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We propose a new approach to the resummation of the transverse-momentum distribution of a high-mass
color-singlet system in hadronic collisions. The resummation is performed in momentum space and is free
of kinematic singularities at small transverse momentum. We derive a formula accurate at the next-to-next-
to-leading-logarithmic level, and present the first matched predictions to next-to-next-to-leading order for
Higgs-boson production in gluon fusion at the LHC. This method can be adapted to all observables
featuring kinematic cancellations in the infrared region.
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The determination of the properties of the scalar reso-
nance discovered in 2012 by ATLAS and CMS [1,2] is
central to the entire LHC physics program. At run II, owing
to the increased collision energy and luminosity, the Higgs-
boson production rate will increase significantly. As a
consequence, not only will the analyses already performed
benefit from the increase in statistics, but soon it will
become possible to study kinematic distributions in detail.
Obtaining as accurate predictions as possible for the Higgs
differential spectra is crucial, especially in view of the fact
that the signal significance is very commonly optimized by
categorizing candidate events according to their kinematic
properties; therefore, only by means of precise predictions
for the Higgs distributions can the increased statistics be
fully exploited to extract physics results.
Among the Higgs production channels, the gluon-fusion

mode is the dominant one at the LHC; among the most
relevant kinematic distributions, the Higgs transverse
momentum pH

t will be increasingly important in analyzing
the forthcoming experimental results.
In gluon fusion the Higgs transverse momentum pH

t is
defined as the inclusive vectorial sum over the transverse
momenta of the recoiling QCD partons radiated off the
incoming gluons. The fixed-order perturbative description
of its differential distribution features large logarithms in
the form αns lnmðmH=pH

t Þ=pH
t , with m ≤ 2n − 1, which

spoil the convergence of the series at small pH
t . In order

to obtain meaningful predictions in that phase-space region,
such terms must be resummed to all orders in αs, so that the
perturbative series can be recast in terms of dominant all-
order towers of logarithms. The logarithmic accuracy is
commonly defined at the level of the logarithm of the
cumulative cross section, where one refers to the dominant
terms αns lnnþ1ðmH=pH

t Þ as leading logarithms (LL), to
terms αns lnnðmH=pH

t Þ as next-to-leading logarithms (NLL),
to αns lnn−1ðmH=pH

t Þ as next-to-next-to-leading logarithms
(NNLL), and so on.

Such logarithms of the ratio mH=pH
t have been

resummed up to NNLL order in Refs. [3,4] using the
formalism developed in Refs. [5,6], and in Ref. [7] using an
effective-theory approach. A careful study of the theoretical
uncertainties has also been carried out in Ref. [8], and a
formalism to perform a joint pH

t =small-x resummation has
been presented in Ref. [9]. The differential distribution in
fixed-order perturbation theory has been known for several
years at next-to-leading order (NLO) [10–12], and has
been recently improved through the computation of the
Higgs-plus-one-jet cross section at next-to-next-to-leading
order (NNLO) [13–16]. The inclusive cross section was
computed at NNLO in Refs. [17–19] and recently at next-
to-next-to-next-to-leading order (N3LO) in Refs. [20,21].
These results can be matched to a NNLL resummation in
order to obtain a prediction which is accurate over the
whole pH

t spectrum, analogously to what has been done for
the leading-jet transverse momentum in Ref. [22].
All of the aforementioned resummations rely on an

impact-parameter-space formulation, which is motivated
by the fact that the observable naturally factorizes in this
space as a product of the contributions from each individual
emission. Conversely, in pH

t space one is unable to find, at a
given order beyond LL, a closed analytic expression for the
resummed distribution which is simultaneously free of any
logarithmically subleading corrections and of singularities
at finite pH

t values [23]. This fact has a simple physical
origin: the region of small pH

t receives contributions both
from configurations in which each of the transverse
momenta of the radiated partons is equally small
(Sudakov limit) and from configurations where pH

t tends
to zero owing to cancellations among nonzero transverse
momenta of the emissions. The latter mechanism becomes
the dominant one at small pH

t and, as a result, the
cumulative cross section in that region vanishes as
OðpH

t
2Þ rather than being exponentially suppressed [24].

