
Combining behavioural types with security analysis

Massimo Bartolettia, Ilaria Castellanib, Pierre-Malo Deniélouc, Mariangiola
Dezani-Ciancaglinid, Silvia Ghilezane, Jovanka Pantovice, Jorge A. Pérezf, Peter

Thiemanng, Bernardo Toninhoh, Hugo Torres Vieirai

aDipartimento di Matematica e Informatica, University of Cagliari, Italy
bINRIA Sophia Antipolis, France

cRoyal Holloway, University of London, UK1

dDipartimento di Informatica, Università di Torino, Italy
eFaculty of Technical Sciences, University of Novi Sad, Serbia

fUniversity of Groningen, The Netherlands
gUniversity of Freiburg, Germany

hDepartment of Computing, Imperial College London, UK
iIMT Institute for Advanced Studies Lucca, Italy

Abstract

Today’s software systems are highly distributed and interconnected, and they increas-
ingly rely on communication to achieve their goals; due to their societal importance,
security and trustworthiness are crucial aspects for the correctness of these systems.
Behavioural types, which extend data types by describing also the structured behaviour
of programs, are a widely studied approach to the enforcement of correctness proper-
ties in communicating systems. This paper offers a unified overview of proposals based
on behavioural types which are aimed at the analysis of security properties.

1. Introduction

Computing systems are omnipresent nowadays; besides their classical application
domains, they have entered into multiple dimensions of our lives, from business to
leisure, from finance to e-government and health, from global logistics to home appli-
ances, to mention but a few. Most of these systems are distributed over the network, and
thus rely heavily on communication to carry out their tasks; for example, in the finan-
cial world where decisions are taken in the global market, or in the context of emerging
home appliances that autonomously shop for groceries on our behalf. Given their im-
portance and societal impact, it is crucial that these communicating systems behave in
a reliable way. This is not an easy task, since they have to run over open networks,
where they can be targeted by malicious parties trying to threaten their functionality, or
to seize or compromise sensitive data. It is therefore fundamental to develop rigorous
(and scalable) techniques to ensure the reliability and security of these systems.

Distributed systems are very challenging to analyse, for a variety of reasons: these
range from their intrinsic heterogeneous nature, to the possible presence of untrusted

1Now at Google Inc.

1

components, to the complexity of the interactions and of their induced behaviours. In
the realm of programming languages, type systems represent a well-established tech-
nique to ensure program properties. Types allow programmers to single out programs
that are correct (i.e., error-free, for a certain class of errors) at compile-time, just by
inspecting their source code. Examples of errors that may be excluded by type systems
are the inability of an object to handle a method call (message not understood), races
(competition among concurrent programs for some shared resource), which may lead
to inconsistent states or unexpected behaviours, and communication errors, caused by
non-matching expectations of two communicating partners.

In today’s open and highly distributed computing environment, security flaws of
various kinds may arise, and it is crucial to exclude them before programs are deployed.
Static and dynamic techniques for ensuring access control and secure information flow
were originally conceived for operating systems. In the last two decades, spurred by
the pioneering work of [33] and [93] on static analysis for secure information flow,
type systems targeting security properties have been gradually introduced both into
specification languages such as process calculi [19, 31, 43, 55, 56, 59, 60, 66, 77, 80]
and into full fledged programming languages [6, 27, 53, 81, 84].

Classical data types are an abstract specification of what programs compute (i.e.,
the outcome of computations). By contrast, behavioural types (BTs) specify also how
programs compute (i.e., the structure of computations) thus giving a more intensional
description of their behaviour (the reader is referred to [62] for an extensive discussion
on this point). BTs are particularly suited in dealing with concurrent and communicat-
ing processes, whose semantics is based on their interactive behaviour. In this case,
BTs may be viewed as abstract protocols, describing the causal and branching struc-
ture of communications among a number of parties. First introduced in the setting
of process calculi [57, 58], behavioural types for communication-centric systems have
been studied for a variety of calculi and languages since the late nineties. For a recent
survey, the reader is referred to [2].

The design of behaviourally typed languages requires some care: on the one hand,
one would like to keep a simple and intuitive programming flavour (to ensure that typed
abstractions may be widely translated into practice); on the other hand, typed languages
must be developed bearing in mind the complexity (not to mention decidability) of their
associated verification techniques. Hence, BT-based approaches must be fine-tuned to
keep a balance between expressiveness and feasibility of analysis.

In this respect, session types [57, 58] stand out as a particularly attractive instance
of behavioural types. Session types allow interactions to be structured into basic units
called sessions. Individual interaction patterns are then abstracted as session types,
against which process descriptions may be checked. The expressiveness of session
types has enabled their application in diverse contexts, targeting different programming
models (e.g., functional [92] and object-oriented programming [34]), and addressing
also lower-levels of application (namely operating system design [39] and middleware
communication protocols [91]), to mention a few.

Although some proposals that promote the use of BTs for the analysis of security
properties have been put forward, the study of security and trustworthiness properties
for typed communicating systems is still at an early stage.

Security type systems for variants of the π-calculus, which combine security en-

2

forcement with other correctness concerns, were presented in [55, 56] and [59, 60].
A simple type system ensuring noninterference for the π-calculus was proposed in [77].
Subsequently, more refined security type systems for the π-calculus were studied in [31]
and [66]. This last work provides a sophisticated security analysis, together with a type
inference algorithm.

The question of unifying the language and process-based approaches to security
has also been addressed. The goal was to define translations from the former to the
latter that would preserve both the security properties and the security types. A first
step in this direction was taken in [59], where a typed parallel imperative language was
embedded into a typed π-calculus. This work was further pursued in [60], where more
powerful languages, both imperative and functional, were considered. Among the types
used in these early works, the closest to behavioural types are the usage types of [66],
which describe how processes use their communication channels along computations.
It should be noted, however, that all these approaches are based on (simple variants of)
the π-calculus, and not on so-called session calculi, more specialised variants of the
π-calculus where communication has an explicit logical structure.

Session-typed models focus on open-ended systems, where loosely coupled parties
may synchronise to start a session on a specific (public) service, thereafter interacting
on the private (restricted) channel of the session. In general, one expects security prop-
erties to be simpler to enforce within a session than in an open network: since session
participants must conform to their session types, their behaviour is more disciplined
than that of arbitrary, untyped processes. Indeed, in a trusted session-typed setting, one
may focus on systems where participants communicate according to prescribed proto-
cols – this property is often referred to as session fidelity – and this restricts the range of
possible security flaws. Moreover, within this trusted platform, one may address more
specific security properties, regarding, e.g., the information that is communicated or
the participants who carry out the communications, in order to achieve a finer tracking
of security flaws. Finally, since interactions within a session take place on a private
channel, session isolation is guaranteed by construction.

However, this scenario is too restrictive in practice. In realistic distributed appli-
cations, the components are spread across open networks and cannot be completely
controlled. Hence, both the closed-network assumption (ensuring the isolation of ses-
sion channels) and the typed-world assumption (ensuring the correct behaviour of all
components) have to be lifted. Only part of the application may be assumed to be
typed, and hence trusted. The challenge is then to guarantee that the desired security
properties continue to hold when the trusted part interacts with the untrusted one.

In this document, we present a survey of existing BT-based approaches aimed at
ensuring security properties. Our review does not only reflect several different views
of secure and trustworthy communication-based systems, but also highlights how be-
havioural types provide a simple conceptual framework to formally approach all such
different visions, from various angles.

The rest of the paper is organised as follows. Section 2 introduces the basic notions
of session types. In Section 3 we discuss behavioural types which guarantee access
control, secure information flow, and integrity of data in communication protocols.
Section 4 shows how the logical foundation of session types – based on the correspon-
dence with linear logic [21] – can be fruitful also for security. In particular, dependent

3

session types are applied to proof carrying code and digital certificates.
To some extent, it is fair to say that the approaches described in Sections 3–4 consist

in extending foundational settings with security concerns or enhancing existing tech-
niques in order to tackle security issues. In a somewhat distinct direction, we find tech-
niques that focus on guaranteeing that the properties studied in foundational settings
can be transported to more realistic models encompassing open networks: Section 5 re-
views a compilation of session-like descriptions into implementations of cryptographic
protocols that ensures that honest session participants are protected from external in-
terference. Section 5 also describes a theory of contracts that addresses a different
notion of honesty among interacting parties, roughly referring to participants that be-
have as promised (contracted) even when engaged in other interactions with dishonest
parties. The protection of participants from malicious contexts is further addressed in
Section 5.4, by means of game theoretic approaches.

Section 6 presents recent developments, including two approaches that use dynamic
typing, in contrast to the type systems reviewed in previous sections. Gradual typ-
ing allows legacy code to be reconciled with varying security policies (Sections 6.1
and 6.2). Section 6.3 describes a process framework which exploits behavioural types
to jointly enforce run-time adaptation and the combination of access control and se-
cure information flow. Section 6.4 reports on a combination of techniques that address
access control with a behavioural typing system that focuses on role-based protocol
specifications, considering that role impersonation must be duly authorized. Section 7
summarises the various approaches reviewed in the paper, and gives some tracks for
future research.

2. Preliminaries

In this section, we informally present some key notions pertaining to behavioural
types, focusing on session types, which are the kind of BTs for which most security-
oriented extensions have been proposed. The interested reader is referred to the recent
survey [62] for further details on the foundations of behavioural types.

Session types characterise how communication channels are used by programs.
Intuitively, much like the type declaration var: int tells us that var will be used to
hold integer values, a type declaration chan: SessionType tells us that chan will
be used to hold an access point to a channel that will be used by the program according
to SessionType . However, SessionType may actually refer to several stages of
the usage of chan. A simple instance of a session type is

S1 = !int.?bool.end

Then, the type declaration chan : S1 indicates that chan is first used to output an integer
and then to input a boolean. More precisely, ‘!’ denotes output, ‘?’ represents input,
‘.’ captures sequentiality, and ‘end’ denotes no further usage.

