In the therapeutic protocols requiring local cell transplantation, this aspect has to be 

seriously taken into account, considering that, in the absence of specific cell vehicles (such as 

hydrogels), the injection procedure is expected to create empty spaces and introduce air into 

tissue along the needle path (Bull, 2014). Furthermore, arising from indirect microscopic 

disturbances of the magnetic field, the SPION signal can be hardly correlated to the number of 

grafted cells (Bach-Gansmo, 1993; Bull, 2014), and is frequently affected by blooming artifacts, 

causing a diffuse darkening that may lead to incorrect assessment of the colony size or position 

(Bach-Gansmo, 1993; Bull, 2014; Bulte, et al., 2001). Finally, besides unclear cytotoxic 

phenomena, SPIONs interact with the static magnetic field and are responsible for abnormal 

distribution of iron filled-endosomes (Crichton et al., 2002; Wilhelm et al., 2003).  
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The rationale of the present study was conceived in the effort to overcome these complications 

by labeling cells with positive CAs, although, as small molecules, they can hardly compete with 

the particle-based negative labeling in terms of efficiency. Some first efforts to track SCs in SCI 

by positive MRI CAs have been previously done in rats by using chemical transfection agents to 

increase the labeling efficacy of Gd-DTPA, a positive agent endowed with a linear chelating 

cage (Shen et al., 2009). In the present report, we proposed the safe technique of the hypotonic 

swelling to optimize the cell imaging performance in murine models. Due to the osmotic shock 

that eukaryotic cells experience when they are suspended into a hypo-osmotic solution, the cell 

membrane permeability to small molecules is expected to increase, and large amounts of the CA 

can be internalized following the concentration gradient. At the end of the process, the normal 

cell morphology can be recovered by simply restoring the iso-osmotic condition of the 

extracellular medium. The clinically approved T1 CA Gadoteridol was chosen among the MRI 

detectable agents to maximize the safety, and thus the clinical translatability of the procedure. In 

fact, since the chelating carrier of Gd(III) is endowed with a macrocyclic geometry, Gadoteridol 

is provided with a higher thermodynamic and kinetic stability with respect to other Gd-based 

CAs with linear architecture (Runge et al., 1994). Moreover, being small-sized, hydrophilic, 

neutral, and normally well tolerated by cells even at high dosages (Ferrauto et al., 2013), it is 

already involved in a wide spectrum of medical imaging applications, particularly in the study of 

the CNS (Runge et al., 1994). 

Altogether, our results provide evidence that, with respect to standard techniques, the hypotonic 

labeling generates a boosted positive contrast enhancement in vitro with increased r1 of the 

intracellular Gadoteridol and higher internalization rate, without any negative consequences on 

the viability, biological profile or functional potential of the MSCs both in vitro and in vivo. The 
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transplantation site of Hypo-MSCs and their local distribution immediately after the 

transplantation can be circumscribed, such that the cell engraftment can be contoured with 

precision and its size can be estimated. Also, the higher signal intensity and the longer 

monitoring time allowed to trace and measure the entire migration pathway leading the cells 

from the transplantation to the lesion site, suggesting a potential utility in defining the cell 

movements in response to biologic stimuli within experimental contexts (for instance, to study 

the chemotactic recruitment).  Finally, the analytical and histological validation data describing 

the distribution of the CA and cells corroborated the reliability of the labeling and imaging 

protocols.  

Even though promising results were obtained, it has to be noticed that the labeled cells cannot be 

imaged in vivo for competitive time ranges with SPIONs, which can be visualized for several 

weeks (Jendelová et al., 2004; Syková and Jendelová, 2005; Lepore et al., 2006; Zhang et al., 

2013; Bach-Gansmo, 1993; Bull et al., 2014). In fact, the movements of transplanted Hypo-

MSCs labeled with Gadoteridol could not be monitored for more than 10 days. However, in 

contrast to iron oxides, metabolic pathways for intra-cytoplasmic Gd-chelates have not been 

described yet (Giesel et al., 2006), so that they are generally regarded as inert long-term species. 