If these effects are neglected in a resummation performed in
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transverse-momentum space, the latter would feature a
geometric singularity at some finite value of pH

t .
In this Letter we propose a new method that solves the

problem in transverse-momentum space and extends the
framework of Refs. [25,26] to treat all observables affected
by the aforementioned kinematic cancellations. We obtain a
NNLL-accurate formula for pH

t and match the result to the
NNLO differential distribution for the first time.
The starting point for a NLL resummation is to consider

an ensemble of partons k1;…; kn, independently emitted
off the initial-state gluons l ¼ 1, 2. Momenta ki are

parametrized as ki ¼ zð1Þi p1 þ zð2Þi p2 þ κt;i, where p1;2

are the momenta of the incoming gluons and κt;i is a
spacelike four-vector, orthogonal to p1 and p2, i.e.,

κt;i ¼ ð0; ~kt;iÞ, such that κ2t;i ¼ −k2t;i. By singling out the
largest-kt emission (labeled by kt;1), the cumulative cross
section can be written as

ΣðpH
t Þ¼

Z
pH
t

0

dp0
t
dσðp0

tÞ
dp0

t
¼σ0

Z
∞

0

hdk1iR0ðkt;1Þe−Rðϵkt;1Þ

×
X∞
n¼0

1

n!

Ynþ1

i¼2

Z
kt;1

ϵkt;1

hdkiiR0ðkt;iÞΘðpH
t − j~qnþ1jÞ; ð1Þ

where σ0 denotes the Born cross section, ~qnþ1 ¼
Pnþ1

j¼1
~kt;j,

and the measure hdkii is defined in Eq. (2). The radiator
RðϵktÞ reads [27]

RðϵktÞ ¼ 4

Z
mH

ϵkt

dk0t
k0t

�
αCMW
s ðk0tÞ

π
CA ln

mH

k0t
− αsðk0tÞβ0

�
;

where αCMW
s ðktÞ in the double-logarithmic part indicates

that the strong coupling is expressed in the Catani-
Marchesini-Webber (CMW) scheme [28], which ensures
the correct treatment of nonplanar soft corrections at NLL
accuracy in processes with two hard emitters. The inde-
pendent-emission amplitude squared and its phase space
are parametrized in Eq. (1) as [25,26]

½dk�M2ðkÞ ¼ dkt
kt

dϕ
2π

R0ðktÞ≡ hdkiR0ðktÞ; ð2Þ

where R0ðktÞ ¼ −ktdRðktÞ=dkt. The bounds in the hdkii
integrals of Eq. (1) apply to the kt;i variables, while all
azimuthal integrals are evaluated in the range ½−π; π�. In
Eq. (1) the parton luminosity implicit in σ0 is evaluated at a
fixed factorization scale μF, while a complete NLL
description requires a scale of the order of kt;1. Since this
approximation is irrelevant for the present discussion, we
ignore it for the moment, and account for the proper
treatment of the luminosity only in the main result
[Eq. (9)] of this Letter.
The NLL transverse-momentum resummation then pro-

ceeds by expanding the various kt;i’s of Eq. (1) around the
observable pH

t , retaining terms only up to NLL in the
cumulative cross section. This amounts to writing

Rðϵkt;1Þ ¼ RðpH
t Þ þ R0ðpH

t Þ ln
pH
t

ϵkt;1
þ � � � ;

R0ðkt;iÞ ¼ R0ðpH
t Þ þ � � � ; ð3Þ

where neglected terms contribute at most to NNLL order in
pH
t space. The second term in the expansion of Rðϵkt;1Þ

plays the role of virtual contribution, canceling the infrared
divergences associated with the real emissions to all orders
in αs. With these replacements, Eq. (1) becomes

ΣðpH
t Þ¼σ0e−Rðp

H
t Þ
Z

∞

0

hdk1iR0ðpH
t Þ
�
pH
t

kt;1

�
−R0ðpH

t Þ

×ϵR
0ðpH

t Þ
X∞
n¼0

1

n!