A fundamental feature of session types is that they capture linear interactions. Lin-
earity amounts to forbidding competing communications on the same channel, what is
sometimes referred to as a communication race. Session types exclude communication
races but they allow for the specification of alternative behaviours (controlled by one

4

party), described via so-called branching and selection types. Branching represents an
external choice, to be solved by the communicating partner, while selection represents
an internal choice, typically placed in the branch of a conditional. Hence, alternatives
are modelled by a “menu” and a corresponding choice: the former is usually imple-
mented via a set of available inputs, and typed using branching; the latter is usually
implemented via an output, and typed using selection. Alternatives are conveniently
identified by labels. For example, the session type

S2 = NUMBER ?int.!int.end + CONDITION ?bool.end

may be used to describe a process that is waiting for the choice of either one of its
offered options, identified by labels NUMBER and CONDITION . This process can be
safely composed with, e.g., a process willing to first choose the NUMBER option and
then to send and receive an integer.

It is worth noticing that since types talk about the current stage of the protocol,
type preservation, i.e., the property that ensures that well-typedness is preserved under
system evolution, holds modulo an evolution also of types (types are resources that in
some sense get consumed by execution).

Another powerful feature of session types is (session) delegation, which allows
third parties to gain access to an already established interaction. Realised via channel
passing, this mechanism is useful to specify, e.g., a server that at some stage in the
protocol delegates to a third party the remaining communications with a client (who
will proceed with the protocol, unaware of the exchanges at the server side). Carried
types can thus be session types themselves; this way, e.g., the session type

S3 = ?(!int.end).end

specifies the reception of a channel, which will be used to output an integer according
to !int.end.

Session types for binary “client-server” interaction, as introduced in [58], capture
the two-ended interaction via the type of one of the endpoints — which are sometimes
distinguished by so-called polarities [46], denoted + and −: this way, e.g., chan+ and
chan− would denote the two endpoints of chan. So, if one endpoint is used according
to a session type, it is immediate to recover the characterisation of the other endpoint by
replacing inputs by outputs, branching by selection and conversely — a notion usually
referred to as duality. The dual of a session type S is denoted S. This way, e.g., the
duals of session types S1, S2 and S3 above are respectively:

S1 = ?int.!bool.end
S2 = NUMBER !int.?int.end ⊕ CONDITION !bool.end
S3 = !(!int.end).end

More recently, following the approach introduced in [61], generalisations of session
types that capture multiparty interactions have been put forward. In such a setting of
multiparty sessions, pairwise linear interaction is still ensured, via the use of dedicated
intra-session channels (or session indexes [13]). In this case, the session types of in-
dividual parties no longer suffice to capture the entire structured interaction: global

5

specifications, called global types, have been introduced to specify sequencing infor-
mation for message exchanges among the various communicating parties. Since a
global type explicitly identifies the involved parties, it is possible to extract from it the
individual contributions of each party via a projection function — these contributions
are commonly referred to as local types.

In the above examples and in the sequel the syntactic categories are distinguished
by using different fonts, namely: sort types, session types, contracts,
CHOICE LABELS , values, participants, variables, processes, terms, keywords.

3. Security Types for Communication-Centred Calculi

An increasingly relevant security issue is that of preserving the confidentiality of
private data that is hosted on cloud infrastructures and/or manipulated by Web ser-
vices and applications. Protection of data confidentiality requires two complementary
techniques: access control, which restricts the access to the original data, allowing only
trusted users to read them, and secure information flow, which prevents the propagation
of legally accessed data to untrusted users, thus ensuring end-to-end confidentiality.
Compared to access control, secure information flow may be viewed as additionally
restricting the access to transferred or transformed data, when these have been com-
puted using sensitive data. Type systems for access control and secure information
flow are reviewed in Sections 3.1 and 3.2, respectively.

Another important security property is data integrity, which is often presented as
the dual of confidentiality and may be similarly expressed as a combination of access
control and secure information flow. While confidentiality requires that data should not
be released to untrusted destinations, integrity requires that data should not be affected
by untrusted parties. Type systems for data integrity are discussed in Section 3.3.

3.1. Access Control
An early work featuring behavioural types for access control is [68], which presents

a type system for COWS (Calculus for Orchestration of Web Services) [79], a for-
malism for specifying and combining services, as well as modelling their dynamic
behaviour. The COWS language provides a primitive for killing processes, possibly
provoking the abortion of ongoing sessions. This type system allows for the specifica-
tion and enforcement of policies for regulating the exchange of data among services.
To implement such policies, programmers can annotate data with sets of participants
authorised to use and exchange these data. The typed operational semantics uses these
annotations to guarantee that computations proceed correctly.

For example, consider a standard buyer-seller-bank protocol, in which:
1. the buyer asks the seller for some item and receives back a price;
2. the buyer may either accept the price and send a credit card number to the bank,

or turn down the offer.

In this scenario, the desired policy is that the credit card number should be accessible
only to the buyer and the bank, but not to the seller. Therefore, the type system of [68]
validates processes implementing the protocol described above, but not variants of it
in which by mistake the buyer would send the credit card number to the seller. This

6

policy is represented by decorating the data creditCardNumber with participants agent
and bank: {creditCardNumber}agent,bank.

Another related service-oriented calculus is SCC (Service Centered Calculus) [18].
The work [67] enriches a variant of SCC, investigated in [20], with security levels for
controlling access rights. In the original calculus, communications may either follow
fixed protocols or use pipelines. A pipe constructor P < x < Q, similar to that of the
Orc language [64], replaces the variable x in (a freshly spawned copy of) the process
Q with a value sent by the process P. In the new calculus, processes are framed [78]
by security levels. A process framed by a level ` can exercise rights of security level
not exceeding `. Security levels are assigned to service definitions, clients and data.
In order to invoke a service, a client must be endowed with an appropriate clearance,
and once the service and client agree on the security level, the data exchanged in the
initiated session will not exceed this level. The calculus of [67] comes equipped with a
behavioural type system that statically ensures these security properties.

In the buyer-seller-bank protocol described above, the protection of the credit card
number is ensured by giving it a security level which is incomparable with the level
of the seller, but is smaller or equal to the levels of the buyer and the bank. More
formally, if the processes representing the seller, the buyer and the bank are framed by
the security levels `1, `2 and `3, respectively, then it is enough to assign to the credit
card number the type nat with some level ` such that ` 6≤ `1, ` ≤ `2 and ` ≤ `3.

The work [22] adopts the same treatment of access control as [67], ascribing secu-
rity levels to both participants and data, but it gains flexibility thanks to the mechanism
of delegation. Namely, it allows participants to get around access control restrictions
by delegating the handling of sensitive data to other participants with higher creden-
tials. For instance, instead of sending a bank connection to the buyer, thus explicitly
involving the bank in the interaction, the seller may delegate to the bank the part of
the interaction that deals with the credit card in a way that is transparent to the client.
The type system that ensures access control has an explicit type constructor to track
delegation; it allows the delegated part of a session type to be marked.

Notably, all the types investigated in [68], [67], and [22] are behavioural types.
While those used in [22] are standard session types enhanced with security constraints,
the others are more general instances of BTs. A comparison between the three ac-
cess control approaches described above is not easy, since the underlying calculi offer
different interaction patterns, namely a primitive for session killing in [68], a pipeline
constructor in [67] and channel delegation in [22]. In our view, the most challeng-
ing construct for data protection is delegation, since it allows a transparent change of
ownership for a given communication channel.

3.2. Secure Information Flow

As already mentioned above, the work [22] considers a calculus for multiparty
sessions with delegation, enriched with security levels for both participants and data,
and equipped with an access control mechanism. This work also defines a secure
information flow property, formalising the preservation of data confidentiality. Fi-
nally, a session type system is proposed, which introduces secure information flow

7

requirements in the typing rules, in order to simultaneously ensure the noninterference
property and the standard behavioural properties prescribed by session types. Such
security-enhanced session types are an instance of behavioural types specifying both
the sequencing of communication actions and the constraints between their security
levels. The study [22] revealed an interesting interplay between the constraints used
in security types and those used in session types to ensure properties like communica-
tion fidelity and progress. In essence, session-typed processes are less prone to security
flaws. This point will be discussed in some depth later in this section. We now describe
the approach of [22] in more detail.

The secure information flow property defined in [22] is based on the observation
of messages while they are being exchanged. As usual in the secure information flow
literature, the observation power depends on the level of the observer. An observer of
level ` can only see messages of security level lower than or equal to `. For simplicity,
we assume here just two security levels > and ⊥ (although [22] deals with a general
lattice of security levels). A message or I/O communication action whose carried value
is of security level > (respectively, ⊥) will be called “secret” or “high” (respectively,
“public” or “low”).

We shall use here a simple syntax where c(x`).P denotes the input on channel c of
a value of level `, to be replaced for x` in the continuation process P, and c < v` > .P
denotes the output on channel c of the value v of level `, to be followed by P. For
simplicity, we shall only deal with binary sessions here, so c will range over binary
session endpoints of the form s+, s−, where s is the name of some established session.

Secure information flow is usually formalised via the notion of noninterference [50].
Noninterference essentially means that low outputs should not depend on high inputs.
Then, a typical insecure information flow, also called information leak, arises when
different high inputs cause different low messages to be exchanged, as in the following
process, where we assume x> to be a boolean variable:

if x> then s+! < 1⊥ > else s+! < 2⊥ >

Another source of information leaking is the possible blocking of a high input
action, in the case where the environment does not offer the expected high message
(which is something one cannot control, since two environments differing only for the
presence or absence of a high message cannot be distinguished by a low observer). For
instance, the process:

s+?(x>).s+! < 1⊥ >

emits the low output “1” only if it first receives the high input from the environment.
Assuming again x> to be a boolean variable, the session type of channel s+ in the
above process is ?bool.!int.end. On the other hand, this process cannot be typed
in the security-enhanced session type system, since it exhibits a “level drop” from the
input to the output.

The subsequent paper [23] moves one step further by equipping the above calcu-
lus with a monitored semantics, which blocks the execution of processes as soon as
they attempt to leak information. This monitored semantics induces a safety property:
a process is safe if none of its computations is blocked by the monitored semantics.
This property is called information flow safety, and it is proved to strictly imply the

8

noninterference property of [22]. This is expected, since information flow safety re-
quires the successful execution of all individual computations, while noninterference
is a property of the set of computations of a process, which may hold even if some of
the computations exhibit information leaks.

