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Abstract 

The aim of the study is to check if the information about drug/liposome interactions provided by SPR is 

comparable with that provided by methods (here potentiometry) in which liposomes are not immobilized 

on a solid support. To reach our aim we apply QSPR and BR analysis to data extracted from the literature 

and carefully inspected for their reliability. Results show that log KD (SPR) is governed by a different balance 

of intermolecular interactions than log Dlip (potentiometry).  

Introduction 

Interactions of drugs and biological compounds with biomembranes are complex phenomena of 

paramount importance in both drug discovery and drug delivery. (van Balen et al., 2004) (Pignatello et al., 

2011). The understanding of drug membrane interaction is crucial both from a pharmacodynamic (PD) and 

a pharmacokinetic (PK) point of view. Firstly, drug membrane interactions govern drug interactions with 

membrane-bound transporters, metabolizing enzymes and receptors, which have the binding sites located 

in the bilayer (Lukacova et al., 2013). Secondly, high and intermediate rates of trans-bilayer transport are 

responsible for good permeability properties, whereas too strong or too weak interactions lead to poor 

ADME profiles (Balaz, 2009). 

Up to date a number of experimental methods have been proposed to investigate the affinity of drugs for 

biomembranes or artificial membranes models (e.g. liposomes): potentiometry, dialysis, 

ultracentrifugation, ultrafiltration, calorimetry, NMR and spectroscopic techniques, (Van Balen et al., 2004) 

(Lukacova et al., 2013), chromatography (Taillardat-Bertschinger et al., 2003), Surface Plasmon Resonance 

(SPR) (Abdiche and Myszka, 2004). An exhaustive review of all these methods is beyond the scope of this 

study. Notably, no computational method is available today to predict drug/liposome interaction. 
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The potentiometric technique (Avdeef et al., 1998) was shown to yield satisfactory estimates of lipophilicity 

in the liposome/water system by independent researchers (Escher, 2000) (van Balen et al., 2004). 

Moreover, once optimized the experimental conditions, it is faster than the reference method, i.e. 

equilibrium dialysis. 

Since SPR is emerging as an informative medium-throughput technology for hit validation (Patching, 2014) 

a method to detect drug/liposome interactions based on this technology deserves peculiar attention. The 

conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the 

other binding component in solution is flowed over the sensor surface; a binding interaction is detected 

using an optical method that measures small changes in refractive index at the sensor surface (Patching, 

2014). To measure drug/liposome interactions, liposomes are attached to a sensor surface, the drug is 

flowed over the sensor surface and the interactions between drugs and liposomes are monitored (Danelian 

et al., 2000). A few papers based on selected compounds demonstrate that when the SPR biosensor 

experiments are performed with care, the equilibrium, thermodynamic, and kinetic constants determined 

from this surface-based technique match those acquired in solution (Rich et al., 2001)(Day et al., 

2002)(Swanenburg et al., 2005). However, this match is strongly dependent on the nature of the 

immobilized receptor and cannot be generalized.  

To our knowledge, no relationship between drug/liposome interactions determined by SPR and 

liposome/water distribution coefficients is reported in the literature. SPR dissociation data were in fact only 

compared with lipid retention measurements obtained from parallel artificial membranes permeability 

assays (PAMPA) (Abdiche and Myszka, 2004).  

To fill this gap, in this study we deconvolute the balance of the intermolecular forces governing a) the 

logarithm of the apparent binding affinities for drug interactions with liposome surfaces (log KD) and b) the 

logarithm of the liposomes/water distribution coefficients (log Dlip) at pH 7.0.  

To do that we apply a computational approach (named BR analysis) developed by us in 2012 (Ermondi and 

Caron, 2012). BR analysis allows the analysis of the balance of intermolecular interactions governing a given 

system using common 3D-QSAR/QSPR descriptors. These descriptors are aggregated into property-related 

groups (blocks), thus providing a convenient framework for comparison and interpretation of descriptors 

determined in different systems (Caron et al., 2013)(Ermondi et al., 2014)(Potter et al., 2014)(Caron et al., 

2015)(Caron et al., 2016). 

Materials and Methods 

The datasets 

Experimental values of drug/liposomes interactions were taken from the literature as described below. 

Dataset 1 refers to SPR data. The interaction with liposomes at pH 7.4 determined via SPR were expressed 

as the logarithm of the apparent binding affinities for drug interactions with liposome surfaces (log KD, see 

the original paper for details about KD determination) (Abdiche and Myszka, 2004). KD values were obtained 
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from the histogram reported in Fig. 1 of the original paper and thus weak binders were not included in the 

study. The length of the bars was measured with a ruler and then converted in numerical values. The 

conversion was validated by comparing values cited in the original paper and values obtained by our 

conversion tool (for example tamoxifen: paper KD=20, our value KD=20.14; dibucaine: paper KD=163, our 

value KD=163.35). According to the definition, the lower KD, the more bound the drug. The final dataset 

consists of 41 drugs. The drug panel was analyzed against 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 

liposomes that were immobilized on Series S Sensor Chip L1.  