Ynþ1

i¼2

Z
kt;1

ϵkt;1

hdkiiR0ðpH
t ÞΘðpH

t − j~qnþ1jÞ;

ð4Þ
which evaluates to

ΣðpH
t Þ ¼ σ0e−Rðp

H
t Þe−γER0ðpH

t Þ Γ(1 − R0ðpH
t Þ=2)

Γ(1þ R0ðpH
t Þ=2)

: ð5Þ

Equation (5) reproduces the result of Ref. [23]; the geo-
metric singularity at R0ðpH

t Þ ¼ 2 invalidates the result near
the peak of the distribution, as a consequence of the
dominance of the aforementioned cancellation mechanism
over the usual Sudakov suppression. This comes about
since in the asymptotic limit pH

t ≪ kt;1, the second line of
Eq. (4) scales as ðpH

t =kt;1Þ2 [29], which causes the
cumulative cross section to diverge at R0ðpH

t Þ ¼ 2.
The issue hides behind expansion Eq. (3), which was

performed with the aim of neglecting subleading effects:
such an expansion is indeed valid only in the region where
pH
t =kt;1 ≳ 1, while it cannot be applied when pH

t =kt;1 → 0.
A natural solution can be achieved by using an impact-
parameter-space formulation [24,30], since the conjugate
variable b correctly describes the vectorial nature of the
pH
t → 0 limit.
However, the problem can also be overcome in direct

space by simply expanding kt;i around kt;1 instead of pH
t ;

namely,

Rðϵkt;1Þ ¼ Rðkt;1Þ þ R0ðkt;1Þ ln
1

ϵ
þ � � � ;

R0ðkt;iÞ ¼ R0ðkt;1Þ þ � � � : ð6Þ
The resulting cumulative cross section reads

ΣðpH
t Þ¼σ0

Z
∞

0

hdk1iR0ðkt;1Þe−Rðkt;1ÞϵR0ðkt;1Þ

×
X∞
n¼0

1

n!

Ynþ1

i¼2

Z
kt;1

ϵkt;1

hdkiiR0ðkt;1ÞΘðpH
t − j~qnþ1jÞ: ð7Þ

Since by construction kt;i=kt;1 ≤ 1, the expansion in Eq. (6)
is always justified, and the exponential factor regularizes
the pH

t =kt;1 → 0 limit. Equation (7) can be effectively

PRL 116, 242001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JUNE 2016

242001-2



interpreted as a resummation of the large logarithms
lnðmH=kt;1Þ, and the logarithmic order is defined in terms
of the latter. This formulation provides a correct description
of both mechanisms that drive the limit pH

t → 0, and it can
be shown [31] that Eq. (7) reproduces the correct power-
suppressed scaling in this region [24]. The corresponding
formal accuracy in terms of the logarithms lnðmH=pH

t Þ will
be the same, and the result differs from Eq. (5) by
subleading logarithmic terms.
The above treatment can be systematically extended to

NNLL. Since the observable considered here is fully
inclusive over QCD radiation, the initial equation (1)
already contains most of the NNLL contributions, as shown
in Ref. [26]. More specifically, one should modify Eq. (7)
introducing the NNLL radiator RNNLL, which is the same as
for the jet-veto resummation [32], and retaining the next

term in the expansion [Eq. (6)], which involves the second
derivative of the radiator, R00ðkt;1Þ≡ −kt;1dR0ðkt;1Þ=dkt;1;
the parton luminosity is to be evaluated at a scale of the
order of kt;1, as will be detailed in Ref. [31]. It is,
furthermore, convenient to neglect N3LL terms in the
R0ðkt;1Þ and R00ðkt;1Þ functions. We introduce the notation

R0ðkt;1Þ ¼ R̂0ðkt;1Þ þ δR̂0ðkt;1Þ þ � � � ;
R00ðkt;1Þ ¼ R̂00ðkt;1Þ þ � � � ; ð8Þ

where the functions R̂0ðkt;1Þ and δR̂0ðkt;1Þ are NLL and
NNLL, respectively, the neglected terms are at most of
order αns lnn−2ðmH=kt;1Þ, and R̂00ðkt;1Þ indicates the deriva-
tive of R̂0ðkt;1Þ. The expressions for all these functions can
be found in the Appendix of Ref. [32]. The NNLL
cumulative cross section is thus conveniently recast as

ΣðpH
t Þ¼

Z
∞

0

hdk1i
�
ϵR̂

0ðkt;1Þ
X∞
n¼0

1

n!