The progressive diminishing of the contrast could be ascribed to ongoing cell divisions (Walczak 

et al., 2007) and diffused spreading into tissue. Furthermore, another limitation in the reported 

procedure consists in the possibility that the signal detected by MRI arouse from phagocytosed 

or dead transplanted cells. Nevertheless, considering that (i) a rapid wash out for Gd-chelates in 

dead cells or interstitial spaces was already reported (Ludemann et al., 2002), (ii) our histological 

analysis did not show any dying cells, and (iii) the in vivo efficacy of the cell-therapy in 

improving the motor dysfunctions was proved, we hypothesize that the possibility of having 
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imaged consistent populations of dead or phagocytosed cells in the spinal cord was low. Finally, 

although it is evident that the extent of glial scarring and the relative pathogenetic mechanisms 

are different when compared to human subjects (Hook et al., 2013), and preclinical evaluations  

in larger animal models (such as dogs, pigs and nonhuman primates) (Freidli et al., 2015) are 

necessary, the rodents still represent the most commonly employed species for preliminary SCI 

studies, Here, we employed a murine experimental model of SCI, whose advantages are mainly 

related to: (i) the high reproducibility of the trauma; (ii) the possibility to compare the results 

worldwide thanks to standardized behavioural, histological, biochemical and molecular 

techniques; (iii) the limited cost of housing facilities (Zhang et al., 2014). The statistically 

significant differences between Hypo- and Iso-labeling indicate that the Hypo-labeling can be 

practically helpful for imaging-guided monitoring of cell transplantation in mice, but they could 

be potentially valid also in larger animals and humans. From a preclinical point of view, the 

Hypo-labeling could be exploited to test and compare different methods of transplantation, to 

dynamically assess the beneficial effects of cell graft relating the behavioural data to the MRI 

observations, or to analyze the ability of the injected cells to move towards the lesion site or even 

to enter into the glial cyst in real-time. Finally, the opportunity to follow the same injected 

animal during time can significantly reduce the total number of mice sacrificed at different time 

points. Due to the limited persistence of the contrast, from a translational point of view, the 

presented technique could provide basic information on the cell graft survival in the first days 

after injection: indeed, it is reported that the possible detrimental response of the host CNS to the 

graft can be very fast and transplanted cells can die within the first hours after transplantation 

(De Vocht et al., 2013).  
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Conclusions  

The low invasiveness, the superb spatial resolution, the lack of radiation and the ability to 

anatomically characterize the SCI pathology (Miyanji et al., 2007), make of MRI the first choice 

to design new clinically translatable imaging protocols (Walczak and Bulte, 2007). In a time 

when increasing research efforts are directed to the detailed definition of the cell biology after 

transplantation, we believe that an efficient, safe and simple labeling technique may open up new 

prospects towards the major practical medical needs, such as the dynamic evaluation of the cell-

therapy over longer duration, with higher efficacy and substantial reliability of acquired 

information. Hopefully, the hypo-osmotic labeling will be helpful in addressing the current 

challenges imposed in the neurotransplantation field by the complexity of the CNS and the 

specific medical requirements of stem cell-based therapy (Walczak and Bulte, 2007).  
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Figure legends 

 

Fig. 1. Efficiency of the positive Gadoteridol-based labeling of MSCs by hypo-osmotic 

technique. (A) Diagram of the labeling procedure based on the hypo-osmotic shock. (B) 

Structure of Gadoteridol (Gd-HPDO3A). (C) Number of internalized Gadolinium ions (Gd
3+

) per 

cell immediately (day 0) and several days after labeling of MSCs. (D) Gd concentration in the 

supernatants of equivalent number of cells cultured for several days after labeling. (E) MRI T1 

Contrast Enhancement calculated on T1w- images of labeled cell pellets. The significance of data 

in (C), (D) and (E) is indicated (repeated measures one-way ANOVA test for Fig. 1C and D, t-

test for Fig. 1E). (F) Representative T1w-MRI of the pellets of cells incubated with iso-osmotic 

PBS (1), hypo-osmotic PBS (2), iso-osmotic Gadoteridol solution (100 mM, 300 mOsm l
-1

) (3) 

and hypo-osmotic Gadoteridol solution (100 mM, 160 mOsm l
-1

) (4).   

