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Abstract—It is well known that the problem of finding

a feasible schedule for a partially ordered set of tasks can
be formulated as a Disjunctive Temporal Problem (DTP). In
case we want to find a schedule by taking preferences into
account, there exist extensions to DTPs that augment them by
associating numeric costs to the violation of individual temporal
constraints; however, such extensions make the restrictive
assumption that the costs associated with constraints are
independent of one another. In this paper we propose a further
extension, which enables the designer to specify (directional)
dependencies between the preferences associated with the con-
straints. Such preferences are represented by exploiting Utility
Difference Networks (UDNSs), that define objective functions
whose structure reflects conditional independencies among the
nodes of the network. The paper describes the branch-and-
bound algorithm at the core of the scheduling tool we have
implemented for solving this new class of problems. We also
present and discuss encouraging experimental results collected
in two different test domains.

Keywords-scheduling; preferences; DTP

I. INTRODUCTION

the preference that some activities should last as long as
possible, or that the distance between the ending of an
activity and the starting of the subsequent one should be
minimized. While solving an STP or a DTP usually comes
down to verifying the satisfiability of the (hard) constrgin
specified in the problem, solving a temporal problem with
preferences requires to find an assignment of values to the
time points that not only satisfies all the hard constraimts,
also maximizes a given objective function defined over the
soft constraints. Two main problem formulations takingint
account preferences have been proposed in the literature:
the Disjunctive Temporal Problem with Preferences (DTPP)
[9], and the Valued Disjunctive Temporal Problem [10].
Both formulations, however, assume that the preferenaes (o
costs) associated with the constraints are independemteof o
another. Such an assumption may prove to be too stringent
in many applicative domains where dependencies among
constraints could even beonditional The best choice for
satisfying a constraint might be independent on choices for
the other constraintgiven the choices for a limited set of

Since the seminal work by Dechter et al. [1], Temporalconstraints.
Constraint Satisfaction Problems (TCSPs) have drawn the Surprisingly, the problem of taking into account condi-
attention of several Al researchers, and many problenional dependencies among constraints has received little
formulations have been proposed ever since. In particulagttention, so far. To the best of our knowledge, only in [8]
the notion of Disjunctive Temporal Problems (DTPs) [2] the authors propose the Multi-Criteria extension to DTPPs
has been introduced to overcome the limits of Simple(MC-DTPP).

Temporal Problems (STPs) [1] by enabling the specification In this paper we propose a scheduling tool dealing with
of temporal constraints consisting of disjuncts, each attwvh preferences in a flexible way. From our point of view, the
represents a temporal interval within which legal soluion flexibility is achieved by associating tasks with durations
can be found. This class of problems is expressive enough texpressed as intervals. Differently from previous apphneac

model scheduling problems [3], as well as other problems ofo flexible scheduling ([6], [7]), we do not rely on STPs,
interest in Al (e.g., diagnosis [4], [5]). In [6], [7] the rioh  but on DTPs. More precisely, since our goal is to deal

of flexible schedulés introduced. Differently from a usual

with preferences on such task durations, we propose a novel

scheduling, in a flexible schedule tasks are not associatesktension to DTPs which is suitable to capture a different
with precise starting and ending times, but with intervalskind of dependency.

within which they can take place.

We consider the VDTP formulation as our starting point,

Research on DTPs has recently been focused on how tand complement it with a Utility Difference Network (UDN)

address temporgbreferences(i.e., soft constraints Intu-

[11] that allows for the definition of structured objective

itively, a soft constraint allows one to express preferencefunctions based on the notion afonditional difference
on the distance between any two time points. For instancendependencgCDI), after which we name our extended
in a calendar management scenario [8], relevant time pointgroblem formulatiorCDI-VDTP. Thanks to such conditional
are reasonably the start and end times of the activities to bedependencies, the computation of the utility of (pa)tial
scheduled. Soft constraints can therefore be used to expresolutions explored during the search for an optimal sotutio



ANALYZE \ DRI VE DRI LL
DRILL / COMM slow [15, 25] deep [10, 13]
~. fast | [8, 13] shallow | [5, 7]
DRIVE
Figure 1. A segment of a rover plan. COWM ~ ANALYZE
test-1| [7, 9]
chn-1| [10, 15]
o o hn-2 | [7, 10] test-2 | [4, 5]
turns out to be very similar to how probabilities are com- ¢ ' test-3| [3, 4]
puted from a Bayesian network. Figure 2. Modes and expected durations of tasks.

