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ABSTRACT 

For the first time, this paper reports a systematic and comparative study of the thermal behaviour of 

fibres of social, health, economic and industrial relevance using thermogravimetric and differential 

scanning calorimetry (TG/DSC). The mineral fibres selected for the study are: three chrysotiles 

samples, crocidolite, tremolite asbestos, amosite, anthophyllite asbestos and fibrous erionite. 

Powder X-ray diffraction (PXRD) and scanning electron microscopy combined with energy 

dispersive spectrometry (SEM/EDS) were used for the characterization of the mineral fibres before 

and after heating at 1000 or 1100 °C to identify the products of the thermal decomposition at a 

microscopic and structural scale and characterize their thermal behaviour. 

TG/DSC data allowed the determination of the structural water content and temperature stability. 

Furthermore thermal analysis provided a sensitive and reliable technique for the detection of  small 

quantities of different mineral phases occurring as impurities. After thermal treatment, fibrous 

samples were completely transformed into various iron oxide, cristobalite and other silicate phases 

which preserved the original overall fibrous morphology (as pseudomorphosis). Only crocidolite at 

1100 °C was partially melted and an amorphous surface was observed.  

 

Keywords: Mineral fibres, Asbestos, Thermal behaviour, Dehydroxylation, Pseudomorphosis. 

 

Introduction 

Among the minerals which are considered particularly hazardous for human health, the most 

notorious display a fibrous-asbestiform crystal habit [1]. It is now widely accepted to include in the 

family of the so-called asbestos mineral the following species: serpentine chrysotile, five amphibole 

species named tremolite and actinolite asbestos, crocidolite, amosite, anthophyllite asbestos and the 

fibrous zeolite erionite [2]. 
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Chrysotile is a member of the serpentine group, a 1:1 layer silicate (constituted by a tetrahedral and 

a trioctahedral sheet) whose layers are rolled so to assume a characteristic fibrous habit [3, 4]. 

Amphiboles are double-chain silicates which may display a fibrous habit being structurally 

elongated in one preferred crystal direction. Finally, erionite is a common fibrous/acicular zeolite 

with an hexagonal, cage-like structure composed of a framework of linked tetrahedral [5, 6]. 

Despite their outstanding technological properties (e. g. low thermal conductivity, high mechanical 

strength, workability, among the others) which prompt their widespread industrial applications, 

asbestos minerals are considered hazardous. In general, all asbestos fibres if inhaled are thought to 

induce malignant mesothelioma, lung cancer (in combination with other factors), and other lung 

diseases [7, 8]. According to the existing regulations, amphibole asbestos fibres are banned 

worldwide whereas chrysotile is banned in only 28% of the countries worldwide. In the other 

countries, safe use of chrysotile is admitted. Asbestos erionite unfortunately is not regulated but 

listed by International Agency for Research of Cancer (IARC) as substance carcinogenic to humans. 

As a matter of fact, in vivo studies unequivocally proved that asbestiform erionite is more 

tumorigenic than chrysotile and crocidolite asbestos [9]. 

Since the advent of industrial age, asbestos fibres have been extensively used in an endless number 

of industrial applications and especially to manufacture various types of artefacts (asbestos cement, 

disc brake pads, pipes, reinforcing agents, fire retardants etc). In those countries where all asbestos 

minerals are banned, and remediation policies are fostered, many attempts were made to detoxify 

asbestos minerals by using different techniques [10-12]. In this regard, many projects and patents 

have dealt with the possible disposal and re-use of asbestos-containing materials (ACM) via the 

crystal-chemical transformation induced by thermal treatment [13-18]. However, it must be 

considered that the thermal transformations sequence of asbestos-containing materials (ACM), 

composed of a variety of different crystalline and amorphous phases, is totally different with respect 

to the transformations sequence of pure asbestos minerals.  
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Concerning pure chrysotile, it has been demonstrated that its structure collapse at around 650 °C 

with early recrystallization at about 800 °C into anhydrous silicates such as forsterite and 

amorphous silica [19]. With respect to chrysotile, papers dealing with the thermal decomposition of 

pure amphibole asbestos and erionite are rare. As a matter of fact, only few studies were devoted to 

the thermal decomposition of pure amphibole asbestos up to 1100 °C and rare data report on the 

new phases appeared after thermal treatment. Thermal decomposition of fibrous amphibole 

minerals have been generally limited to asbestos minerals of commercial value or health concern 

such as crocidolite [20-25]  and amosite [23, 26, 27]. Moreover, in some papers regarding the 

thermal analysis of amphiboles asbestos, a full picture of their thermal behaviour is not given [28]. 

Regarding erionite, the thermal behaviour of a sample from Jersey Nevada (USA) is described in 

only one paper [29] which showed that the main endothermic event has occurred at about 140 °C 

but did not report the TG curve neither the temperature of the structural collapse. 