Ynþ1

i¼2

Z
kt;1

ϵkt;1

hdkiiR̂0ðkt;1Þ
��

∂L½−e−RNNLLðkt;1ÞL�ΘðpH
t − j~qnþ1jÞ

þe−Rðkt;1ÞR̂0ðkt;1Þ
Z

kt;1

ϵkt;1

hdksi
��

δR̂0ðkt;1Þþ R̂00ðkt;1Þ ln
kt;1
kt;s

�
L̂−∂LL̂

�
½ΘðpH

t − j~qnþ1;sjÞ−ΘðpH
t − j~qnþ1jÞ�

�
; ð9Þ

with ~qnþ1;s ¼ ~qnþ1 þ ~kt;s. The above formula can be
evaluated by means of Monte Carlo methods. The parton
luminosity L is defined as

L ¼ α2sðμRÞ
576πv2

τ
X
i;j

Z
1

τ

dx1
x1

Z
1

x1

dz1
z1

Z
1

τ=x1

dz2
z2

½HCC�gg;ij

× fiðx1=z1; e−LμFÞfjðτ=x1=z2; e−LμFÞ;
where μR is the renormalization scale, τ ¼ m2

H=s, v is the
vacuum expectation value of the Higgs field, and
L ¼ lnðQ=kt;1Þ, the resummation scale Q being introduced
as shown in Refs. [4,32]. The factor ½HCC� is defined as

½HCC�gg;ij¼HH
g ½αsðμRÞ;μR;Q;mH�

× ½Cgiðz1;αL;μR;μF;QÞCgjðz2;αL;μR;μF;QÞ
þGgiðz1;αL;μR;μFÞGgjðz2;αL;μR;μFÞ�; ð10Þ

where αL ¼ αsðμRÞ=½1 − 2αsðμRÞβ0L�. The product in
Eq. (10) is further expanded neglecting constant terms
beyondOðα2sÞ. The functionsHH

g , Cij, and Gij are deduced
using the results of Ref. [33], after including the proper
scale dependences. The NLL luminosity L̂ is obtained from
L by setting ½HCC�gg;ij ¼ δgiδgjδð1 − z1Þδð1 − z2Þ, and it
reproduces the Born cross section σ0 in the limit L → 0.
The various contributions to Eq. (9) are described in

what follows. The first line includes all NNLL corrections
to the hardest emission k1; this reflects the arguments that
led to Eq. (7), properly extended to NNLL. The corrections
to the remaining emissions are encoded in the second line
of Eq. (9), where only a single emission ks of the ensemble

is corrected. This is implemented in Eq. (9) by computing
the difference between the observable evaluated using all
emissions, including the modified one ks, and the observ-
able obtained by neglecting ks. Since these configurations
give at most a NNLL correction, it suffices to use the NLL
luminosity L̂ and radiator Rðkt;1Þ in the second line of
Eq. (9). Finally, the term proportional to ∂LL̂ accounts for
the luminosity contribution to the NNLL hard-collinear
correction, described by a Altarelli-Parisi-evolution step
between ϵkt;1 and kt;1. The corresponding contribution for
the first emission is encoded in the first line of Eq. (9),
where terms beyond NNLL are included in order to
reproduce the exact differential for the hardest-emission
probability. The latter are physical contributions; namely,
they are a subset of the subleading terms that would be
generated by retaining higher orders in the resummation.
As a check of Eq. (9), we have expanded it around

kt;1 ¼ pH
t , neglecting N3LL terms in lnðmH=pH

t Þ. This
approximation is the source of the singularity in Eq. (5), but
it contains all the correct NNLL terms at a given fixed order
in αs, which can be used as a powerful test of the accuracy
of our result. Equation (9) reproduces the analytic result
reported in the Appendix of Ref. [32] at NNLL.
As a phenomenological application of Eq. (9), we

perform a matching to the N3LO cumulant, which is
obtained by combining the total N3LO cross section [21]
and the NNLO Higgs-plus-jet cross section [13]. We
perform an additive matching, and unitarity at high pH