The approach in [22, 23] may be summarised as proposing three increasingly pre-
cise means for tracking information leaks in sessions: a syntactic property (typability),
a local semantic property (safety), and a global semantic property (security).

We illustrate the difference between typability, safety and security in [22, 23] by
means of a simple example that should convey the appropriate intuitions. In this exam-
ple, typability requires the absence of any “level drop” from the expression tested by a
conditional to a subsequent communication, while safety requires the same condition
but only in computations that may actually occur.

Consider a conditional whose >-level condition is true and whose then branch
sends ⊥-level data, while its else branch sends >-level data (whose value does not
really matter, since this branch is never taken):

if true> then s+! < 1⊥ > else s+! < 2> >

This process is secure because it always exhibits the same public behaviour, but it is
neither safe nor typable. Consider now a variant of the above process, where the two
branches of the conditional are swapped:

if true> then s+! < 2> > else s+! < 1⊥ >

This process is still not typable, but it is now both safe and secure, since the else
branch is never taken and thus the level drop cannot occur in any computation. An
example of a typable process is:

if true> then s+! < 1> > else s+! < 2> >

In this process, channel s+ has the security-enhanced type !int>.end.

Discussion
There appears to be an influence of classical session types [61] upon security

types [93]. Indeed, one of the causes of insecure information flow in a concurrency
scenario is the possibility of different termination behaviours in the branches of a high
conditional (i.e., a conditional which tests a high expression). This may give rise to
the so-called termination leaks. In session calculi, there are three possible termina-
tion behaviours: proper termination, deadlock and divergence. Then, a termination
leak may occur, for instance, if one branch of a high conditional terminates while the
other diverges or deadlocks, assuming successful termination is made explicit by an
observable action. Session types help to contain this phenomenon, by imposing some
uniformity in the termination behaviours of conditional branches: for instance, a ter-
minating branch cannot coexist with a diverging branch, as exemplified below. They
also prevent local deadlocks (due to communication errors within a session) as well
as some global deadlocks, thus limiting the possible sources of abnormal termination.

9

Note that one may also use typing to ensure (proper) termination. For instance, ter-
mination is ensured by the session type system studied in [21], as shown in [73]. The
system in [21] is the basis for the dependent session types reviewed in Section 4.

Since the two branches of a conditional must have the same session types for all
channels, we cannot for example type the process:

if x> then s+! < 1> > else rec X.s+! < 2> > .X

which could cause a termination leak. Typing also prevents termination leaks due to
bad matchings of data, like in the process:

if x> then s+! < 1> > else s+! < x>+3 >

where we assume that x> is replaced by a boolean value. However, the security-
enhanced typing considered in [22, 23] does not prevent global deadlocks due to bad
matchings of protocols in interleaved sessions, like in the process:

if x> then s+?(y).s+! < 1> > .r+?(z).r+! < 2> >
else s+?(y).r+?(z).s+! < 1> > .r+! < 2> >

| s−! < 3> > .s−?(t).r−! < 4> > .r−?(u)

Here, if the then branch is taken the process will terminate successfully, while if the
else branch is taken the interaction will deadlock. The security-enhanced session
type of the channels s+, r+ is ?int>.!int>.end, while the channels s−, r− have
the dual session type !int>.?int>.end. These global deadlocks are forbidden by
the more refined behavioural type systems in [13, 65, 72].

3.3. Integrity of Communicated Data

We now turn to the issue of data integrity, as investigated in the work [17]. We start
by considering the standard User-ATM-Bank example [58]. In response to a deposit
request by the user, a malicious ATM could send to the bank an amount of money
that is different from that communicated by the user, consequently altering the balance
obtained from the bank. This change is transparent to the typing, since it does not
modify the communication protocol. This means that the following processes, where
channels s, r are used respectively for the interaction between the user and the ATM
and between the ATM and the bank:

user = s+! < userId > .s+! < depositAmount >
ATM = s−?(userId).s−?(depositAmount).

r+! < userId > .r+! < depositAmount−10 >
bank = r−?(userId).r−?(depositAmount)

can be typed since channels s+, r+ have type !string.!int.end, while the chan-
nels s−, r− have the dual session type ?string.?int.end.

In order to cope with this kind of misbehaviour, correspondence assertions [51]
are incorporated in the theory of session types [17]. Two correspondence assertions
can be paired by the keywords begin, end and their values allow the integrity of the

10

communicated data to be checked (in this example userId and depositAmount). The
user and the bank processes with correspondence assertions become:

user = begin(userId, depositAmount).s+! < userId > .s+! < depositAmount >
bank = r−?(userId).r−?(depositAmount).end(userId, depositAmount)

thus allowing the malicious ATM to be discovered, since the operational semantics
requires the same values in paired correspondence assertions. The session types of
the channels remain unchanged, given that correspondence assertions play the role of
run-time monitoring.

Compared to standard session types, session types enhanced with correspondence
assertions may be used to check additional properties, namely:
• the source of information,
• whether data are propagated as specified across multiple parties,
• if there are unspecified communications between parties, and
• if the data being exchanged have been modified in some unexpected way.

More recently, [4] presents a π-calculus with assume and assert operations, typed
using a session discipline that incorporates refinement formulae written in a fragment of
Multiplicative Linear Logic [49]. This original combination of session and refinement
types, together with the well-established benefits of linearity, allows very fine-grained
specifications of communication protocols in which refinement formulae are treated as
logical resources rather than persistent truths.

Another related paper is [16], where session types for multiparty sessions are en-
riched with constraints on the content of the exchanged messages, conditions on the
choice of sub-conversations to follow, and invariants on recursion.

4. Logical Approaches to Security based on Behavioural Types

As already discussed, session types consist of high-level specifications of the com-
munication behaviour of distributed, concurrent processes along channels. Histori-
cally, these specifications capture input/output behaviour, replication (or persistency),
branching and selection behaviours, and recursion; enabling static verification of proto-
col compliance (or session fidelity). However, classic session types are not expressive
enough to describe properties of data exchanged in communications, nor to certify such
properties in a distributed setting, where the user of a service does not have access to
the application source code. Both issues are a fundamental problem in today’s world,
given the increasing pervasiveness and complexity of distributed services, for which
simple descriptions of communication behaviour are insufficient characterisations of
the rich, high-level contracts these services are intended to follow.

To address the issue of lack of expressiveness in terms of properties that can be
characterised by session types, extensions to the session framework have been pre-
sented (e.g., the work [17], already discussed in section 3.3, and [86]). Recently,
logical foundations for session types have been established via Curry-Howard corre-
spondences with linear logic [21]. Besides clarifying and unifying concepts in session

11

types, such logical underpinnings provide natural means for generalisation and exten-
sions. One such extension to dependent session types allows for expressing and enforc-
ing complex properties of data transmitted during sessions [89]. This is achieved by
interpreting the first order quantifiers of intuitionistic linear logic as input and output
constructs, in which it is possible to refer to the actual value that is communicated in
the types themselves. By combining this with a data language that is itself dependently
typed (e.g., in the style of LF [52]), we are able to specify arbitrary properties of the
communicated data in such a way that the proof objects that witness the desired prop-
erties are themselves exchanged during communication. Moreover, the solid logical
foundations of the approach enable further (logically grounded) extensions to the data
language to capture features of interest in an almost immediate way, such as digital
proof certificates and proof object erasure through proof irrelevance and affirmation
modalities [75].

Sections 4.1, 4.2, and 4.3 overview extensions of session types with (value) depen-
dent types, proof irrelevance, and affirmation, respectively.

4.1. Linear Logic and Dependent Session Types
Linear logic is a logic of resources and evolving state, where propositions can be

seen as resources that interact with each other and evolve (i.e., change state) over time.
These are the fundamental characteristics that allow for the development of the Curry-
Howard correspondence between linear logic and session types.

The work of [21] interprets the propositional connectives of linear logic as the ses-
sion types assigned to π-calculus channels in such a way that linear logic proofs can be
interpreted as typing derivations for π-calculus processes. Moreover, the computational
procedure of proof simplification or proof reduction is directly mapped to inter-process
communication, thus obtaining a true correspondence between the dynamics of proofs
and the dynamics of communicating processes. The connectives of linear logic are
linear implication A (B, which is interpreted as the input session type (i.e., input a
session channel of type A and continue as B); its dual, multiplicative conjunction A⊗B,
which is naturally interpreted as session output (i.e., output a session channel of type
A and continue as B); the multiplicative unit, 1, denoting the inactive or terminated
session; additive conjunction A N B denoting an offer of a choice, meaning that a ses-
sion of type A N B will be able to offer along the session channel either A or B, the
choice of which is left to the session client; dually, additive disjunction A⊕ B denotes
alternative behaviour, and so a session of type A⊕ B will unilaterally choose to behave
as either A or B. Finally, the linear logic exponential !A is mapped to replication, in
which a session of type !A will offer a potentially unbounded number of instances of
the behaviour A. Moreover, a fundamental aspect of proof theory is proof composition,
also known as a cut. In the interpretation, cuts are mapped to process composition; two
processes using disjoint sets of resources interact along a fresh session channel, where
one offers a session and the other uses it to produce some other session behaviour.

Recently, [89] extended this framework of propositional linear logic as session
types to incorporate dependent session types by moving to a first-order setting, in-
troducing the two quantifiers ∀x:τ.A and ∃x:τ.A, where x may occur free in A. The
quantification variable is itself typed, with a domain of quantification τ . The language
of terms inhabiting τ is a typed λ-calculus, which is left as general as possible, with

12

the usual soundness requirements of progress, substitution and type preservation. The
interpretation of these session types is (typed) term output for the existential ∃x:τ.A
and term input for the universal ∀x:τ.A. Thus, a session of type ∃x:τ.A outputs a term
M of type τ and proceeds as type A{M/x}, whilst a session of type ∀x:τ.A behaves in
a dual manner.

By making the quantification domain dependently typed, the authors obtain a ses-
sion type system where processes exchange data but also proof objects that can denote
properties of said data. For instance, the type:

UpInterfaceP(x) , x : ∀n:int.∀p:(n > 0).∃y:int.∃q:(y > 0).1 (1)

denotes a session that will input an integer n2 and a proof that n is greater than 0, and
will then output back an integer y, itself greater than 0, and a proof of this fact. Well-
typedness ensures that these properties hold at run time due to the existence of these
proof objects, making this dependently-typed session framework a de facto model of
proof-carrying code.