After motivating our proposal with two examples (section
I), we recall background information (section ll). In $ien s " T w T . s

IV we formally define CDI-VDTPs, and in section V we R R
propose a way to solve them by extending a state-of-the-art AN 5 0
algorithm for VDTPs with the optimization of UDN-based P2 | e

preferences. Section VI describes the main charactevigfic
the scheduling tool we have developed for solving this new
class of problems, while section VIl presents experimental
results.

Figure 3. A fragment of a working week calendar.

individually, are ordered from the most preferred down to
I[l. MOTIVATING EXAMPLES the least preferred.

Let us present two simple examples illustrating the prac- The challenge for the designer who has to select a
tical role of the extended preferences we propose. mode for each action arises when we consider the different

actions as being part of the same mission. In such a case,
A. Planetary Rover the preferred mode for an action might depend on the

First, we consider a simplified planetary rover scenario agnode already selected for another action. For instance, a
the one discussed in [12], and assume that a mission designg¢ientist would prefer to always drill with modalityeep
is finalizing the mission that a rover has to carry out. because such a mode usually enables the collection of more
The mission plan has already been outlined, and Figurgwteresting samples. On the other hand, when such samples
1 shows a small portion of interest; edges between actiond'e collected, it is preferable to analyze them with mogalit
represent precedence links: Once the rover has collected!@st-1which is the most accurate one. Both modes, however
soil sample by means of thBRI LL action, it ANALYZEs  are very time consuming; moreover the amount of data
the sample and move®RI VE) to a position suitable for Produced by means dest-1 mode is usually huge; this
uploading COVM) the collected data. The analysis and theimpacts the communication, since in that case the 2-channel
movement could be carried on simultaneously. The designdfode ch-2 would be preferable, even though the general
has to decide the mode with which the activities in the plarPreference is to useh-1 mode (see Figure 2).
segment have to be completed. Such a decision has to be
made balancing the quality and accuracy with which somzs' Personal Calendar
activities are performed, against the time these acts/iadée Let us now consider a simple case of personal calendar
to be successfully completed. Specifically, for each adtion management, similar to the one discussed in [8]. The idea
the plan, a set of action modes and corresponding duratiois to help a user in the allocation of her/his tasks over a
intervals are defined; modes and intervals are summarized iworking week, taking into account both personal preference
Figure 2. Further inputs for the designer's decision makingand global constraints. In our example, the user can be
process are also global hard constraints and preferenbes. Tinvolved in four different activities: work, doing some spo
designer has in fact to take into account that the actiorgoing to the pub, or watching a movie. Of course, the user
COWM must be performed within a communication window, can be involved in only one of these activities at a time.
which opens over a precise period. The communicatiorFigure 3 shows a fragment of the work-week calendar of a
window is a hard constraint since it depends on the positiosample user, whose Monday plan includes: wakkk{), do
of a satellite functioning as relay, and hence it is outsidesome sport$Pmn), and (possibly) go to the puli’B) or to
the control of the mission designer. Moreover, some agtivit the movies V). On Tuesday, the user’s plan encompasses:
modes are usually more preferred than others. For instanceiorking (WK), doing sport §P), and possibly going to the
it is usually preferred, and wiser, to perform a drive actionmovies if she/he did not go on Monday.
in a slow mode; however, the fast mode can be used, if Similarly to the rover example, for each task there are
necessary, to avoid missing the communication window. Irsome alternatives on how long and/or when the task should
the tables of Figure 2, the modes of each action, considerdae performed. Figure 4 summarizes the possible modes for



SPORT

VWORK binary operator ony. Mappingy : C — E assigns a cost

full | [8, 10] heavy | [2, 3] e € E with (the violation of) each constraiit € C. In the
medium | [1, 2] weightedVDTP, structureS is (R* U {oo}, +,>) and the
part | [4, 5]
light | [0, 1] function to minimize is:

PUB NOVI ES cost(x) = Z{(p(C,;)Miolates(x,Ci)}
yes | [2, 3] opt-1 | Monday 9pm ¢
no | [0, O] opt-2 | Tuesday 9pm i.e., it is simply the sum of the costs of the constraints

violated by an assignmemtto the temporal variableX.