In this scenario, the aim of this study was to systematically investigate and compare the thermal 

behaviour (TG/DSC) as well as the phase transformations of the most relevant mineral fibres during 

heating up to 1000 or 1100 °C. The study was performed on eight selected fibrous minerals 

including chrysotile, crocidolite (asbestiform riebeckite), tremolite asbestos,  anthophyllite asbestos, 

amosite (grunerite asbestos) and fibrous erionite object of many important biomedical studies [30, 

31]. Four fibrous species (chrysotile, crocidolite, amosite, and anthophyllite asbestos) were 

distributed by the International Union Against Cancer (UICC). 

The deep knowledge of thermal behaviour of these asbestos minerals may deliver data relevant for 

the understanding of the crystal-chemical transformations of asbestos through thermal treatment and 

for the identification of asbestos mineral fibres in bulk natural samples using TG/DSC. 

Furthermore, since both asbestos samples and asbestiform erionite are used for in vitro studies to 

test their cyto-toxicity [30, 31], the determination of the presence of impurities may be crucial as 

such contaminants may adversely affect the experimental results. 
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Materials and methods 

Table 1 reports the nature and chemical formula (after Pollastri et al., 2015 [32]) of the eight 

investigated fibres: UICC chrysotile from Canada; chrysotile from Balangero (Italy); chrysotile 

from Val Malenco (Italy); UICC crocidolite from Koegas Mine, Northern Cape (S. Africa); 

tremolite asbestos from Val d’Ala (Italy); UICC amosite from Penge mine, Northern Province (S. 

Africa); UICC anthophyllite asbestos from Paakkila (Finland) and asbestiform erionite from Jersey 

Nevada (USA). The major focus of the work was to systematically characterize the mineral fibres 

by thermal analysis specifically thermogravimetric (TG), derivative thermogravimetric (DTG), 

differential scanning calorimetry (DSC), derivative differential scanning calorimetry (DDSC). 

TG and DSC were performed in an alumina crucible under a constant nitrogen flow of 30 cm3min-1 

with a Netzsch STA 449 C Jupiter in a 25 – 1000 and 25 -1100 °C temperature range, with a 

heating rate of 10 °C/min. Instrumental precision was checked by six repeated collections on a 

kaolinite reference sample revealing good reproducibility (instrumental theoretical T precision of ± 

1.2 °C) and theoretical weight sensitivity of 0.10 µg, DSC detection limit < 1 µW. Samples were 

powdered by dry-grinding in an agate mortar; about 40 mg of each sample were used in all 

collections. Owing to the remarkable length of the chrysotile fibres from Val Malenco, before 

grinding they were cut with scissors.  

A qualitative phase analysis, both of natural and heated samples, was performed according to the 

powder X-ray diffraction method (PXRD) using a Bruker D8 Advance X-ray diffractometer at 40 

kV and 40 mA. The instrument is equipped with a copper tube and curved graphite monochromator. 

Scans were recorded in the range of 3–66 °2θ, with a step interval of 0.02 °2θ and a step-counting 

time of 3 s/step. EVA software (DIFFRACplus EVA) was used to identify the mineral phases and 

experimental peaks being compared with the 2005 PDF2 reference patterns. The morphology of the 

samples before and after thermal analysis was investigated by scanning electron microscopy (SEM) 
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using an Environmental Scanning Electron Microscope FEI QUANTA 200 equipped with an 

EDAX Genesis 4000 energy dispersive X-ray spectrometer (EDS), and a FEI Nova NanoSEM 450 

equipped with an X-EDS Bruker QUATAX-200 system for the microanalysis.  

 

Results and discussion 

Chrysotile 

The thermal analysis for chrysotile UICC (Fig. 1) showed four endothermic peaks at 226, 401, 520 

and 633 °C. The first peak at 226 °C may be due to the dehydroxylation of pyroaurite [33]; the peak 

at 401 °C to the dehydroxylation of brucite and de-oxygenation of pyroaurite [33, 34]; the very 

weak peak at 520 °C is thought to be generated by the decarbonation of siderite [35], likely present 

as very minor impurity; the wide peak at 633 °C to the chrysotile dehydroxylation [22, 36]. The 

weak endothermic event at 901 °C on DTG (Fig. 1) curve was ascribed to talc dehydroxilation [37, 

38]. It is possible that the wide endothermic event at 633 °C hides minor endothermic events due to 

the decarbonation of calcite, dolomite, and/or dehydroxylation of clinochlore [34, 36, 37].  

The TG curve showed a weight loss of 0.91 % below 110 °C due to adsorbed water while the main 

weight loss of 12.22 % was due to chrysotile dehydroxylation (Table 2).  