4.2. Proof Irrelevance
In a distributed setting, the proof-carrying framework above requires not only that

proof objects exist during type-checking, but also enforces that they are transmitted at
run time. However, it is often the case that we want the specified properties to hold but
we do not want to exchange the proof objects. Indeed, omitting the communication of
proof objects may be sensible when the communicating parties have established trust
by some external means, or when the properties are easily decidable and the proof ob-
jects can be synthesised by a decision procedure. For instance, in the example above, it
is straightforward to check that the communicated numbers are indeed strictly positive.

To model the possibility of omitting proofs at run time, the work of [75, 89] ex-
tends the framework by internalising in the proof object language the concept of proof
irrelevance [74], through a modality denoted [τ], which types terms of type τ that
can be safely erased at run time. This notion of erasure safety essentially means that
such terms can never be used to compute values that are not themselves erasable. For
instance, the type above can be rewritten as:

UpInterfaceI(x) , x : ∀n:int.∀p:[n > 0].∃y:int.∃q:[y > 0].1 (2)

remarking the fact that the proof objects p and q must be present for type-checking
purposes, but they are not used in a computationally significant fashion at run time
and therefore can be safely omitted. This process of erasing proofs at run time is done
in two steps: first all instances of proof irrelevant types and terms are replaced with
the unit type and element (denoted unit and 〈〉, respectively). Since this procedure
does not remove the communication step where the proof objects were previously ex-
changed, we may exploit the type isomorphisms,

∀x:unit.A ∼= A
∃x:unit.A ∼= A

2The different font for integers (n and n) is due to our convention that distinguishes between variables
and values.

13

to consistently remove the communication overhead. An alternative technique familiar
from type theories is to replace sequences of data communications by a single commu-
nication of pairs. When proof objects are involved, these become Σ-types (sum types)
which are inhabited by pairs. For example, we can rewrite UpInterfaceI as:

UpInterfaceI2(x) , x : ∀p:(Σn:int.[n > 0]).∃q:(Σy:int.[y > 0]).1

This solution is popular in type theory, where Σx:τ.[σ] is a formulation of a subset type,
{x:τ | σ}. Conversely, bracket types [σ] can be written as {x:unit | σ}, except the
proof object is always erased. Under some restrictions on σ (i.e., decidability of the
underlying theory), subset types can be seen as predicate-based type refinements.

4.3. Affirmation and Digital Certificates
The examples above showcase what can be seen as two extremes in a spectrum of

trust. In the type given in (1) no trust between the parties is assumed and therefore all
proof objects must be made explicit in communication at run time. On the other hand,
proof irrelevance as represented by the type given in (2) models a scenario of full trust,
where no proof objects are expected at run time. In practice, there are tradeoffs between
trust and fully explicit proofs. For instance, when downloading a large application we
may be willing to trust its safety if it is digitally signed by a reputable third party,
but if we are downloading and running a piece of Javascript code embedded in a web
page, we may insist on an explicit proof that it adheres to our security policy. To
make these tradeoffs explicit in session types, [75] also incorporates in the framework a
notion of affirmation (from modal logic) of propositions and proofs by principals. Such
affirmations can be realised through explicit digital signatures on proofs by principals,
based on some underlying public key infrastructure.

The key component to model these certificates is the addition of a type ♦Kτ to the
framework, which types objects that assert the property τ , signed by principal K using
its private key. An affirmation object is built by taking the original proof object that
asserts τ and signing it accordingly. Superficially, this may seem redundant insofar as
the certificate contains the proof object itself. However, checking a digitally signed
certificate may be much faster than checking the validity of a proof, so we may speed
up the system if we simply trust K’s signature. Moreover, when combining certificates
with proof irrelevance, we may construct certificates where parts of the original proof
object have been erased, and so we have in general no way of reconstructing the original
proofs. In these cases we necessarily trust the signing principal K to accept τ as true.

Combining affirmation and proof irrelevance it is possible to model the following,

fpt:∀f:nat→ nat.∀p:♦verif [Πx:nat.f(x) ≤ x].∃y:nat.∃q:[y=f(y)].1

which expresses the type of a service that first inputs a function f, then accepts a veri-
fier’s word that each natural number is a prefixed point of f, and finally returns a fixed
point of f to its client. Observe that object p is a certificate of the fact that f satisfies this
property. In realistic scenarios, such as proof-carrying file systems [45], the use of af-
firmation and proof irrelevance results in substantially less communication overheads
when compared to proof-carrying code in the sense of [70], where the proof objects
become too big to be transmitted and checked every time a file is accessed.

14

5. Secure Interactions with Untrusted Components

Session type systems are able to provide some safety and liveness guarantees for a
whole distributed system, as long as all participants are well typed and the network is
trusted. In many realistic settings, however, these assumptions do not hold.

A first approach towards a more realistic scenario is to consider an untrusted net-
work. The solution, currently used in every-day life, is to perform session communi-
cations over secure channels, such as those provided by the Transport Layer Security
(TLS) protocol. This ensures that well-typed participants will interact safely (precisely,
as safely as the TLS protocol allows) within an untrusted environment.

A second, more general scenario is when some of the (multiparty) session partic-
ipants are not trusted to be well typed, i.e., they are not trusted to respect the session
specification. This covers those cases in which, for instance, participants rely on im-
plementations provided by non-reliable third parties, or when they may be controlled
by an adversary. In some cases, not respecting the communication pattern (e.g., skip-
ping mandatory messages, not respecting branching) is indeed a security issue. The
questions are then the following: what properties can still be ensured for compliant
participants? Which cryptography should be used to protect the session? How to en-
sure that all compliant participants share an identical view of a session execution?

5.1. A Secure Protocol Compiler

The works [28, 29, 30] offer a first answer to these questions (the journal paper [30]
merges and extends both [29] and [28]). The proposed language, expressed as a type
language with a global graph-like representation (called session graphs), includes mes-
sages, roles, and sessions; it does not support parallelism or asynchrony. A secure
implementability condition, defined on session graphs, is identified.

The principle of [30] is to use the session graph specification to generate a cryp-
tographic protocol (and its implementation) that will protect the honest participants
against any coalition of compromised peers. The idea is that, in order to ensure that
an incoming message is valid with respect to the session graph specification, that mes-
sage should carry enough trustworthy information to be able to prove that the protocol
history was compliant up to that point. Technically, this is achieved by means of asym-
metric cryptography, using signatures of past messages to convince the receiver that the
specification was followed by all participants. The minimal (necessary and sufficient)
set of signatures to be transmitted and checked is defined through the notion of visi-
bility. The protocol also relies on other cryptographic primitives, such as nonces and
a cache system, to prevent replay attacks between session instances or within a given
session.

The formal security notion proved in [30] is called session integrity. It says that
the messages received and accepted by all compliant participants are always consis-
tent with correct projected traces of the session specification. This approach is imple-
mented as an extension of OCaml. A compiler has been developed, which takes as
input a session description and produces as output an OCaml module with a function
for each participant. Any user code calling one of these functions is guaranteed through
the OCaml type system to statically follow the appropriate local session type. This is

15

achieved through a monadic programming style. The module’s cryptographic imple-
mentation then guarantees that, even in the case of compromised peers, all the messages
seen by uncompromised participants are consistent with the session specification. As
a case study, the authors of [30] implement and evaluate a conference management
system with three roles: the program committee, an author, and a submission manager.

Two different extensions of the approach in [30] are developed in [76] and [14].
The work [76] generalises [30] with a more abstract setup and a greater session expres-
siveness. Rather than a graph representation, the authors of [76] define session specifi-
cations with CCS-like processes, which represent the desired communication pattern.
A history-tracking process calculus is used as the lower-level model of a secure im-
plementation. The correctness of the history-tracking mechanism with respect to the
CCS specification is proved using a trace-based semantics which adequately models an
adversary that can control the network and remote peers. This captures and generalises
the signature-based mechanism of [30]. The work [14] improves [28, 30] with simpler
and more efficient cryptography (using a combination of asymmetric and symmetric
cryptography), and extends the session description language with value annotations
(i.e., constraints on payload). This extension allows one to model commitments and
to protect the integrity of each payload. As in [28, 30], a compiler implementation
is realised, which relies on OCaml typing for local protocol conformance, and on a
generated optimised cryptographic protocol implementation for session integrity.

5.2. Contract-oriented Service Composition

In the design of session-typed distributed applications according to a top-down
approach [61], a choreography describing the global interaction behaviour of the appli-
cation is projected to a set of local types, which describe the contributions of individual
participants in the application. Each participant is implemented by a concrete process:
if all these implementations respect their local types, the overall application is guaran-
teed to enjoy some correctness property (e.g., the absence of deadlocks).

In an adversarial setting, however, one cannot assume that the implementation of an
untrusted participant respects its local type; indeed, participants have full control of the
code they run, and they can even change it at run time. Any static analysis that requires
inspection of the code of each participant is then pointless: consequently, properties
which are not enforceable by run-time monitoring (e.g., the absence of deadlocks)
cannot be enforced at all in this adversarial setting.

To cope with this situation, a different design approach has been proposed where
the composition of distributed components is performed in a bottom-up fashion. In this
approach, participants first advertise their promised behaviour as contracts to some
broker; the broker inspects such contracts, and creates sessions among participants
whose contracts admit an agreement. For instance, contracts could be binary or mul-
tiparty session types, and agreement could be one of the compliance / compatibility
relations defined over them [62]. Once these sessions are created, participants can per-
form the actions prescribed by their contracts (in the case where they are session types,
this would result in performing the prescribed inputs and outputs). An execution mon-
itor can then keep track of the state of each contract with respect to the participants’
actions, which cannot depart from the actions expected by the advertised contracts;

16

furthermore, the monitor can establish who is accountable at each step, i.e., responsi-
ble for the next interaction. Systems developed under this design approach are called
contract-oriented systems [11].