 

Fig. 2. Cell biologic profile after labeling. Cell viability and proliferation rate of MSCs after 

incubation into iso or hypo-osmotic PBS (Iso and Hypo-PBS-MSCs), and iso- or hypo-osmotic 

Gadoteridol labeling solution (Iso- and Hypo-Gd-MSCs) evaluated by Trypan Blue exclusion 

test (A and B). Resealing time of the cell membrane (C), surface marker expression (D) and 

differentiation potential (E) of unlabeled, Iso- or Hypo-MSCs (Scale bars = 50, 100, 200 and 

500µm for the 40, 20, 10 and 4× magnifications respectively). Staining for adipocytes and 

osteocytes was obtained with Oil Red O and Alizarin Red, respectively. See also Figure S1, S2, 

S3 and S4. 
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Fig. 3. In vivo imaging of the cell graft. (A) Percentage enhancement of the SNR calculated on 

the region of cell transplantation in sagittal T1w-images of the spinal cord, acquired 24 h after the 

transplantation of 1.5 (left) and 3.0 × 10
5
 (right) Iso-MSCs or Hypo-MSCs. Control experiments 

were performed by injecting an equivalent volume of saline (Sham Operated animals, SO). The 

(two-way ANOVA) significance of data is indicated. (B) Representative sagittal T1w-imaging 

(original images in Grayscale, and pseudo-colorized images in 16-colors Lookup Table,) of the 

cell grafts in Iso-MSC (top), Hypo-MSC (middle), and SO mice (bottom). White arrows indicate 

the transplantation site. Scale and calibration bars are shown. See also Figure S5 and S6. 

 

Fig. 4. In vivo MRI tracking of MSC migration. (A) Diagram of the imaging protocol: axial 

images (corresponding to a slice thickness of 1 mm) were acquired by positioning slice 0 on the 

transplantation site and slice 3 (marked by a red asterisk) on the hemisection site. The percentage 

enhancement of the SNR was calculated on the different axial T1w-images acquired at 1 (B), 3 

(C), 5 (D), 7 (E), and 10 (F) days after transplantation of Iso-MSCs or Hypo-MSCs. (G) T1 

values extracted by T1 MR measurements in ROIs drawn on sagittal images at several time-

points after the Hypo-MSC transplantation. ROIs corresponded to axial T1w-images reported in 

the previous experiment. (H) Amount of Gd
3+

 in the regions of the spinal cord containing the 

lesion site, the transplantation site, or in the control caudal region, at day 1, 7, or 10 after Hypo-

MSC transplantation. The significance of data is indicated (repeated measures one-way ANOVA 

in (B-G), and two-way ANOVA in (H)).See also Figure S5 and S7. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

32 

 

Fig. 5. Representative axial T1w-images showing MSC migration in the spinal cord after the 

transplantation. Representative axial T1w-images (7× magnification) of the spinal cord, showing 

the positive contrast generated by Iso- or Hypo-MSCs in the lesion site, in the injection site, or in 

the control caudal region at day 1, 7 or 10 after transplantation. Scale and calibration bars are 

shown. Originally acquired images are provided in the Supplementary Materials (Figure S8). 

 

Fig. 6. Therapeutic effect. Behavioural tests performed on animals after the transplantation of 

Iso-MSCs and Hypo-MSCs, or SO mice. The performed motor tests were: the BMS (A), the 

foot-fault (B), the PaGE (C) and the hindlimb flexion (D) tests. The motor evaluation was 

pursued over a time range of 40 days after transplantation, and the (repeated measures one-way 

ANOVA) significance of the data collected on the last monitoring day is indicated. 

 

Fig. 7. Characterization of the migratory stream. Spinal cord MRI and cell microscopy of a 

representative mouse sacrificed 7 days after transplantation with Hypo-MSCs. (A) Original or 

pseudo-colorized coronal T2w and T1w-MRI of the spinal cord (LT, Lookup Table in 

pseudocolorized images). White arrows indicate the lesion and transplantation sites (in rostral 

and caudal direction, respectively). (B) Hypo-GFP
+
MSCs distributed in a continuous stream 

between the graft site and the hemisection site. (C-D) IBA1 and (E-F) GFAP 

immunofluorescence showing the microgliosis and astrogliosis, both at the lesion and 

transplantation sites. (G-I) Distribution and morphology of Hypo-GFP
+
MSC in the migratory 

stream. (J-M) Immunofluorescence for SMI32 (in red), highlighting the distribution of GFP
+
 

Hypo-MSCs along white matter fibers. Scale bar = 1mm in A, 500 µm in B, 50 µm in C-D-E-F-

H-I, and 25 µm in G-J-L-L-M.  
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Figure 7 
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Highlights 

Compared to isotonic incubations, the hypo-osmotic labeling enhances the MRI of cells 

The hypo-osmolarity significantly supports the agent uptake and contrast generation  

The MSC-transplantation imaging in SCI mice is improved by simple labeling expedients 

The migration of 3.0×10
5
 labeled MSCs is reliably tracked in vivo for 10 days  

The biological profile and therapeutic effect of labeled MSCs are preserved 