Our findings are in line with previous literature data on chrysotile dehydration mechanisms and 

high-T crystallization [39-42]. The product of the dehydroxylation of chrysotile recrystallized to 

forsterite [19, 43, 44] caused a sharp exothermic peak at 823 °C (Fig. 1, Table 3). Indeed, the 

corresponding PXRD pattern (Fig. 2) of the chrysotile UICC after thermal treatment confirmed the 

presence of the forsterite. 

The DSC curve of the chrysotile from Balangero exhibited one major effect (Fig. 3) at 660 °C 

related to the chrysotile dehydroxylation with a weight loss of 11.80 %. As already described above, 

the weak endothermic effect (Fig. 3, Table 3) at 402 °C is due to brucite [34] breakdown. In the 

DTG curve the peak at 869 °C was related to the decarbonation of dolomite [45].  The DSC weak 
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shoulder effect at 938 °C which was clearly recorded on DDSC curve was related to the talc 

dehydroxilation [38]. Again, the wide endothermic event at 660 °C may hide minor endothermic 

events due to the I decarbonation of dolomite, calcite, and clinochlore [34, 36, 37]. The weak 

endothermic effect at 717 °C visible on the DTG curve (Fig. 3) is due to the antigorite 

dehydroxylation [36, 46]. The effect on TG curve (- 0.57 wt%) below 110 °C was ascribed to the 

release of humidity adsorbed at the sample surface while the total weight loss at 1000 °C was of  

14.9 % (Table 2). On the DSC curve the exothermic peak at 822 °C (Fig. 3) was related to the 

crystallization of forsterite as determined by PXRD after thermal treatment at 1000 °C (Fig. 2).  

The TG curve for the chrysotile from Val Malenco (Fig. 4) showed a continuous weight loss mainly 

due to the decomposition of chrysotile in correspondence with the major endothermic event at 652 

°C (see the DSC curve in Fig. 4). Dehydroxylation of chrysotile causes a weight loss of 12.01 %. 

DTG weak effect at 760 °C (Fig. 4) is the diagnostic signal [47] of the presence of antigorite in the 

sample which was also detected by TEM analysis on the same sample by Cattaneo et al. [48]. Broad 

DTG and DSC signals in the 25–110 °C range were due to adsorbed water (weight loss of 0.54 %) 

while the total weight loss at 1000 °C was 13.35 % (Table 2). A sharp exothermic peak at 820 °C 

indicates the crystallization of forsterite [19, 43, 44] as confirmed by PXRD data (Fig. 2).  

As showed in Fig. 5 the curves of the three chrysotile samples have similar trend;  no significant 

variation in the exothermal peaks (range 820-823 °C) was observed, while a slight difference in the 

main endothermic effect occurred. The endothermic peak observed for the chrysotile UICC shows a 

shift versus lower temperature  (633 °C) with respect to both chrysotile from Val Malenco (652 °C) 

and chrysotile from Balangero (660 °C). The different temperature of chrysotile decomposition 

(range 633-660 °C) of the three chrysotile samples may be due to the different fibre size (width and 

length) distribution and the presence of different amount of Fe [43, 49] and Ni [44] substitute for 

Mg in octahedral sheet [32]. The relationships between distribution size, Ni, Fe content and change 

of temperature stability of chrysotile are complex. In fact, as recently demonstrated, the thermal 
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shift in chrysotile decomposition can be also related to the presence of trace elements in its structure 

(i.e. Li, As, Sb) [50] which may control the range of temperature over that the structure collapses.  

The TG curves of the three specimens of chrysotile showed a weight loss of about 12 % (Table 2) 

due to their decomposition [19, 51]. These data match the theoretical and experimental values of 

mass loss observed in natural and synthetic chrysotile fibres reported in literature [19, 43, 47, 51]. 

A representative set of secondary electron SEM images showing the morphology of chrysotile 

before and after thermal analysis at 1000 °C is reported in Fig. 6. The unheated fibres of chrysotile 

samples appear arranged in bundles (Fig. 6a, 6d) and curved with their typical wavy appearance 

(Fig. 6g). The splitting in fibrils starting from the fibre bundle is shown in Figures 6a and 6d . After 

thermal treatment at 1000 °C, chrysotile fibres recrystallize in forsterite apparently retaining the 

original fibrous crystal habit (pseudomorphosis phenomenon) [52, 53] and appearing curved and 

still flexible (Fig. 6b, 6e, 6h). However, at higher magnification (HM) the apparent fibres turn out to 

be a continuous sequence of sub-cylindrical particles with basis both sharp and perpendicular to the 

original fibre axis [16], approximately 100 nm in length (Fig. 6c), Sometimes, the new silicate is 

constituted by sub-spherical particles disposed not very tidily along the axis (Fig. 6f). The original 

cleavage parallel to the fibre axis is lost (Fig. 6c). Therefore, the eventual fracture of the 

transformed pseudo-morphic fibres occurs at the particle boundaries and not along the fibre axis. 