While untrusted participants may cause deadlocks in both contract-oriented and
top-down approaches, an advantage of the former is that one can use contracts to sin-
gle out the participants which have breached the agreement, thus causing the deadlock.
This can be associated with sanctions imposed to the culpable participants; these sanc-
tions could range, e.g., from lowering the participants’ reputation or imposing them a
fine, to removing them altogether from the repository of available services.

5.3. Honesty in Contract-oriented Systems
Interacting with ill-typed or untrusted participants may have non-obvious conse-

quences, especially in the case of applications whose implementations involve multiple
interleaved sessions. For instance, consider a simple e-commerce scenario involving
three participants: a seller A, a wholesaler B, and a client C that interact through binary
sessions s (between A and B) and t (between A and C). Suppose that A is expected to
receive a payment from C (in session t), then order an item to B (in session s), wait until
the item is received (still in s), and finally ship the item to C (in t). If the wholesaler B
receives the payment but never sends the item to A, then A becomes unable to ship the
item to C. In turn, C may get stuck and be unable to advance in other sessions. Clearly,
the problem may cascade to affect other sessions and participants.

A desirable goal for the designer of the seller would be to guarantee that A is never
responsible for some stuck session: therefore, even if s is blocked by B, participant
A will still behave according to his contract in t. This property — called honesty
— is formally defined and investigated in the contract-oriented specification language
CO2 [12]. Honesty can be seen as multi-session well-typedness: if a participant is hon-
est, his process implementation will behave according to his contracts in each session
he establishes, even if other participants will not cooperate.

In general, a developer would aim at publishing only honest services that always
respect contracts — even when the other participants are malicious: otherwise, the ser-
vice infrastructure may eventually sanction him for contract breaches. Since honesty
cannot be enforced by run-time monitoring (it is a sort of deadlock-freedom property),
static analysis techniques for detecting honesty of processes are required. While hon-
esty is not decidable in general [12], it can be statically approximated: as usual, the
approximation must stay “on the safe side”, i.e., if it statically determines that a service
is honest, then this is really the case; otherwise, it may be either the case that the ser-
vice is honest or it is not. In the literature, analysis techniques for honesty have been
proposed using both type systems [10] and model checking [9].

5.4. Protection Against Untrusted Brokers
In contract-oriented applications, participants advertise their contracts to some bro-

ker, which establishes sessions among participants whose contracts admit an agree-
ment. In such a scenario, the agreement property guarantees that — even in the pres-
ence of malicious participants — no interaction driven by the contracts will ever go
wrong: in the worst case, if some participant does not reach his objectives, then some
other (dishonest) participant will be culpable of a contract infringement.

17

In the above workflow, it is often assumed that brokers are trusted, in that they
never establish a session in the absence of an agreement. In more byzantine scenar-
ios, it may happen that a fraudulent broker creates a session where participants interact
in the absence of an agreement. In this way, the broker may allow an accomplice to
swindle an unaware participant. Note that the accomplice may perform his scam while
adhering to his contract, and so he cannot be blamed for violations. A crucial problem
is how to devise contracts which protect participants from malicious brokers. In con-
texts where brokers are malicious, contracts should still allow participants to reach their
goals when the other participants are cooperative. At the same time, contracts should
prevent participants from performing imprudent actions which could be exploited by
malicious participants.

This problem has been addressed in [7, 8] in a game-theoretic setting, where session
interactions are interpreted as games over event structures (ESs [94]), and participants
are the players of these games. In this setting, a participant wins in a play (a trace of the
ES) when he reaches success, or some other participants can be blamed for a violation.
The idea is that the infrastructure will eventually inflict sanctions to the participants
who have violated their contracts, as in [69].

Two key notions in this model are those of agreement and protection. Agreement is
a property of contracts which guarantees that each honest participant may reach success
whenever the other participants cooperate. Moreover, if an honest participant does not
reach success, then some other participant can be blamed. A contract protects its par-
ticipant if, whenever composed with any other contract (possibly that of an adversary),
the contract admits at least one non-losing strategy, i.e., a strategy that guarantees that
the participant will never end up in a failure state.

The notion of agreement in the game-based model is related in [7] to the progress-
based notion of compliance in session types [5]. More precisely, two session types
are compliant if and only if, in their interpretation as ESs, all (innocent) strategies are
winning. Hence, compliance implies agreement, while the converse does not hold.
This is illustrated by the following example, using the syntax of Section 2. Consider
the following session types (where labels are to be viewed as branching labels):

T1 = !A.!C.end ⊕ !B.end and T2 = ?A.end + ?B.end.

where T1 is advertised by Player 1, and T2 by Player 2. We have that Player 2 agrees
with the composition of T1 and T2. Indeed, the only innocent strategy for Player 2 is
the one which prescribes him to:

• do ?A after T1 has performed !A;

• do ?B after T1 has performed !B.

This strategy is winning, because it leads Player 2 to the success state end in both
cases (unless Player 1 violates T1). Similarly, Player 1 agrees with the composition of
T1 and T2: his winning strategy is just to choose the branch !B. However, the session
types T1 and T2 are not compliant according to [5]. Indeed, if T1 takes the internal
choice !A, then a deadlock state is reached.

18

If brokers are dishonest, then they may establish sessions even in the absence of an
agreement. For instance, assume Player 3 advertises the session type:

T3 = !PAY.?RECEIVE.end ⊕ !ABORT.end

A dishonest broker could make Player 3 interact with another player with session type:

T4 = ?PAY.end

Note that Player 3 does not agree with the composition of T3 and T4, because if his
strategy chooses !PAY, then he will lose if the other player does not perform !RECEIVE
(as in T4), while if it chooses !ABORT, then he will reach a tie state (i.e., neither success
nor failure). However, Player 3 can protect himself against such dishonest brokers: a
strategy that protects him would be the one which only chooses !ABORT (intuitively,
doing !PAY leads Player 3 to lose if the other player never does !RECEIVE, while doing
!ABORT leads Player 3 to a tie state independently of the contract and of the strategy
of the other player).

While, in general, it is not always possible to guarantee that a set of contracts admit
both agreement and protection (as proved in [7]), it is possible to reconcile these two
notions by relaxing the classical notion of causality, i.e., by assuming that some events
can occur in the absence of a causal justification in the past, provided they have a
justification in the future [8].

6. Emerging Directions

While highly expressive fully static type systems can be constructed and proved
sound, not many of them have had an impact on computing practice. One reason for
this unfortunate under-use is that most software is not written from scratch, but rather
by building on top of existing components or by modifying them. Clearly, program
modifications must be written in the “legacy language” of the existing code. Exten-
sions may be connected to the legacy components by foreign function interfaces or by
wrapping the legacy code in web services and connecting to them via communication
channels. In these cases, the new code can be subject to an expressive type discipline
that enforces structural constraints, but the existing code is used as is, because it would
be too expensive to rewrite existing production code.

This situation is aggravated in the security setting because security policies are
often stated after the fact, when significant parts of a system have already been im-
plemented, and they are likely to change in reaction to newly discovered threats and
exploits, or to adhere to new requirements or contextual conditions.

While legacy code maintenance will always be an issue and integration is of utmost
concern, a more recent trend focuses on anticipating how a system can react to changes
in its external environment or requirements. Since types may provide specifications of
correct behaviour, adaptation at run time may be guided by type information.

In the remainder of this section we describe some dynamic typing analysis ap-
proaches that cope with partial (static) type information and type-driven adaptation. We
also briefly mention a connection between techniques for ensuring access control and
behavioural typing, in particular considering the importance of roles in communication-
centred systems.

19

6.1. Gradual Typing and Security

One approach to introduce behavioural types into existing systems is to do it grad-
ually, on a per-module basis, so that typed and less typed program parts must inter-
operate. Gradual typing [82, 83] addresses exactly this interoperation. Gradual type
systems have been developed from dynamic type systems [1, 54]. They provide a type
Dynamic with operations to inject a value of arbitrary type into Dynamic as well as
operations to project a dynamic value to an arbitrary type. While an injection always
succeeds, a projection may fail and throw an exception if the statically expected type
does not agree with the run-time type of the dynamic value. For example, the injection
for type int maps 1 of type int to the pair 〈int, 1〉, which represents the dynamic
value. The corresponding projection checks the type in the first component against the
expected type. It returns the second component if the types match and throws an ex-
ception, otherwise. These operations can enhance a conventionally typed language [1]
or they can form the basis for optimising a dynamically typed language [54].

Gradual typing is also applicable in a security context [38]. The pure λ-calculus
setting of the first approach has later been extended to an ML core language. This ex-
tension employs a very liberal treatment of memory references that are shared between
statically and dynamically typed fragments [41].

Most security type systems that control information flow and track data integrity
assume an underlying program that is well typed according to some standard type
system [93]. Security labels added as decorations of the standard types indicate the
influence of various peers on the typed value. These labels are mostly drawn from a
lattice of confidentiality or integrity levels, as already discussed.

For simplicity, existing work on gradual security typing [38, 41] assumes an under-
lying typed program and restricts the gradual aspect of the system to the security la-
bels. Gradual security typing guarantees termination insensitive noninterference [50].
The statically security-typed parts observe this property by means of the type system,
whereas the dynamically security-typed parts observe the property with a monitor that
enforces the no-sensitive-upgrade policy on run-time security labels.

Consider the example of a function f(s,x) that manages information flow with
a low-security boolean argument s that indicates the security level of x, which comes
with a dynamic security level. A gradual security system would annotate the function
as follows.

f(low s, dyn x) {
if(!s)

publish_low(x : dyn => low);
}

The function publish low takes a low-security argument and writes it to a public
channel. The function f passes x to it after applying the coercion from dyn to low
security. This coercion fails if s does not indicate the security level of x correctly.

In the best case, a coercion from static to dynamic adds run-time labels whereas
a coercion from dynamic to static removes them. While such a design is possible in
the presence of memory references, it restricts the use of references that are shared
between statically and dynamically typed parts of a program. For that reason, the

20

language proposed in [41] requires some dynamic checks even in the statically typed
parts of a program.

Subsequent work on gradual annotated types [42] indicates that the execution model
for gradual security with references can be improved to the point that statically typed
parts need no dynamic checks. Ongoing work considers the formalisation and imple-
mentation of a system improved along these lines in the context of a Java-like language.