Dataset 2 refers to the logarithm of the liposomes/water distribution coefficients (log Dlip) at pH 7.0. Data 

were taken from four different papers which report log Dlip using a similar potentiometric equipment and 

method. Most compounds (16) were taken from the study by Balon and coworkers (Balon et al., 1999). 

Rifabutin and paromomycin were discarded since potentiometry has some known limitations in the 

determination of log P of multiprotic substances and zwitterions. Eight compounds were extracted from 

the Avdeef’s paper (Avdeef et al., 1998). Four small organic molecules lipophilicity data were taken from 

the study by Escher (Escher, 2000) but nitro compounds were discarded since they need a peculiar 

computational treatment in Vs+ which was beyond the scope of the study. Finally nine drugs were 

extracted by the paper of Taillardat-Bertschinger et al. (Taillardat-Bertschinger et al., 2002). All data refer to 

PhC liposomes. Propranolol was reported in 3 out of 4 papers and all log D values were very similar. When 

more than one value was present for the same compounds the Avdeef’s value was chosen. 

If needed log D was calculated from log PN and log PI using the following equations  

𝐷 = 𝑃𝑁 ∗ (
1

1+10𝑝𝐾𝑎−𝑝𝐻
) + 𝑃𝐼 ∗ (

10𝑝𝐾𝑎−𝑝𝐻

1+10𝑝𝐾𝑎−𝑝𝐻
) for bases 

𝐷 = 𝑃𝑁 ∗ (
1

1+10𝑝𝐻−𝑝𝐾𝑎
) + 𝑃𝐼 ∗ (

10𝑝𝐻−𝑝𝐾𝑎

1+10𝑝𝐻−𝑝𝐾𝑎
) for acids 

The SMILES codes of the investigated compounds (dataset 1 and 2) can be downloaded from 

www.cassmedchem.unito.it 

PLS models 

SMILES codes were obtained using the ChemCell plugin (2010 Collaborative Drug Discovery, Inc.) for Excel 

and, then, submitted to VS+ (version 1.0.7, 198 http://www.moldiscovery.com) using default settings 

(protonation normalized at pH =7) and four probes (OH2, DRY, N1, and O probes that mimic, respectively, 

water, hydrophobic, HBA, and HBD properties of the environment). The VS+ matrix of descriptors was 

exported and then submitted to PLS analysis using SIMCA13 (SIMCA13, ver. 13.0.3.0; Umetrics, Umea, 

Sweden).  

BR analysis 

BR analysis was performed as described elsewhere (Caron et al., 2013)(Ermondi et al., 2014)(Potter et al., 

2014)(Caron et al., 2015)(Caron et al., 2016). 

Processing was done on a two 8 cores Xeon E5 at 3.3GHz CPUs and 128GB of RAM. 
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Results and Discussion 

The first step of the study consisted in retrieving reliable log KD and log Dlip values. Actually, there is a 

paucity of published data about drug/liposome interactions. In particular, we verified that it was not 

possible to set-up a dataset of compounds for which both values were available. Therefore for log KD we 

focused on the dataset provided by Abdiche and Myszka (Abdiche and Myszka, 2004) (dataset 1, see 

Materials and Methods), whereas for log Dlip we decided to focus on the potentiometric technique and 

extract data from four different papers which used the same instrument and similar experimental 

conditions (Balon et al., 1999), (Avdeef et al., 1998), (Taillardat-bertschinger et al., 2002), (Escher, 2000) 

(dataset 2, see Materials and Methods).  

The two datasets share only five compounds (ibuprophen, imipramine, propranolol, tetracaine and 

warfarin) and thus we firstly verified that they cover a similar chemical space (Fig. S1 in the Supporting 

Information).  

log KD values (38 compounds, Table S1 (Supporting Information), see Materials and Methods for details) 

were used to build a QSPR model by splitting up the datasets into a training set (n =28) and a test set 

(n =10). Since lipophilicity data (see below) were determined at pH 7.0 we verified that the ionization state 

of compounds did not vary when passing from pH 5.5 to pH 7.0 (data not shown). Experimental log KD 

values were then imported into VS+ as response variables (Y, the property) and a relation between Y and 

the 82 VS+ molecular descriptors (X, the structure) was sought using the PLS algorithm implemented in the 

software. Three compounds were identified as outliers (auramine O, octyl gallate and tamoxifen). 