Moreover, as observed in Fig 6i, the typical smooth surface of chrysotile fibres is completely lost 

becoming very rough. 

 

Amphiboles 

Crocidolite 

The DTG curve of crocidolite (Fig. 7) shows a major endothermic event at 648 °C related to iron 

oxidation accompanied by dehydrogenation and/or dehydroxylation. The structure does not show 

collapse which occurs at higher temperature [24] with a corresponding weight loss of 2.18 % in the 
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range 110-680 °C of the TG curve. No weight loss of crocidolite was observed above 700 °C in 

agreement with Fujishige et al. [54]. As it can be observed in the DTG curve (Fig. 7), the partial 

oxidation of ferrous iron content in the crocidolite takes place in the range 200-580 °C [55], as 

confirmed by the three weight gain peaks at 205, 360, and 570 °C (Fig. 7). Although the detailed 

discussion of the processes is not the object of this paper, it is necessary to point out that the 

oxidation of crocidolite is essentially a dehydrogenation, as long as dehydroxylation occurs [21] so 

that the mechanism of oxidation was considered to be dependent on migration of protons and 

electrons through the crystal. Indeed, when hydrated silicates containing ferrous iron are heated the 

constitutional hydroxyl decomposes and iron may change its valence state. Oxidation may result 

from either the incorporation of oxygen into the material (oxygenation) or a dehydrogenation with 

the following mechanism: Fe2+ + OH-  Fe3+ + O2- + H [56]. 

The DSC curve up to 700 °C showed two exothermic and two endothermic effect: 320 °C, 431 °C, 

354 °C and 649 °C respectively (Table 3). The first exothermic effect at 320 °C was related to the 

crocidolite dehydrogenation as confirmed by the weight gain peak at 360 °C in the DTG curve due 

to consequent Fe2+ oxidation. The endothermic effect at 354 °C should be related to the 

dehydroxylation of hydroxyl water of the crocidolite with a consequent formation of oxy-crocidolite 

(crocidolite partially dehydrogenated) [23]. The exothermic peak at 431 °C (Fig. 7) was related to 

the second dehydrogenation as confirmed by the DTG weight gain at 570 °C which is a 

consequence of Fe2+ oxidation. The weak endothermic effect at 649 °C represents the total 

dehydroxylation of crocidolite in good agreement whit data reported by Hodgson et al. [20] in 

which the total dehydroxylation of crocidolite was observed in the range of  570-700 °C. The broad 

exothermic effect at 850 °C (Fig. 7) was related to the structure collapse and formation of 

magnetite, cristobalite, and a pyroxene phase (acmite, NaFeSi2O6) [20]. 

At 928 °C, the DSC curve shows an endothermic peak due to the conversion of magnetite to 

hematite. Indeed, in the DTG curve the peak at 928 °C stems from the oxidation of the ferrous iron 
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present in magnetite (Fe+2Fe+3O4) which involves a weight gain (Fig. 7). The DSC shoulder effect 

at 960 °C, which is clearly recorded on DDSC curve, was related to the incongruent melting point 

of the acmite with separation of hematite [57, 58]. The endothermic peak observed at 1064 °C in the 

DDSC curve indicated that cristobalite is being dissolved by the liquid [20]. Indeed, at 1100 °C the 

final minerals products detected by PXRD were mainly hematite (33-0664 JCPDS card.) while 

cristobalite (02-0278 JCPDS card) is evidently in a small amount because its reflections are close to 

the detection limit (Fig. 8). 

The structural changes of crocidolite with increasing temperature can be summarized in the 

following steps: dehydrogenation and/or dehydroxylation accompanied by iron oxidation, structure 

collapse and crystallization of newly formed crystalline phases, early melting. Crocidolite, blue at 

room temperature, turned into dark red at 1100 °C, mostly due to hematite formation.  

At SEM, the raw fibres of crocidolite appear as straight and rigid, looking like needles (Fig. 9a). 

After heating at 1100 °C, the original morphology is strongly altered (Fig. 9b). The single fibres, 

originally arranged in fibre bundles (Fig. 9a), now appear as thick sticks, confirming that partial 

melting occurred during heating. However, it is still possible to recognize some fibrous-like 

structure that was melt-bonded (Fig. 9b). At higher magnification (HM) crocidolite showed melt-

fragments composed of an aggregate of particles with totally different morphology with respect to 

the original morphology (Fig. 9c). 