Up to this point, the developments support legacy code (which is assumed to be
typed, but not with a security type system) embedded in new code, developed with the
help of a suitable security type system. The gradual approach places security coercions
at the borders of the legacy code, potentially adding run-time labels to all values, and
monitors its execution. In contrast, new code would run without labels at full speed
because its security properties are guaranteed by the static type system.

6.2. Gradual Security Typing and Sessions
Addressing the connection of legacy code with new code via communication chan-

nels is the point where session types or other behavioural types enter the scene. The
first behavioural type system that was extended with gradual features was the typestate
system of the concurrent object-oriented language Plaid [85, 95]. A typestate system
keeps track of the current state of an object statically. An example is the typestate of
a file object that reflects whether the file is open or closed in its type. As the typestate
changes when operations are applied to the file, it must be linear or affine, just like the
channel type in a session type system. Here is a very simple file API with typestate:

open : filename→ file[OPEN]

readInt : file[OPEN]→ int

close : file[OPEN CLOSED]→ unit

The notation OPEN CLOSED indicates that a file in state OPEN is expected and that
it evolves to state CLOSED on executing the function.

The coercion of a value with typestate into the dynamic type reifies its current type-
state in a run-time value. Operations on the dynamic type step through an automaton
that executes the same transitions as the static typestate computation, similar to com-
municating automata [32]. The authors of the gradual typestate work suggest to use
the dynamic type during program development because their static typestate system re-
quires program annotations to manage situations where there is more than one memory
reference to the same object (i.e., aliasing).

The work on gradual types for Plaid cannot be transferred readily to session types.
The obstacle lies in dealing with the linearity of the channel types, where Plaid resorts
to (sophisticated) alias management. Fortunately, it has been shown that linearity and
gradual typing are largely orthogonal and that many important results from standard
gradual typing carry over to a setting with linear types [40]. For affine types, it is
possible to gradualise the affine property [90]. It is unlikely that a similar gradualisation
can be achieved for linear types.

One important result in gradual typing is the blame theorem [88]. It strengthens
the progress property of a type system by making precise that failing coercions can
always be attributed to the less precisely typed side of the coercion. In this context,

21

progress means that a well-typed term is either a value, or it can perform an evaluation
step, or it fails at a cast to a more precise type. The blame theorem clearly locates the
demarcation between statically proved and dynamically checked code at a particular
kind of coercions that coerce from static to dynamic.

Given these preliminaries, we are now in a position to actually build a system with
gradual session types that also supports verifying security properties. It is expected that
any of the existing static session systems with security awareness (e.g., [22, 23, 24])
can form the basis of a gradual system, as in the setting without sessions. First steps
towards integrating gradual typing with session types have been taken [87].

6.3. Run-time Adaptation

As (communication-centred) software systems rely on highly dynamic infrastruc-
tures, such as those built on cloud-based platforms, the ability of adapting to varying
requirements and external conditions becomes crucial to ensure uninterrupted, correct
system behaviour. There is a bidirectional relation between run-time adaptation and
security requirements:

(a) On the one hand, it is plausible to react to security threats by executing an adapta-
tion routine that, e.g., replaces/updates the affected component;

(b) On the other hand, one would like adaptation mechanisms which address general
functional requirements but also preserve established security policies. We would
like to avoid, e.g., mechanisms that update faulty components with correct but
insecure patches.

In the light of this interplay between security and run-time adaptation, a compre-
hensive approach that exploits their relationships appears natural. This is the main mo-
tivation of the paper [25], which integrates security guarantees (access control and se-
cure information flow) with self-adaptation in a process framework of multiparty struc-
tured communications, exploring the above relation (a). More precisely, behavioural
types with security levels are used to monitor reading and writing violations, corre-
sponding to access control violation and information leaks, respectively. Behavioural
types define security policies by stipulating read and write permissions, represented by
security levels. While a read permission is an upper bound for the level of incoming
messages, a write permission is a lower bound for the level of outgoing messages. Ac-
cordingly, a reading or writing violation occurs when a participant attempts to read or
write a message whose level is not allowed by the corresponding read or write permis-
sion. An associated operational semantics is instrumented so as to trigger adaptation
mechanisms in case of violations, but also to prevent the violations from occurring and
propagating their effect in the choreography.

The framework of [25] consists of a language for processes and networks, global
types, and run-time monitors. Run-time monitors are obtained as projections from
global types onto individual participants. This way, behavioural types provide a clear
description for enforcing dynamic monitoring of participants. Processes represent code
that will be coupled with monitors to implement participants. A network is a collection
of monitored processes which realise a choreography as described by the global type.

22

The semantics of networks includes both local and global adaptation mechanisms; their
goal is to handle minor and serious violations, respectively.

Informally, the local adaptation mechanism “ignores” unauthorized actions and
modifies a monitored process at run time; it relies on a collection of typed processes,
which contains all processes which may be used in reconfiguration steps. In case of
a read violation, the local adaptation mechanism modifies the behaviour of the mon-
itor so as to omit the disallowed read, and then injects a process from the collection
that is compliant with the new monitor. In case of a write violation, the local adapta-
tion mechanism penalises the sender by decreasing the read level of his monitor and
replacing the implementation for the receiver. Here again the new implementation is
extracted from the collection of typed processes. Therefore, adaptation is local insofar
as reconfiguration steps concern only one monitored process.

The global mechanism for adaptation relies on distinguished low-level values called
nonces. When an attempt to leak a value is detected, a freshly generated nonce is passed
instead. This mechanism has two goals: first, to avoid improperly communicating the
protected value; second, to allow the whole system to make progress, for the benefit of
the participants not involved in the violation. At any point, the semantics may trigger
a reconfiguration routine that replaces the portion of the choreography involving the
participants that may propagate a nonce. Thus, in the global adaptation mechanism,
a part of the choreography is isolated and replaced, preserving the correctness of the
whole system. Notice that the function which returns a new choreography given a
choreography with nonces is left unspecified in [25]; this function is intended as a
parameter of the operational semantics.

To illustrate the kind of scenarios that the framework in [25] aims to target (but
also the intuition underlying minor and serious violations), consider a choreography
involving a user, his bank, a store, and a social network. Exchanges occur on top of
a browser, which relies on plug-ins to integrate information from different services.
Agreed exchanges between the user, the bank, and the store may in some cases lead
to a (public) message announcement in the social network. One would like to ensure
that the buying protocol works as expected, but also to avoid that sensitive information,
exchanged in certain parts of the protocol, is leaked. Such an undesired behaviour
should be corrected as soon as possible. In fact, one would like to stop relying on the
(unreliable) participant in ongoing/future instances of the protocol. Depending on how
serious the violation is, however, one may also like to react in different ways.

• If the leak is minor (e.g., because the user interacted incorrectly with the browser),
one may then simply identify the source of the leak and postpone the reaction to
a later stage, enabling unrelated participants in the choreography to proceed with
their exchanges.

• Otherwise, if the leak is serious, one may then wish to adapt the choreography
as soon as possible, removing the plug-in and modifying the behaviour of the in-
volved participants. This form of reconfiguration, however, should only concern
the participants involved with the insecure plug-in; participants not directly af-
fected by the leak should not be unnecessarily restarted. In this simple example,
since the unintended social announcement concerns only the user, the store and
the social network, updates should not affect the behaviour of the bank.

23

Notice that, for simplicity, the framework in [25] non-deterministically selects be-
tween local and global mechanisms. This aspect can be refined, considering that the
actual meaning of minor and serious violations often depends on the applications at
hand. Finally, in the light of the bidirectional relation between adaptation and security
mentioned above, it is clear that the framework in [25] follows direction (a) (i.e., it is a
form of security-driven adaptation); addressing direction (b) (i.e., forms of correctness-
driven adaptation that preserve security policies) is an interesting topic for future work.

6.4. Role-based Access Control

In an open distributed network, it is extremely important to provide security and
protect privacy during transfer and management of data. In a series of papers [35, 36,
37, 47, 63], behavioural types for distributed systems containing semi-structured XML
data are investigated. These works introduce type-based verification techniques using
the model presented in [44] (where the focus is on the model, including its behavioural
theory): a network of peers is a parallel composition of locations, where each loca-
tion consists of a data tree and a process. Locations are enriched by security policies
prescribing how the access permissions of roles can be modified. Processes have roles
and edges in data trees are associated with roles, representing permissions (to access
edges) assigned to roles. Well-typed systems respect prescribed security policies and
role-based access control.

The issues addressed by the above mentioned works, namely role-based access
control [35], are also a main concern when focussing on communication-centred sys-
tems, since the notion of role may also be involved, in particular in the context of
security protocols. More recently, roles have also gained a behavioural connotation,
as communicating parties may impersonate different roles throughout their execution
and roles may actually be carried out by several parties, in particular when delega-
tion is involved. Delegation is a challenging feature from a security perspective since
it involves yielding access of a (potentially secure) medium to third parties. In [48]
a first step in characterising the delegation of authorisations to impersonate roles is
taken, building on the type-based verification techniques introduced in the approaches
mentioned above, in particular [35], and on the behavioural type system given in [3].
Resources are structured, in some sense, in a way which is similar to that imposed
by behavioural types. Thus, access control for structured resources paves the way to
access control for communication resources in a structured protocol of interaction.

7. Conclusions

Security and trustworthiness are essential properties for software systems. In the
context of distributed applications, the challenge of enforcing these properties is tied to
the consistency of structured conversations among parties. In fact, since exchanges
of (sensitive) data in such applications often follow predefined communication se-
quences, security properties go hand in hand with safety and liveness properties as-
sociated to correct protocols, such as conformance/compliance, resource usage, and
deadlock-freedom/progress. As a consequence, the integration of techniques for de-
scribing and enforcing both kinds of properties is indispensable in many settings. This

24

Static Dynamic
Enhanced BTs Contracts Extended DTs Gradual Adaptive

AC
Section 3.1
Section 6.4

Section 3.1

SIF Section 3.2 Section 6.1

Integrity
Section 3.3
Section 4

Section 5.1
Section 5 Section 4 Section 6.3

Safety
Section 3.1
Section 3.2
Section 3.3

Section 6.2

Table 1: Summary of proposals.

paper presents an overview of efforts to achieve this integration in a rigorous way,
building upon calculi and models for communicating processes. We focus on work
based on behavioural types, which extend the well-established concept of data types to
describe complex communication structures.