Tamoxifen and auramine O contain substructures characterized by large delocalization, whereas octyl 

gallate has a flexibile chain. The presence of these structural elements would require a careful reevaluation 

of the force field empirical parameters on which VolSurf+ descriptors are based. This reevaluation is 

beyond the scope of this paper and thus the three outliers were discarded from the study. Statistics of the 

best model are reported in Table 1  

 
Table 1. PLS analysis results (n = number of observations, R2 = cumulative determination coefficient, Q2 = 
cross-validated correlation coefficient, LV = number of latent variables). 

System N R2 Q2* LV 

log KD 28 0.91 0.52 4 

log Dlip 25 0.79 0.53 3 

* Partial cross-validation adopted by SIMCA 
 
The correlations between calculated and experimental values are shown in Figure 1A. for the training (R2 = 

0.79) and the test sets (R2 = 0.84) and support the statistical stability of the model.  

 

Figure 1. Correlation between calculated and experimental values: A) log KD and B) log Dlip 
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BR analysis graphical output is reported in Figure 2A. The meaning and significance of the blocks is reported 

in Figure 2C to help with interpretation of parameters. In Fig 2A blocks with positive weighting (e.g. the 

light blue block) show how much the property described by the block contributes to increase log KD and 

thus to decrease the interaction with liposomes (see Methods for the definition of KD). Conversely, blocks 

with negative weighting (e.g. the green block) indicate how much the property contributes to decrease 

log KD. Moreover, blocks with comparable positive and negative contributions (e.g. the red block) indicate 

the high noise and inter-correlation of the descriptors of the block itself and thus are poorly relevant in the 

description of the investigated phenomenon. 

Fig. 2A shows that log KD increases, and thus compounds are weakly bound to liposomes, when the solute 

has hydrogen bonding acceptor (HBA, blue block) groups. Conversely, the presence of hydrophobic 

moieties favors the interaction with liposomes (green and yellow blocks). The Others group is also relevant 

in decreasing log KD. The presence of hydrogen bonding donor groups in the chemical structure (HBD) 

poorly affects the interactions with liposomes. 

The same approach used for modeling log KD was applied to log Dlip. The full list of log Dlip (33 compounds, 

see Materials and Methods for details) is reported in Table S2 (Supporting Information). Preliminary 

analysis revealed that nizatadine and famotidine are outliers. The reasons are probably related to the 

presence of sulfur atoms that are known to be not properly parametrized by Volsurf+ and thus, as 

discussed above, we decided to discard the two drugs from the study without additional investigation. 33 

compounds were therefore used to build the QSPR model and they were then split into a training set 

(n =25) and a test set (n =8). Statistics are reported in Table 1, whereas the correlations between calculated 
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and experimental values are shown in Figure 1B. Table 1 and Figure 1B support the statistical stability of the 

model. 

 
Figure 2. BR analysis 

 

BR analysis graphical output is reported in Figure 2B in which positive blocks contribute to increase the 

interaction with liposomes whereas the reverse is true for negative blocks. Fig. 2B shows that 

hydrophobicity (yellow block) and HBA (blue block) favor partitioning in liposomes whereas HBD solutes 

properties (red block) are detrimental for the interaction.  

Taken together Fig. 2A and 2B outline that log KD is governed by a balance of intermolecular forces very 

different from that governing log Dlip. In particular, the interaction with immobilized liposomes described by 

log KD is mainly driven by hydrophobic interactions, whereas in solution the interaction with liposomes is 

also favoured by HB between HBA of the drugs and HBD of liposomes (probably the positive 

phosphatidylcholine headgroups). 

We reasoned that the source of this difference could be related to several factors. The first point concerns 

the major liposome density in SPR than in potentiometric experiments: lipid/drug ratios used in the SPR 

and potentiometric experiments are in fact very different, being up to 100 times higher in SPR experiments 

(data not shown). Moreover, liposomes could fuse on the chip surface (Besenicar et al., 2006) and DMSO 

could play a role in SPR experiments (Abdiche and Myszka, 2004).  

Conclusion 

Technologies immobilizing receptors on solid supports and measuring drug/receptor interactions are 

largely appreciated by industrial researchers since they provide high/medium-throughput tools for hit 
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validation. However, surface-based techniques could provide different information than solution-based 

tools. 

Here we verified how the interaction between drugs and liposomes (= models of biological membranes) is 

governed by a different balance of intermolecular forces according to the immobilization or not of the 

liposomes. The study provides an alert message: SPR and potentiometry are not exchangeable to measure 

drug/liposomes interactions but from their combination more insight in the phenomenon could be 

obtained. Therefore, it seems convenient to follow the suggestions by some authors (Hämäläinen and 

Frostell-Karlsson, 2004) and use several approaches to screen early-stage compounds for their properties. 