t
is restored by introducing the modified logarithms

lnðQ=kt;1Þ → 1=p ln½ðQ=kt;1Þp þ 1�;
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where we choose p ¼ 2. (This choice is made only for
consistency with the literature we compare with. A study on
the optimal choice of p is left for future work.) We consider
13 TeV LHC collisions, with mH ¼ 125 GeV, and
PDF4LHC15 [34] parton densities at NNLO. The central
prediction uses μR ¼ μF ¼ mH, and Q ¼ mH=2. The
perturbative uncertainty for all predictions is estimated
by varying both μR and μF by a factor of 2 in either
direction while keeping 1=2 ≤ μR=μF ≤ 2. Moreover, for
central μR and μF scales, we vary the resummation scale Q
by a factor of 2 in either direction. Our results are obtained
in the heavy-top effective theory; the inclusion of quark-
mass effects, which poses no problems in our framework,
is, however, beyond the scope of the present discussion.
To validate our result, in the main panel of Fig. 1 we show

the comparison of our prediction for the Higgs-transverse-
momentum spectrum at NNLLþ NLO to that obtained with
HqT [4,35]. As expected, we observe a very good agreement
over the entire pH

t range between these two results, which
have the same perturbative accuracy. Our NNLLþ NLO
prediction is moderately higher in the peak of the distribu-
tion, and lower at intermediate pH

t values, although this
pattern may slightly change with different central-scale
choices. These small differences have to dowith the different
treatment of subleading effects in the two resummation
methods. The agreement of the two results, both for the
central scale and for the uncertainty band, is even more evid-
ent in the lower inset of Fig. 1, which displays the ratio of the
various distributions, each normalized to its central-scale inc-
lusive rate, to our normalized central NNLLþ NLO curve.

For comparison, Fig. 1 also reports the pH
t distribution

obtained with the NLO version of POWHEG+MiNLO [36–38],
and with the MADGRAPH5_AMC@NLO+FXFX [39–41] event
generators, using default renormalization and factorization
scales for the two methods (in FXFX a merging scale μQ ¼
mH=2 has been employed). Both generators are interfaced to
Pythia8.2 [42], without including hadronization, under-
lying event, and primordial k⊥ (whose impact has been
checked to be fully negligible for this observable), and use
PDF4LHC15 parton densities at NLO. By inspecting the
normalized ratios shown in the lower panel, one observes that
the shape of the Monte Carlo predictions deviates signifi-
cantly from the NNLLþ NLO results at pH

t ≲ 60 GeV.
Figure 2 shows the comparison of the matched NNLLþ

NNLO result to the NNLLþ NLO and the fixed-order
NNLO predictions. The NNLO prediction shown there and
used for the matching is obtained by running the code of
Ref. [15] with a cut of pH

t > 10 GeV, and no phase-space
cuts on jets.
The inclusion of the NNLO corrections leads to a 10%–

15% increase in the matched spectrum for pH
t > 15 GeV,

and to a reduction in the uncertainty at medium-high pH
t ,

from 15%–20% to 10%. For pH
t ≳ 40 GeV, the NNLO-

matched distribution and its uncertainty reduce to the
NNLO prediction, while the impact of resummation on
the fixed order becomes increasingly important for
pH
t ≲ 40 GeV, reaching about 25% at pH

t ¼ 15 GeV. At
low pH

t the uncertainty of the two matched results is
identical, since this region is dominated by resummation.
In this Letter we have presented a new method, entirely

formulated in momentum space, for the resummation of
the transverse momentum of a color-singlet final state in
hadronic collisions. We have used it to obtain the first
NNLLþNNLO prediction for the Higgs-boson transverse-
momentum spectrum at the LHC. Higher-order logarithmic
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FIG. 1. Comparison of the Higgs pH
t NNLLþ NLO prediction

as obtained in this Letter (red) to HQT (green). For reference, the
predictions obtained with MINLO at NLO (orange) and FXFX
(blue) are shown. Lower panel: Ratio of the various distributions,
normalized to their respective central-scale inclusive cross
sections, to the central NNLLþ NLO prediction. Uncertainty
bands are shown only for the resummed results.
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corrections beyond NNLL can be systematically included
within this framework. Our approach does not rely on any
specific factorization theorem, and, therefore, it can be
generalized to treat any observable featuring kinematic
cancellations in the infrared region—like, for instance, ϕ�
in Drell-Yan pair production [43] or the oblateness in
electron-positron annihilation—as well as to compute any
other observable which can be treated with the methods of
Refs. [25,26]. Notably, this paves the way for formulating a
simultaneous resummation for the Higgs and the leading-
jet transverse momenta at NNLL.
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