Our review illustrates how the integration of security concerns into approaches
based on behavioural types leads to a rich landscape of models and techniques, with
both foundational and practical significance.

On the foundational side, the overview starts with extended models of session-
based communication, which cover a wide variety of security-related concerns, in-
cluding access control, secure information flow, and data integrity. A fruitful research
strand concerns logic-based approaches to behavioural types. Approaches based on lin-
ear logic lead to clean, extensible typed models in which notions of resource-awareness
and trustworthy communication have principled justifications. In particular, aspects
such as proof-carrying code and digital certificates can be integrated in a session-typed
setting by building upon appropriate (linear) logical grounds. From a more practi-
cal perspective, we examine ways to reconcile the usual assumptions of typed mod-
els with the actual requirements of distributed communications over open networks.
These efforts concern the development of compilers of protocols with cryptographic
information, but also models of honest, contract-based communication (in which ser-
vice agreements are handled bottom-up by a broker), and theories of protection for
contracts, which aim at ensuring honest participants and trusted brokers. We also dis-
cuss models of gradual typing, in which the combination of static and dynamic types
turns out to be useful to integrate parts of the system not amenable to static typing
(such as legacy code) and to account for dynamic security policies. Behavioural types
can be used to monitor system execution in case of security violations, and to guide
adaptations which prevent such violations to occur.

Table 1 summarises the proposals described in this paper, organised in two di-
mensions. The first dimension, organised in columns, concerns the kind of approach
considered: Enhancements of BTs (Enhanced BTs), Contracts, Extended Datatypes
(Extended DTs), Gradual and Adaptive Types. The second dimension, represented by
rows, concerns the targeted security properties: Access Control (AC), Secure Informa-

25

tion Flow (SIF), Integrity, and Safety. It is immediate to see that enhancing behavioural
types (and the model/framework in which they are considered) is the most common ap-
proach to address security properties. On a somewhat orthogonal perspective, we may
also observe that several approaches address integrity concerns so as to transport secu-
rity properties into untrusted environments.

In our view, strengthening security guarantees via enhanced type disciplines and
the transfer of such guarantees to less controlled (more realistic) environments con-
stitute two important axes along which forthcoming research in behavioural types for
security should proceed. In particular, we believe that the consolidation of techniques
that relate specifications to implementations is a crucial building block for more reli-
able and secure applications. A considerable body of work has been carried out in the
last years on ensuring “safe” protocols by focusing on protocol specifications, since
implementations are too low-level to support reasoning on protocol properties. By en-
suring that implementations conform to specifications in a rigorous way, the properties
established for the specification may carry over to actual implementations.

For the sort of complex security properties that we have discussed in this docu-
ment, we believe that lifting the analysis to the level of specifications/types enables
reasoning at a more adequate abstraction level. In particular, since it is crucial to con-
sider how such properties may be transferred to open environments, we need to focus
on techniques that support local reasoning, building upon clearly defined composition-
ality principles. Indeed, compositionality is the key to enable scalable and tractable
analyses.

From a practical perspective, an opportunity for future research concerns integra-
tion of models of security monitoring into emerging practical languages and frame-
works based on behavioural types. For instance, the Scribble protocol language [96]
provides support for developing large-scale distributed applications whose interac-
tion architecture can be expressed as multiparty session types. Scribble has been
used for implementing run-time type checking (monitoring) of communicating pro-
cesses [15, 26], also in collaboration with the Ocean Observatories Initiative [71].

Acknowledgments We acknowledge support from COST Action IC1201 Behavioural
Types for Reliable Large-Scale Software Systems (BETTY) and we thank the members
of BETTY working group on Security (WG2) for interesting related discussions. We are
grateful to the anonymous reviewers for their feedback and many insightful remarks,
which greatly helped us to improve the quality of this document.

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically
typed language. ACM Trans. Prog. Lang. Syst., 13(2):237–268, 1991.

[2] D. Ancona, V. Bono, M. Bravetti, G. Castagna, J. Campos, P.-M.
Deniélou, S. Gay, N. Gesbert, E. Giachino, R. Hu, E. B. Johnsen,
F. Martins, V. Mascardi, F. Montesi, N. Ng, R. Neykova, L. Padovani,
V. Vasconcelos, and N. Yoshida. Behavioral types in programming
languages. http://www.behavioural-types.eu/publications/
WG3-State-of-the-Art.pdf, 2014.

26

http://www.behavioural-types.eu/publications/WG3-State-of-the-Art.pdf
http://www.behavioural-types.eu/publications/WG3-State-of-the-Art.pdf

[3] P. Baltazar, L. Caires, V. T. Vasconcelos, and H. T. Vieira. A type system for
flexible role assignment in multiparty communicating systems. In TGC 2012,
volume 8191 of LNCS, pages 82–96. Springer, 2013.

[4] P. Baltazar, D. Mostrous, and V. T. Vasconcelos. Linearly refined session types.
In LINEARITY 2012, volume 101 of EPTCS, pages 38–49, 2012.

[5] F. Barbanera and U. de’Liguoro. Two notions of sub-behaviour for session-based
client/server systems. In Proc. PPDP, pages 155–164, 2010.

[6] J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, 2003.

[7] M. Bartoletti, T. Cimoli, G. M. Pinna, and R. Zunino. Contracts as games on
event structures. J. Log. Alg. Meth. Prog. (2015), http://dx.doi.org/
10.1016/j.jlamp.2015.05.001, in press.

[8] M. Bartoletti, T. Cimoli, and R. Zunino. A theory of agreements and protection.
In POST 2013, volume 7796 of LNCS, pages 186–205. Springer, 2013.

[9] M. Bartoletti, M. Murgia, A. Scalas, and R. Zunino. Modelling and verifying
contract-oriented systems in Maude. In WRLA 2014, volume 8663 of LNCS,
pages 130–146. Springer, 2014.

[10] M. Bartoletti, A. Scalas, E. Tuosto, and R. Zunino. Honesty by typing. In
FMOODS/FORTE 2013, volume 7892 of LNCS, pages 305–320. Springer, 2013.

[11] M. Bartoletti, E. Tuosto, and R. Zunino. Contract-oriented computing in CO2.
Sci. Ann. Comp. Sci., 22(1):5–60, 2012.

[12] M. Bartoletti, E. Tuosto, and R. Zunino. On the realizability of contracts in dis-
honest systems. In COORDINATION 2012, volume 7274 of LNCS, pages 245–
260. Springer, 2012.

[13] L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and
N. Yoshida. Global progress in dynamically interleaved multiparty sessions. In
CONCUR 2008, volume 5201 of LNCS, pages 418–433. Springer, 2008.

[14] K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. J. Leifer. Crypto-
graphic protocol synthesis and verification for multiparty sessions. In CSF 2009,
pages 124–140. IEEE, 2009.

[15] L. Bocchi, T. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring
networks through multiparty session types. In FMOODS/FORTE 2013, volume
7892 of LNCS, pages 50–65. Springer, 2013.

[16] L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract
for distributed multiparty interactions. In CONCUR 2010, volume 6269 of LNCS,
pages 162–176. Springer, 2010.

27

http://dx.doi.org/10.1016/j.jlamp. 2015.05.001
http://dx.doi.org/10.1016/j.jlamp. 2015.05.001

[17] E. Bonelli, A. B. Compagnoni, and E. L. Gunter. Correspondence assertions
for process synchronization in concurrent communications. J. Funct. Program.,
15(2):219–247, 2005.

[18] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,
U. Montanari, A. Ravara, D. Sangiorgi, V. T. Vasconcelos, and G. Zavattaro. SCC:
A service centered calculus. In WS-FM 2006, volume 4184 of LNCS, pages 38–
57. Springer, 2006.

[19] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying persistent security prop-
erties. Comp. Lang., Syst. & Struct., 30(3-4):231–258, 2004.

[20] R. Bruni and L. G. Mezzina. Types and deadlock freedom in a calculus of ser-
vices, sessions and pipelines. In AMAST 2008, volume 5140 of LNCS, pages
100–115. Springer, 2008.

[21] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
CONCUR 2010, volume 6269 of LNCS, pages 222–236. Springer, 2010.

[22] S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Typing access control and
secure information flow in sessions. Inf. Comput., 238:68–105, 2014.

[23] S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Information flow safety
in multiparty sessions. Math. Struct. in Comp. Science (2015), http://
journals.cambridge.org/abstract_S0960129514000619.

[24] S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and T. Rezk. Session types for
access and information flow control. In CONCUR 2010, volume 6269 of LNCS,
pages 237–252. Springer, 2010.

[25] I. Castellani, M. Dezani-Ciancaglini, and J. A. Pérez. Self-adaptation and secure
information flow in multiparty structured communications: A unified perspective.
In BEAT 2014, volume 162 of EPTCS, pages 9–18, 2014.

[26] T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida. Asynchronous
distributed monitoring for multiparty session enforcement. In TGC 2011, volume
7173 of LNCS, pages 25–45. Springer, 2012.

[27] S. Chong, A. C. Myers, K. Vikram, and L. Zheng. Jif Reference Manual. Cornell
University, 2009. http://www.cs.cornell.edu/jif.

[28] R. Corin and P.-M. Deniélou. A protocol compiler for secure sessions in ML. In
TGC 2007, volume 4912 of LNCS, pages 276–293. Springer, 2007.

[29] R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, and J. J. Leifer. Secure
implementations for typed session abstractions. In CSF 2007, pages 170–186.
IEEE, 2007.

[30] R. Corin, P.-M. Deniélou, C. Fournet, K. Bhargavan, and J. J. Leifer. A secure
compiler for session abstractions. J. Comp. Sec., 16(5):573–636, 2008.

28

http://journals.cambridge.org/abstract_S0960129514000619
http://journals.cambridge.org/abstract_S0960129514000619
http://www.cs.cornell.edu/jif

[31] S. Crafa and S. Rossi. A theory of noninterference for the pi-calculus. In TGC
2005, volume 3705 of LNCS, pages 2–18. Springer, 2005.

[32] P. Deniélou and N. Yoshida. Multiparty session types meet communicating au-
tomata. In ESOP 2012, volume 7211 of LNCS, pages 194–213. Springer, 2012.