Tremolite 

DSC curve of tremolite asbestos from Val d’Ala (Fig. 10) exhibits a number of both endothermic 

and exothermic peaks in the range 500-1100 °C that can be explained by the presence of impurities 

in the sample [59]. The endothermic events at 729 °C and 776 °C are due to the dehydroxylation of 

minor chlorite and antigorite, respectively [37, 36] (see Fig. 10 and Table 3). The exothermic peak 

at 842 °C was related to oxidation of  Fe2+ [60] present in the chlorite, its presence being also 

proved by the weight gain in the DTG curve. The exothermic effect at 898 °C is interpreted as 
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recrystallization to forsterite and hematite. The shoulder at 955 °C on DSC curve was ascribed to 

talc breakdown [38], while the sharp endothermic peak at 1046 °C corresponds to breakdown of 

tremolite in agreement with Luckewicz [61]. The main TG weight loss of 2.02 % between  850 and 

1050 °C due to the tremolite dehydroxylation  (Fig. 10, Table 2) was in agreement with the 

theoretical tremolite water content [62]. Finally, the exothermic DSC signal at 1077 °C was related 

to the crystallization of diopside. The effect on TG curve (-0.17 wt%) below 110 °C was ascribed to 

the release of humidity adsorbed at the sample surface. The mineral products after heating to 1100 

°C were diopside (JCPDS card 11-0654), forsterite and hematite deriving from tremolite and 

chlorite breakdown (Fig. 8). 

Figure 9d depicts the typical morphology of tremolite fibres; they are stiff and exhibit a prismatic 

rod shaped morphology. After thermal treatment, the crystal habit is preserved but almost all the 

individuals result more brittle and fractured nearly perpendicular to the fibre axis (Fig. 9e). The HM 

Fig. 9f  depicts the presence of newly-formed polyhedral crystals on the surface of the pristine 

tremolite asbestos some of which exhibit definite morphology with clear evidence of edges and 

faces. The growth occurs through the formation of recrystallizing-islands with heterogeneous lens 

shape. On the surface of the pristine tremolite asbestos the growth and coalescence of the 

recrystallizing-islands evolve from lens to faceted crystals. EDS/SEM investigations confirmed that 

the pseudomorphic process involves a complete recrystallization of the original tremolite asbestos 

into diopside. 

Amosite 

Characteristic DSC/TG thermogram of amosite is presented in Fig. 11. The first DSC weak peak at 

288 °C is caused by the breakdown of goethite [63] present as impurity which transforms into 

hematite [64]. The second broad endothermic effect at 741 °C (Fig. 11) was related to the structural 

breakdown of amosite (Table 3), although amosite decomposition started at 600 °C with the 

formation of oxy-amosite [23, 26] and ended at about 850 °C in agreement with the literature data 
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[22, 23, 27]. Finally, the DSC curve shows a broad exothermic peak at 878 °C due to enstatite and 

hematite formation, as confirmed by the PXRD pattern (Fig. 12). The very weak endothermic effect 

in the range 530-580 °C (Fig. 11), evidenced in the DDSC curve, could be due to the structural 

α→β transition of quartz [65] which is present in the sample as impurity (Fig. 12).  

The TG curve of amosite showed a continuous weight loss of 1.94 % between 110 and 690 °C,  due 

to dehydroxylation and dehydrogenation reactions [21, 26] which involve a weight gain of 0.24 % 

between 690 and 1000 °C, due to oxidation of ferrous iron (Fig. 11). In fact, hematite (JCPDS card 

24-0072 ) was also found among the final mineral products (Fig. 12) in addition to enstatite (JCPDS 

card 07-0216) and quartz (JCPDS card 07-0346). The effect on TG curve (-0.33 wt%) below 110 

°C was ascribed to the release of humidity adsorbed at the sample surface.  

Raw amosite (Fig. 13a) shows fibres which look like flexible needle arranged in bundles. After 

heating at 1100 °C, the newly-formed silicate (enstatite) preserved the original fibrous morphology 

(pseudo-morphosis) but fibres appear more rigid and thicker (Fig. 13b). In some cases, single fibres 

seem to be fused together at forming prismatic crystal (Fig. 13b, 13c) and when observed at higher 

magnification, they appear partially covered by pseudo-spherical particles growing along the axial 

direction of the fibres (Fig. 13c). 

Anthophyllite asbestos 

Figure 14 presents the thermal behaviour of anthophyllite asbestos. DTG curve shows one main 

peak of maximum weight loss (2.30 %) at 868 °C due to anthophyllite dehydroxylation in 

correspondence with the shoulder at 824 °C on DSC curve. However, DDSC confirm the presence 

of an endothermic peak at 861 °C which corresponds to the structural breakdown of this phase [22, 

27] followed by recrystallization of enstatite as showed by the exothermic peak at 915 °C (Fig. 14). 