We can slightly modify the definition of VDTPs in order
to specify preferences instead of costs, and to define a
each task, ordered from the most preferred to the leadireference valug(.) for each disjunct; ; of each constraint
preferred. Note that the Pub is an optional activity as it<i- SUch & modified definition is equivalent to the standard
minimal duration is 0. Moreover, the preferences assatiate®"€: Put we adopt it in the following because it better suits

with the Movies activity are not on the duration of the the form of our scheduling problems.
movie (which is assumed to be 2 hours), but on the day: Example 1:The planetary rover example above (as the

in our case, Monday is preferred to Tuesday. Note that th&&léndar example) could actually be encoded as a (modified)
preferred mode for a task might depend on the mode alreadyPTP- The set of temporal variables consists of a pair
selected for another one. For instance, although in gener@f variables for each action in the plan, denoting the start
we might prefer to go to the Movies on Monday because ignd end time of the action itself. For instance, given action
is cheaper, we might prefer to go on Tuesday if on MondayPR! LL, two variablesiri; anddrl. are included inX. Also

we work full-time and we do only a light sport activity, and th€ communication window is encoded by means of two
hence we want to take a good rest at the Pub that eveninaiables,cws andcwe. In addition, a variable: is used to
Working full-time on Monday could have an impact on the encode the time point used as a reference. As for th€'set
working activity on Tuesday, where we could prefer part_of constraints, we have a soft constraint for each action in
time. Besides user’s preferences, the scheduling system hi'€ Plan, for instance th@Rl LL action is associated with
also to consider hard, global constraints. For instance, ththe following constraint:

user is required to work at least 30 hours a week, but at the:, , — (10 < dri, — dri, < 13] V [5 < drl, — drl, < 7]}
same time the user’s schedule has to include at least 5 hours .

of sport and at least one evening at the pub or at the moviesiowever, the only preferences one could specify would be
Thus, the user can ask the system what is the best scheddfose informally expressed by the order of the action modes
that maximizes her/his preferences while satisfying a#l th within the tables in Figure 2, that assign a preference with

Figure 4. Modes and expected durations of tasks.

hard constraints. each satisfied disjunct independently of what disjuncts are
satisfied for other constraints. Solving such a problems,thu

I1l. BACKGROUND would lead to a solution that does not take into account
A. DTPs and VDTPs the interactions among different choices in determining th

] ] preference of a global assignment.
A DTP is a pair(X,C) where each elemenk; € X

designates a time point, and each eleméntc C is a  B. Utility Difference Networks

constraint of the forne; ; V... V¢; »,, and each disjunat; ; Given a set of finite-domain variables = {A;, ..., 4, }

is of the forma; ; < X; ;— X ; <b;j, with X; ;, X] ; € X (attributeg, a multiattribute utility functionu(A,, ..., A,)

anda;;,b;,; € R. If each constrainC; € C consists of associates a numeric value with each assignment

exactly one disjunct, then the problem becomes a Simpl@, .. .q, to the attributes. Utility Difference Networks (UDN)

Temporal Problem (STP), whose consistency can be checkgdee [11], [13]) are a graphical representation of multiat-

in polynomial time with a minimum-distance algorithm for tribute utility functions that exhibit strong analogiesdan

graphs such as the Johnson algoritim. properties with the way Bayesian Networks (BN) represent
A VDTP is a tuple (X,C,S,y) where X, C' are as joint probability distributions.

in DTPs, while S and ¢ are defined as follows. The = UDNs introduce the notion of zeference valuea! for

valuation structureS is a tupleS = (E,®,~) where £ each attributed;. The notion ofreference utility functiorof

is a totally ordered (w.r.t-) set of valuationsthat can be a subset of attributeH C A is defined as:

combined with®, a closed, associative, and commutative —r

u.(H) =u(H,h)

1in the following, sets of variables are denoted as bolddaaapital h " is th f . tf iablEs —
letters, e.g.X; variables as indexed, capital letters, eX;, ;; and assign- where IS theé rererence assignment for varia -

ments to (sets of) variables as bold-faced lowercase lettegsx, x; ;. A\H. Based on.,., theconditional utility functionof subset



H1 given subseH2 is defined as: with the Most Probable Explanation (MPE) for Bayesian
Networks, we define the Most Preferred Completion (MPC)
of an assignmenh as:

The Conditional Independence relatiétD I, and the UDNs . —
are defined then as follows. MPC(h) = arg%nax(u(h’ h)).