[33] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Commun. ACM, 20(7):504–513, 1977.

[34] M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida. Objects
and session types. Inf. Comput., 207(5):595–641, 2009.

[35] M. Dezani-Ciancaglini, S. Ghilezan, S. Jaksic, and J. Pantovic. Types for role-
based access control of dynamic web data. In WFLP 2010, volume 6559 of LNCS,
pages 1–29. Springer, 2010.

[36] M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantovic. Security types for dynamic
web data. In TGC 2006, volume 4661 of LNCS, pages 263–280. Springer, 2006.

[37] M. Dezani-Ciancaglini, S. Ghilezan, J. Pantovic, and D. Varacca. Security types
for dynamic web data. Theor. Comput. Sci., 402(2-3):156–171, 2008.

[38] T. Disney and C. Flanagan. Gradual information flow typing. In STOP 2011,
2011.

[39] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R. Larus, and
S. Levi. Language support for fast and reliable message-based communication in
singularity OS. In EuroSys 2006, pages 177–190. ACM, 2006.

[40] L. Fennell and P. Thiemann. The blame theorem for a linear lambda calculus with
type dynamic. In TFP 2012, volume 7829 of LNCS, pages 37–52. Springer, 2012.

[41] L. Fennell and P. Thiemann. Gradual security typing with references. In CSF
2013, pages 224–239. IEEE, 2013.

[42] L. Fennell and P. Thiemann. Gradual typing for annotated type systems. In ESOP
2014, volume 8410 of LNCS, pages 47–66. Springer, 2014.

[43] R. Focardi and R. Gorrieri, editors. Foundations of Security Analysis and Design,
Tutorial Lectures, volume 2171 of LNCS. Springer, 2001.

[44] P. Gardner and S. Maffeis. Modelling dynamic web data. Theor. Comput. Sci.,
342(1):104–131, 2005.

[45] D. Garg and F. Pfenning. A proof-carrying file system. In S&P 2010, pages
349–364. IEEE, 2010.

[46] S. J. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Inf.,
42(2-3):191–225, 2005.

[47] S. Ghilezan, S. Jaksic, J. Pantovic, and M. Dezani-Ciancaglini. Types and roles
for web security. Trans. Adv. Res., 8(2):16–21, 2012.

29

[48] S. Ghilezan, S. Jaksic, J. Pantovic, J. A. Pérez, and H. T. Vieira. Dynamic role
authorization in multiparty conversations. In BEAT 2014, volume 162 of EPTCS,
pages 1–8, 2014.

[49] J.-Y. Girard. Linear Logic. Theor. Comput. Sci., 50:1–102, 1987.

[50] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symp. Sec. and Priv., pages 11–20, 1982.

[51] A. D. Gordon and A. Jeffrey. Typing correspondence assertions for communica-
tion protocols. Theor. Comput. Sci., 300(1-3):379–409, 2003.

[52] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. J. ACM,
40:143–184, 1993.

[53] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: tracking information
flow in JavaScript and its APIs. In SAC 2014, pages 1663–1671. ACM, 2014.

[54] F. Henglein. Dynamic typing: Syntax and proof theory. Sci. Comput. Program-
ming, 22:197–230, 1994.

[55] M. Hennessy. The security pi-calculus and non-interference. J. Log. Algebr.
Program., 63(1):3–34, 2005.

[56] M. Hennessy and J. Riely. Information flow vs. resource access in the asyn-
chronous pi-calculus. ACM Trans. Program. Lang. Syst., 24(5):566–591, 2002.

[57] K. Honda. Types for dyadic interaction. In CONCUR 1993, volume 715 of LNCS,
pages 509–523. Springer, 1993.

[58] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-
pline for structured communication-based programming. In ESOP 1998, volume
1381 of LNCS, pages 122–138. Springer, 1998.

[59] K. Honda, V. T. Vasconcelos, and N. Yoshida. Secure information flow as typed
process behaviour. In ESOP 2000, volume 1782 of LNCS, pages 180–199.
Springer, 2000.

[60] K. Honda and N. Yoshida. A uniform type structure for secure information flow.
ACM Trans. Program. Lang. Syst., 29(6), 2007.

[61] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In POPL 2008, pages 273–284. ACM, 2008.

[62] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavattaro.
Foundations of behavioural types. http://www.behavioural-types.
eu/publications/WG1-State-of-the-Art.pdf, 2014.

[63] S. Jaksic. Input/output types for dynamic web data. In ICTCS 2012, 2012.

30

http://www.behavioural-types.eu/publications/WG1-State-of-the-Art.pdf
http://www.behavioural-types.eu/publications/WG1-State-of-the-Art.pdf

[64] D. Kitchin, A. Quark, W. R. Cook, and J. Misra. The Orc programming language.
In FMOODS/FORTE 2009, volume 5522 of LNCS, pages 1–25. Springer, 2009.

[65] N. Kobayashi. A Type System for Lock-Free Processes. Inf. Comput., 177:122–
159, 2002.

[66] N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Inf., 42(4-5):291–347, 2005.

[67] M. Kolundzija. Security types for sessions and pipelines. In WS-FM 2008, vol-
ume 5387 of LNCS, pages 175–190. Springer, 2008.

[68] A. Lapadula, R. Pugliese, and F. Tiezzi. Regulating data exchange in service
oriented applications. In FSEN 2007, volume 4767 of LNCS, pages 223–239.
Springer, 2007.

[69] A. Mukhija, A. Dingwall-Smith, and D. Rosenblum. QoS-aware service compo-
sition in Dino. In ECOWS, pages 3–12, 2007.

[70] G. C. Necula. Proof-carrying code. In POPL 1997, pages 106–119. ACM, 1997.

[71] Ocean Observatories Initiative, 2010. http://www.oceanleadership.
org/programs-and-partnerships/ocean-observing/ooi/.

[72] L. Padovani. Deadlock and lock freedom in the linear π-calculus. In CSL-LICS
2014, page 72. ACM, 2014.

[73] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Inf. Comput.,
239:254–302, 2014.

[74] F. Pfenning. Intensionality, extensionality, and proof irrelevance in modal type
theory. In LICS 2001, pages 221–230. IEEE, 2001.

[75] F. Pfenning, L. Caires, and B. Toninho. Proof-carrying code in a session-typed
process calculus. In CPP 2011, volume 7086 of LNCS, pages 21–36. Springer,
2011.

[76] J. Planul, R. Corin, and C. Fournet. Secure enforcement for global process spec-
ifications. In CONCUR 2009, volume 5710 of LNCS, pages 511–526. Springer,
2009.

[77] F. Pottier. A simple view of type-secure information flow in the p-calculus. In
CSFW 2002, pages 320–330. IEEE, 2002.

[78] F. Pottier, C. Skalka, and S. F. Smith. A systematic approach to static access
control. ACM Trans. Program. Lang. Syst., 27(2):344–382, 2005.

[79] R. Pugliese and F. Tiezzi. A calculus for orchestration of web services. J. Applied
Logic, 10(1):2–31, 2012.

31

http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/
http://www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi/

[80] P. Y. A. Ryan and S. A. Schneider. Process algebra and non-interference. In
CSFW 1999, pages 214–227. IEEE, 1999.

[81] J. F. Santos and T. Rezk. An information flow monitor-inlining compiler for
securing a core of JavaScript. In SEC 2014, volume 428 of IFIP Adv. ICT, pages
278–292. Springer, 2014.

[82] J. Siek and W. Taha. Gradual typing for objects. In ECOOP 2007, volume 4609
of LNCS, pages 2–27. Springer, 2007.

[83] J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, pages 81–92, 2006.

[84] V. Simonet. The Flow Caml System: Documentation and users manual. INRIA,
2003. http://www.normalesup.org/˜simonet/soft/flowcaml/.

[85] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and É. Tanter. First-class state change
in Plaid. In OOPSLA 2011, pages 713–732. ACM, 2011.

[86] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan, and J. Yang. Se-
cure distributed programming with value-dependent types. J. Funct. Program.,
23(4):402–451, 2013.

[87] P. Thiemann. Gradual typing for session types. In TGC 2014, volume 8902 of
LNCS, pages 144–158. Springer, 2014.

[88] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: from scripts to
programs. In OOPSLA 2006, pages 964–974. ACM, 2006.

[89] B. Toninho, L. Caires, and F. Pfenning. Dependent session types via intuitionistic
linear type theory. In PPDP 2011, pages 161–172. ACM, 2011.

[90] J. A. Tov and R. Pucella. Stateful contracts for affine types. In ESOP 2010,
volume 6012 of LNCS, pages 550–569. Springer, 2010.

[91] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of software
components using session types. Fundam. Inform., 73(4):583–598, 2006.

[92] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multithreaded
functional language with session types. Theor. Comput. Sci., 368(1-2):64–87,
2006.

[93] D. Volpano, C. Irvine, and G. Smith. A Sound Type System for Secure Flow
Analysis. J. Comp. Sec., 4(2-3):167–187, 1996.

[94] G. Winskel. Event structures. In APN 1986, volume 255 of LNCS, pages 325–
392. Springer, 1986.

[95] R. Wolff, R. Garcia, É. Tanter, and J. Aldrich. Gradual typestate. In ECOOP
2011, volume 6813 of LNCS, pages 459–483. Springer, 2011.

[96] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble protocol language. In
TGC 2013, volume 8358 of LNCS, pages 22–41. Springer, 2013.

32

http://www.normalesup.org/~simonet/soft/flowcaml/

	Introduction
	Preliminaries
	Security Types for Communication-Centred Calculi
	Access Control
	Secure Information Flow
	Integrity of Communicated Data

	Logical Approaches to Security based on Behavioural Types
	Linear Logic and Dependent Session Types
	Proof Irrelevance
	Affirmation and Digital Certificates

	Secure Interactions with Untrusted Components
	A Secure Protocol Compiler
	Contract-oriented Service Composition
	Honesty in Contract-oriented Systems
	Protection Against Untrusted Brokers

	Emerging Directions
	Gradual Typing and Security
	Gradual Security Typing and Sessions
	Run-time Adaptation
	Role-based Access Control

	Conclusions