According to Freeman [27] the decomposition temperatures of anthophyllite asbestos as well as 

tremolite asbestos were higher than those reported for amosite and crocidolite. The weak 

endothermic peaks  at 246 and 509 °C (Fig. 14) should be due to the dehydration and 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 

 

dehydroxylation of vermiculite [66]. The DTG peaks at 972 and 1004 °C (Fig. 14) are interpreted as 

the dehydroxylation of talc [38] and biotite [67] respectively, present as impurities. PXRD of 

anthophyllite asbestos after heating to 1100 °C (Fig. 12) exhibits the lines of enstatite (02-0520 

JCPDS card.) and cristobalite (03-0267 JCPDS card). 

Fibres of anthophyllite asbestos appear straight, poorly flexible and thin and exhibit a slender 

needle-like crystal habit both before and after heating treatment (Fig. 13d, 13e). SEM images 

collected at higher magnification (Fig. 13f) showed that the new phase formed after heating 

(enstatite) preserves the original fibre morphology (pseudomorphosis) but the surface becomes 

rough. 

Fibrous erionite 

The TG curve of Fig. 15 showed a continuous weight loss due to the dehydration of erionite (H2O 

loss of 17.00 wt%), corresponding to the broad endothermic peak at 126 °C [29] and to the weak 

endothermic peak at 356 °C (Table 3) on the DSC curve. In the first endothermic effect, the water 

loss is 16.11 wt% while in the second endothermic the water loss is 0.89 wt%. The complete 

dehydration is attained at 450 °C [68] without loss of crystallinity which started at temperature 

above 700 °C (as verified by PXRD) followed by recrystallization of K-feldspars and plagioclase as 

evidenced by the DSC exothermic peak at 911 °C (Fig. 15). The curves are in agreement with those 

reported in Gottardi and Galli [69] and the estimated temperature of breakdown and 

recrystallization is comparable to that (840 °C) reported by Ballirano and Cametti [70]. Differences 

may be related not only to different experimental conditions but also to different Si/Al ratio, ionic 

potential and size of exchangeable cations [19], and crystallite size of the various samples [70]. The 

products of erionite recrystallization after heating to 1000 °C were K-feldspar, plagioclase and 

quartz (see the PXRD in Fig. 16), according to the reaction sequence Na5K3Al8Si28O7228H2O 

(approximated erionite formula)  Na5K3Al8Si28O72  3KAlSi3O8 + 5NaAlSi3O8 + 4SiO2. 
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At the SEM observation, erionite displays bundles composed of many fibres resembling amphibole 

fibres morphology (stubby prismatic and acicular crystals) (Fig. 17a). After heating treatment the 

new forms have feldspar-like composition as detected by EDS/SEM analyses. At  low 

magnification SEM, imaging show that the fibres are shorter but the original fibrous morphology is 

preserved (Fig. 17b)  and the surface  is smooth. However, at higher magnification (Fig. 17c) the 

surface of the fibrous crystals show irregularities and appear as rather rough (Fig. 17c). 

 

Conclusions 

Thermal decomposition of eight selected mineral fibres (chrysotile, four amphibole asbestos species 

and erionite) has been investigated using DSC/TG supplemented by PXRD and SEM/EDS. 

These investigations have shown that the decomposition of UICC chrysotile from Canada occurs at 

633 °C while the structure breakdown for both chrysotile from Val Malenco and from Balangero 

shift versus higher temperatures taking place at 652 °C and 660 °C respectively. The decomposition 

of chrysotile is followed by the recrystallization into forsterite at about 822 °C. As it concerns 

amphiboles, the breakdown of crocidolite, amosite, anthophyllite asbestos and tremolite asbestos 

ranged from 850 to 1046 °C. Crocidolite asbestos UICC is decomposed at around 850 °C with the 

formation of magnetite, cristobalite and acmite. However, at 1100 °C the final minerals products 

were mainly hematite and partially melted cristobalite. Amosite UICC decomposes into enstatite 

and hematite at 878 °C. Anthophyllite asbestos UICC breakdown leads to the formation of enstatite 

and cristobalite at 861 °C. The breakdown of tremolite asbestos occurs at 1046 °C with the 

consequent formation of diopside.  

While for tremolite and anthophyllite asbestos the complete dehydroxylation occurs in one main 

effect (1046 °C and 861 °C respectively) and leads to the breakdown of the mineral structure, the 

dehydroxylation of amosite and crocidolite occurs in various steps in the temperature range 570 – 

850 °C and it does not correspond with the structural collapse. Fibrous erionite shows the same 
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behaviour as that reported for amosite and crocidolite: although the complete dehydroxylation took 

place between 25 and 425 °C, the loss of its crystallinity starts above 700 °C. The products of the 

recrystallization after heating to 1000 °C are K-feldspar, albite and quartz.  