Definition 1: [13] Let H,, Hy, H3 be subsets of at- _
tributes. SetH; is said to be Conditionally Independent Namely,PC(h) is the assignmerii that completesh and
of H, given Hs (denotedC DI, (Hy, H|Hs)) if for any yields a maximal utility. The computatioq of the MPC of a
assignmenhs € dom(Hs), u,(H1|Hz, h3) = u,(H1|hs). hypothesish can be performed by adapting algorithms for
Let A be a set of attributes. A Utility Difference Network computing the MPE of some evidence in a BN. We have

u,(H1|H2) = v, (H1,H2) — u,.(H2)

(UDN) is a DAG G = (A, E) such that: chosen to use the well known Jointree algorithm, which
is particularly well-suited to the reuse of cached partial
VA; € A CDI, (A, Co(A;)|Pa(A;)) results for the incremental computation of the MPC of a

new hypothesid’ (see the experiments in section VII).
Example 2:Let us consider again the planetary rover
UDNs decompose a multiattribute utility function into a scenario. TO modehl the prefer_e(;lce hvaI(;Jes aésom_ated with
sum in a similar way as BNs decompose a joint probability'ts constraints, we have to consider t ependencies among

distribution into a product, namely: them. In parucular, we can assume t_LL does not de-
pend on any previous action, but it does influeABAL YZE,
- which in turn influence<COMM On the other hand)RI VE
u(A) = 2”’“<Ai|Pa(Ai)) can be considered as independent of the other actions. Re-
o = - ) lying on these assumptions, in Figure 5 we sketch the UDN
i.e., in ordgr to compute the utility of an assignmarto the  for this problem: Each node corresponds to a constraint in
attributes, it is sufficient to sum the values of the refeeenc (- (including the hard constraint on the communication win-
utility functions of each family of the UDN. The values of qow); edges between nodes denote preference dependencies;
ur(A;|Pa(A;)) are specified in Conditional Utility Tables i, aqdition, in analogy to a Bayesian network, each node is
(CUT). associated with a CUT that defines the preferences for a

IV. GENERALIZING VDTPs T0 CDI-VDTPS constraint given its parent nodes.
. ) . . In this particular case, the utility network has three com-
A CDI-VDTP is an extension to VDTPs in which the

X ) : ponents. Two components a€g,., and C.,, representing
evaluation structures' and mappingy are substituted by @ yhe constraints associated with the drive action and the
Utility Difference Networkg, and a utility functionu over

communication window, respectively. Being roots, a ufilit
g value is directly assigned to each of their disjuncts. For

More formally, a CDI-VDTP is a tuple(X,Q,g,w, instance, the utility table associated wifly,, states that
where X and C' are as in a standard VDTP; whereas, . is generally preferred tdast In addition, since the

g = (A, E) is a directed acyclic graph representing a Utility ¢nstraint about the communication window is hard, it is
Difference Network such that: associated with two “fake modessatisfiedand unsatisfied
« A is the set of network nodes (attributes). For eachand the latter one has utilityco, meaning that any solution
constraintC; € C, there is an attributed; € A that violates the communication window constraint is not
s.t. dom(4;) consists of the se{c;1,...,cin,} Of  acceptable. The root of the third componentis;, which
disjuncts inC;; influences the constraird,,; associated with the analysis
« Eis asetof oriented edgésl;, 4;) such thatd;, A; €  action. In this case, the utility associated with each disju
A. The edges irE describe the dependencies amongin ¢,,, depends on the disjuncts that have been selected
the attributes over which one is interested in flndlng anfor its parents (onlyCg,.; in this example). This results in
assignment that maximizes the utility For instance, a CUT which looks like a Conditional Probability Table in
the edge(4;, A;), means that the selection of a value 3 Bayesian network. The particular table in the figure is to
for A; (disjunct for constrain€;) (possibly) affects the pe interpreted as follows; independently of how deep the
utility of the value selection ford; (i.e., disjunct for  drill operation is, there is a strong preference in perfoni
C;) for maximizing the global utility. test-1 however, if thetest-1is not possibletest-2 should
Thanks to the properties of UDNSs, the utility functianis be preferred when the drill action wagep whereadest-3
compactly represented as a set of reference utility funstio should be preferred when the drill wakallow Similarly,
ur(A;|Pa(4;)) for eachA; € A. In the following, we shall  C,,; affectsC..,, (i.e., the constraint associated with the
need to compute the maximum utility achievable given ancommunication). Note, in this case, that when the analysis
assignmenth to a subsefd C A of variables. In analogy was carried out with modest-1, the usage of modeh-1is

wherePa(A;) are the parents ol;, Dn(A;) are the descen-
dants of4;, andCo(A;) = A\({4;} U Pa(A;)UDn(A;)).