Finally, this result underlined once more the usefulness of a computational tool, named BR analysis, 

specifically designed to provide an overview of the main factors governing molecular interactions related to 

ADME properties. 
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Supplementary Material 

Table S1: SPR data (dataset 1) as extracted by the paper by Abdiche et al. (Abdiche and Myszka, 2004) 

Name Training/test set KD (M) log KD 

Alprenolol training 444.162 -0.352 
Amitriptyline training 125.418 -0.902 
Auramine O training 516.553 -0.287 
Chlorpromazine test 29.323 -1.533 
Clomipramine training 48.812 -1.311 
Cyproterone training 100.000 -1.000 
Dansylamide test 71.197 -1.148 
Dapsone training 452.624 -0.344 
Desipramine test 73.935 -1.131 
Dexamethasone training 256.943 -0.590 
Dibucaine test 163.348 -0.787 
Ethoxzolamide training 163.348 -0.787 
Fenoterol training 567.673 -0.246 
Flutamide training 182.934 -0.738 
Formoterol training 444.162 -0.352 
Genistein training 16.963 -1.770 
Homochlorcyclizine training 54.664 -1.262 
Ibuprofen training 1327.244 0.123 
Imipramine training 100.000 -1.000 
Indapamide training 1602.943 0.205 
Mesulergine training 293.233 -0.533 
Nafoxidine training 27.191 -1.566 
Naftopidil training 63.574 -1.197 
NDGA training 49.742 -1.303 
Norclomipramine test 31.032 -1.508 
Nortriptyline training 57.849 -1.238 
Octyl gallate training 60.074 -1.221 
Perphenazine training 29.323 -1.533 
Phenolphtalin training 1514.704 0.180 
Propranolol training 189.972 -0.721 
Provitamin D3 test 111.990 -0.951 
Pyrimethamine test 304.514 -0.516 
Quinine test 389.192 -0.410 
Raloxifene training 12.077 -1.918 
Spironolactone training 360.892 -0.443 
Sulfadimethoxine training 1352.532 0.131 
Tamoxifen training 20.104 -1.697 
Tetracaine test 557.060 -0.254 
Thioridazine training 17.951 -1.746 
Verapamil training 151.470 -0.820 
Warfarin test 298.820 -0.525 
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Table S2. Dataset 2: log Dlip determined using the potentiometric approach 

Drug Training/test set log Dlip Source 

1d test 1.55 (Taillardat-bertschinger et al., 2002) 

2,4,6-trimethylaniline  training 2.52 (Escher, 2000) 

3,4-dimethylaniline  training 2.16 (Escher, 2000) 

Atenolol training 1.03 (Balon et al., 1999) 

Clonidine training 1.29 (Taillardat-bertschinger et al., 2002) 

Diazepam training 3.58 (Taillardat-bertschinger et al., 2002) 

Famotidine training 2.20 (Balon et al., 1999) 

Fluoxetine training 2.21 (Balon et al., 1999) 

Imipramine test 2.83 (Taillardat-bertschinger et al., 2002) 

Lidocaine test 1.59 (Avdeef et al., 1998) 

Miconazole test 3.66 (Balon et al., 1999) 

Nicotine training 2.30 (Taillardat-bertschinger et al., 2002) 

Nizatadine training 2.94 (Balon et al., 1999) 

Olanzapine training 3.05 (Balon et al., 1999) 

Procaine training 0.90 (Avdeef et al., 1998) 

Propranolol training 2.62 (Avdeef et al., 1998) 

Rilmenidine test 2.11 (Taillardat-bertschinger et al., 2002) 

Terbinafine training 4.68 (Balon et al., 1999) 
Tetracaine test 2.25 (Avdeef et al., 1998) 

Zidovudine training 2.40 (Balon et al., 1999) 

Zopiclone training 1.69 (Balon et al., 1999) 

2,3,4,6-tetrachlorophenol  training 3.51 (Escher, 2000) 

2,4,6-trichlorophenol training 2.70 (Escher, 2000) 

5-Phenylvaleric acid training 1.71 (Avdeef et al., 1998) 

Acetylsalycilic acid training 1.60 (Balon et al., 1999) 

Acyclovir training 1.70 (Balon et al., 1999) 

Allopurinol test 2.50 (Balon et al., 1999) 

Amiloride training 1.79 (Balon et al., 1999) 

Diclofenac training 2.67 (Avdeef et al., 1998) 

Furosemide training 1.90 (Balon et al., 1999) 

Ibuprofen training 1.91 (Balon et al., 1999) 

Phenobarbital training 2.15 (Taillardat-bertschinger et al., 2002) 

Phenytoin test 3.05 (Taillardat-bertschinger et al., 2002) 

Warfarin training 1.67 (Avdeef et al., 1998) 

Xipamide training 1.76 (Balon et al., 1999) 
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Figure S1. The chemical space covered by dataset 1 and dataset 2 as described by the distribution of some 

common molecular descriptors (MW, HBA, HBD, log P, rotatable bonds) 

 