The thermogravimetric (TG) analysis allowed the calculation of the water content in the fibres 

which could be useful for the determination of their chemical formulae. 

Despite the thermal treatment, all fibrous samples preserve the same external fibrous habit but the 

structure is completely changed at a molecular scale: this phenomenon called pseudomorphosis lead 

to the complete transformation of asbestos minerals into non-hazardous silicates such as forsterite 

and enstatite. However, potentially hazardous minor phases such as cristobalite and quartz were 

found in the new phases appeared after thermal treatment of anthophyllite asbestos, crocidolite and 

asbestiform erionite; these may hinder a safe reuse of the processed asbestos samples.  

Moreover, it has been demonstrated that DSC and DTG analyses are very effective for the 

identification of minerals impurities both in chrysotile, amphibole asbestos and asbestiform erionite 

specimens. Indeed, DSC and DTG analysis clearly showed the presence of low impurities, not 

relievable by the semi-quantitative PXRD analysis, such as pyroaurite, talc, brucite, smectite, 

dolomite, siderite, goethite, and biotite. However, all identified minerals are non-fibrous, mostly 

having platy morphology.  

The knowledge of the thermal behaviour of the eight fibrous samples studied in this work will allow 

interpret thermograms obtained from natural samples and asbestos treated by heating with more 

confidence. 
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Table 1 Calculated chemical formulae (After Pollastri et al., 2015 [38]) and details of the investigated minerals fibres. 

aMixture of fiber from the firms Bells, Carey, Cassair,  Flintkote, Johns-Manville, Lake, Normandie and National, 

proportioned roughly to represent Canadian production of asbestos products at that time. *UICC standard Chrysotile 

“B” Canadian NB #4173-111-1; §UICC standard Amosite from Penge mine South African; +UICC standard 

Anthophyllite Finnish NB #4173-111-5; #UICC standard Crocidolite South African NB #4173-111-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Calculated chemical formula Provenance 

Chrysotile UICC (Mg5.93Fe2+
0.04 Al0.02Fe3+

0.08)6.07Si4.03O10(OH)7.66 Quebec (Canada)a* 

Chr Balangero (Mg5.81Fe2+
0.15Al0.27Fe3+

0.09Cr0.01)6.33Si3.97O10(OH)7.11 Val Malenco, Sondrio (Italy) 

Chr Val Malenco (Mg5.85Fe 2+
0.06Al0.02Fe3+

0.05Ni0.01)5.99Si4.01O10(OH)7.86 Balangero, Turin (Italy) 

Amosite (Ca0.02Na0.01)(Fe2+
5.36Mg1.48Fe3+

0.11Mn0.06)7.01(Si7.93Al0.01)7.94O21.94(OH)2.06 Penge mine, Northern Province (South Africa)§ 

Anthophyllite Ca0.04(Mg5.81Fe2+
0.92Fe3+

0.21Mn0.04)6.98(Si7.83Al0.02)7.85O21.63(OH)2.37 Paakkila mine, Paakkila (Finland)+ 

Crocidolite (Na1.96Ca0.03K0.01)2(Fe2+
2.34Fe3+

2.05Mg0.52)4.91(Si7.84Al0.02)7.86O21.36(OH)2.64 Koegas Mine, Northern Cape (South Africa)# 

Tremolite (Ca1.91Na0.06K0.01)1.98(Mg4.71Fe2+
0.22Fe3+

0.08Mn0.02)5.03(Si8.01Al0.02)8.03O22.14(OH)1.86 Val d’Ala, Turin (Italy) 

Erionite (Na5.35K2.19Ca0.15Mg0.11Ti0.05)7.85(Si28.01Al7.90)35.91O72∙28.13H2O Jersey, Nevada (USA) 
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Table 2 Main TG data (weight loss %) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chrysotile from Canada UICC   Chrysotile from Balangero   Chrysotile from Val Malenco  

T range (°C)   TG loss %  T range (°C) TG loss %   T range (°C)   TG loss % 

25-110             0.91  25-110            0.57   25-110             0.54 

430-800        12.22  430-800      11.80   430-800           12.01 

tot loss at 1000            18.66  tot loss at 1000           14.87   tot loss at 1000          13.35 

           

Crocidolite from S. Africa UICC   Tremolite from Val d’Ala    Amosite from Penge UICC    

T range (°C)   TG loss %  T range (°C) TG loss %   T range (°C)   TG loss % 

25-110  0.58  30-110                                                      0.17   25-110  0.33 

110-680  2.18  850-1100 2.02   110-690  1.94 

tot loss at 1100  2.76  tot loss at 1100 3.43   tot loss at 1100 2.17 

 

           

Anthophyllite from Paakkila UICC    Erionite from Nevada      

T range (°C)   TG loss %  T range (°C)   TG loss %     

25-110  0.11         

110-690  2.30  25-450 17.00     

tot loss at 1100  4.98   tot loss at 1000  17.99      
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Table 3 Peak temperatures in DSC curves; w = weak, s = strong, sh = shoulder, endo= endothermic, exo = exothermic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSC   

T  (°C) 

Chrysotile from  

Canada UICC 

Chrysotile from 

Balangero 

Chrysotile from  

Val Malenco 

Crocidolite from  

S. Africa UICC 

Tremolite from 

Val d’Ala 

Amosite from 

Penge UICC 

Anthophyllite  

from Paakkila 

UICC 

Erionite from 

Nevada 

 226  endo w   320 exo w  288 endo  246 endo w 126  endo s 

 401  endo w 402 endo  354 endo w    356 endo w 

 520 endo w     557 endo w  
431  exo w 

 
 535 sh 509 endo w  

 633 endo s 660 endo s  652 endo s 649 endo w 729  endo  s 741 endo w 824 sh  

    850 exo     

 823  exo s 822 exo s 820 exo s 928 endo s 776  endo w 878 exo  915 exo s 911  exo  

    
960 sh 

 

842   exo w 

898   exo w 

955   sh 

   

         1064 sh 
1046 endo s 

1077 exo 
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Figure captions 

 

Fig. 1 Thermal analysis of chrysotile UICC from Canada. Solid line: Solid line: DSC. Dashed line: DTG. Dotted line: 

TG 

 

Fig. 2 PXRD patterns recorded before (b) and after (a) heating at 1000 °C for the three kinds of chrysotile; from the 

bottom to top chrysotile UICC (CCb and CCa); chrysotile from Balangero (CBb and CBa); chrysotile from Val 

Malenco (CVMb and CVMa) 

 

Fig. 3 Thermal analysis of chrysotile from Balangero. Solid line: DSC. Dashed line: DTG. Dotted line: TG 

 

Fig. 4 Thermal analysis of chrysotile from Val Malenco. Solid line: DSC. Dashed line: DTG. Dotted line: TG 

 

Fig. 5 Comparison of DSC curves recorded for chrysotile from Balangero (CB), from Val Malenco (CVM) and UICC 

from Canada (CC) 

 

Fig. 6 Secondary electron SEM images of the three kinds of chrysotile: UICC from Canada, first line; from Balangero, 

second line; from Val Malenco, third line. From left to right: first column (a, d, g), before heating treatment at 1000 °C; 

second and third column (b, c, e, f, h, i), after heating. Images c, f, i acquired with high resolution SEM, testifying the 

pseudomorphic transformation of the chrysotile fibres with temperature 

 

Fig.  7 Thermal analysis of crocidolite UICC. Solid line: DSC. Dashed line: DTG. Dotted line: TG 

 

Fig. 8 PXRD patterns recorded before b and after a heating at 1000 °C of crocidolite UICC (Crb and Cra); tremolite 

asbestos (Tb and Ta) 

 

Fig. 9 Secondary electron SEM images of crocidolite UICC (first line) and tremolite asbestos (second line). From left to 

right: first column (a, d), before heating treatment at 1000 °C; second and third column (b, e, c, f), after heating. Images 

c, i acquired with high resolution SEM, showing a complete pseudo-morphic recrystallization occurred to fibres. Arrow 

in b indicates crocidolite fibres partially melted 
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Fig. 10 Thermal analysis of tremolite asbestos from Val d’Ala. Solid line: DSC. Dashed line: DTG. Dotted line: TG 

 

Fig. 11  Thermal analysis of amosite. Solid line: DSC. Dashed line: DTG. Dotted line: TG 

 

Fig. 12 PXRD patterns recorded before b and after a heating at 1000 °C of  anthophyllite asbestos UICC (Anb and Ana) 

 

Fig.13 Secondary electron SEM images of amosite (first line) and anthophyllite asbestos UICC (second line). From left 

to right: first column (a, d), before heating treatment at 1000 °C; second and third column (b, e, c, f), after heating. 

High resolution SEM images c and i show the fibrous recrystallized forms 

 

Fig. 14 Thermal analysis of anthophyllite asbestos UICC. Solid line: DSC. Dashed line: DTG. Dotted line: TG 

 

Fig. 15 Thermal analysis of asbestiform erionite. Solid line: DSC. Dashed line: DTG. Dotted line: TG 

 

Fig. 16 PXRD patterns from asbestiform erionite before (Erb) and after (Era) heating at 1000 °C 

 

Fig.17 Secondary electron SEM images of asbestiform erionite a before and b, c after; heating treatment at 1000  High 

resolution SEM Image c shows rough surface 
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