deep | 2

shallow | 1 slow | 2
Cdrl Cdrv fast | 1
| deep shallow
test-1 2 2
test-2| 1 0 C satisfied 1
test-3| 0 1 ‘vanl Cew  unsatisfied| —oo
| test-1 test-2 test-3
ch-1| -0 1 1
ch-2| 1 0 0 Ceom

Figure 5. The Utility Difference Network for the rover exarapl

solve-CDI-VDTP(h, mpc, H, lwb, A)

1.
if wtil < lwb then

NN REP R R B R R R R B
= O © N OO~ WDNPRO

practically forbidden. On the other hand, the usagefof

© NN

util < u(h, mpc)

return
end if
if H =0 then
if util > lwb then
A0
lwb < util
end if
A+~ AU{h}
return

. end if

. A; « select-attribute(H); H «+ H — {4;}
. modes <+ dom(A;)

. while modes # () do

m «+ select-modémodes); modes < modes\{m}
h' <~ hU{A4; < m}
if consistent’h’) then

solve-CDI-VDTP(h/, M PC(h'), H , lwb, A)
end if

. end while

Figure 6. The solve-CDI-VDTP algorithm.

Our search strategy is outlined in the algorithm in Figure
6. The algorithm takes as inputs:

o h: a (partial) assignment of modes to a subset of
attributesH, i.e., a (partial) hypothesis;

o mpc: the Most Preferred Completion f;

« H = A\H is the set of attributes whose mode has not
been assigned yet;

o [wb: the utility of the best solution found so far;

« A: the set of all the best solutions found so far.

It is worth noticing that, while the first three arguments
are passed by value, the last two arguments are passed by
reference. Thereby, any change made during an invocation
of solve-CDI-VDTP impacts all instances of the algorithm
possibly active on the stack. In particular, when the search
terminatesA contains the set of best solutions dng their
utility.

At each invocation, the algorithm determines the upper
bound of the utility achievable by completing the current
(partial) solutionh (line 1), and checks whether it is lower
than the best one so far (line 2); if yes, such a branch is not
useful so it is pruned with the return statement. Otherwise,
the algorithm checks whether there are still variables to be
assigned (line 5): ifH is empty, then all attributes have
been assigned ankl is a complete solution. At this stage,
the algorithm checks whether the new complete solution is
better than any other solution found so far (lines 6-9); | th
positive casejwb is updated to be the utility df, andA is
emptied as all the solutions found so far were not optimal.
In any caseh is added toA (line 10).

In caseh is still a partial solution, the algorithm tries to
get closer to a solution by selecting an attribute from
H (line 13). Then the algorithm considers each mode
in dom(A;) (lines 15-21), in the order determined by func-
tion select-modg(line 16), and generates new hypotheses
from them. In particular, for eacln € dom(A;), a new

should be preferred when the analysis was conducted eithéypothesidh’ is obtained by adding the assignmeht« m

with test-2or test-3mode.
It is worth noting that at this stage of development,is then verified by means of functiotonsistent(line 18),

we assume that the utility values indicated in these tablethat performs a consistency check on the STP induced

result from information provided by the problem designer,by the modes inh’. Finally, function solve-CDI-VSDPis

who takes into account features of the rover that are notecursively invoked over the new hypothehisand the new

explicitly addressed by the temporal problem. For exampleset of unassigned variabl@ (line 19).

the preference on a slow drive could be motivated by security The choice of the next attribute/mode to assign (calls

reasons; whereas the preference of the usagb-afto ch-2

to h. The temporal consistency of the new hypothdsis

to select-attributeand select-modg can benefit from the

could depend on the fact that the second mode is morgeuristics established for DTP solving [14], such as carflic
resource consuming.

V. SOLVING CDI-VDTPs

directed backjumping, removal of subsumed variables, se-
mantic branching, and no-good recording. However, in ad-
dition to such standard techniques, the choice of the next

To solve a CDI-VDTP problem we adopt a strategy modem to try for an attributeA; can be determined by
similar to the one proposed in [10]. The strategy recurgivel exploiting mpec. In particular, ifmpec = M PC(h) assigns
proceeds in a depth-first manner, and branches are prunedode m,,,. to attribute A, which is chosen next, that
whenever their utility is guaranteed to fall below the cdst o should be the first mode to try fod;, since it maximizes
the best (i.e., maximal) solution found so far.

the utility according to the UDN. Note that, in general,



anal yze-type:

given a hypothesih there may be several completions that agent-type: rover
maximize the utility, that may assign different modes4p nodes:

; ; - {label: test-1, Ib: 7, ub: 9, rank: 3}
If the MPC computation is able to return all of them, the C Hlabel. test.2 Ib 4 ub 5 rank 2)
calls to select-modeshould return them before the other - {label: test-3, Ib: 3, ub: 4 rank: 1}
modes ofA4;. condi ti oned- by:

Since there is no room for a detailed computational L il -type:
analysis of the algorithm, we refer to [15] where we analyze S 12 2
a similar branch-and-bound approach, and show that the - El, O%
- [0, 1

complexity is exponential in the number of the attributes.
Example 3:Let us go back to the simple mission plan rigure 7. Fragment of YAML encoding the UDN for the Rover Domain
given in Figure 1, and consider a first scenario in which the
communication window opens at 35 and closes at 50 time
units. Such a global constraint is not particularly strimgfer ~ of the graph data structure. On digilan and UDN are
the plan. In fact, the CDI-VDTP algorithm finds a scheduleconvenientely encoded in the YAML format (Yet Another
satisfying all the preferences with their maximal utility; Markup Language), which achieves a fairly good level of
more precisely, the modes associated with actions are duman-readability without being too verbose. A fragment of
follows: ( DRI LL: deep, ( DRI VE: slow), ( ANALYZE:  the YAML representation of the UDN for the Rover domain
test-1, and { COMM ch2. It is easy to see that even in shown in Figure 7; note that the CUT table specifies the
when all these actions take the longest possible time, theonditional preferences of the mode ANALYZEgiven the
communication action would occur from time 38 to 48. Onmode of DRILL (as given in Figure 5). A companion tool
the other hand, if we consider the communication windowof the scheduler, written in Java, is able to automatically
[30, 45], the algorithm has to save some time, e.g., bygenerate specificases from theUDN and plan files, thus
performing a shallow drill. The lack of time has also an allowing the creation of test cases of different sizes fer th
impact on the usage of chanm2 that, despite not being experiments (section VII).
the preferred one in case of a shallow drill, is required to While Graph.pmis used to represent and manipulate
meet the window. Thus, in this scenario the best assignmentdans and UDNs, the STPs that are built during the search
would be:( DRI LL: shallow), ( DRI VE: slow), ( ANALYZE:  process and checked for consistency (line 18 in Figure 6) are

test-3, and( COMM ch2). represented using another module from CPAN, namely the
Boost::Graph.pnmodule. Such a module is a Perl wrapper
VI. SCHEDULING TooL for the well known C++ Boost Graph Library (BGL), which

We have implemented the approach described in this papenakes the consistency checks much faster than in pure Perl.
as a scheduling tool written in Perl 5.16. The main inputs As an output, the tool computesl of the preferred as-
to the tool are: signments of modes to actions which satisfy the constraints

+ a UDN that defines theaction types(e.g., analyze- and preferences specified in the inpUSN, plan, andcase
typa, their modes(e.g., thetest-1 mode for analyze, Each of such assignments is actually a flexible schedule,
which takes[7,9] time units), and the (conditionally where the start of each action corresponds to an interval of
independent) preferences associated with such modegllowed values. The derivation of a specific schedule from

. aplan that defines the actual actions (e.g., there mayhe output of the tool can be made efficiently off-line (e.g.,
be two actionsANALYZEland ANALYZE2of type DY picking as the start time of each action the lower bound
analyze-typp and the precedence constraints amongPf its interval), or dynamically during plan execution (¢.9
them (e.g., actioNALYZE1must follow DRILL1) deciding the start time of an action only after the actions

. a specificcase specifying additional constraints that Preceding it have terminated).
only apply to the scheduling problem under considera- Vi
tion; such constraints consist in the time of occurrence

of certain events (e.g., teNALYZElaction mustend ~ Since the CDI-VDTP is a new type of problem, not di-
within 20 time units from the start of the mission) rectly comparable with previous approaches on VDTPs and

or modes associated with actions (e.g., MALYZE2 DTPPs, we set out experiments for assessing the feasibility
action must be performed iest-2mode) and scalability of our methodology. The tests have been run

on a virtual machine running Linux Ubuntu 12.04, equipped
with an i7 M640 CPU at 2.80 GHz, and 4 GB RAM.
We have considered the two domains sketched in the ex-
amples, namely Planetary Rové&®\{) and CalendarGAL).
2Comprehensive Perl Archive Network, a global archive of user Figure 8 shows the UDN structures we have adopted to
contributed, open source Perl modules. generate test cases of increasing sizes for the two domains.

. EXPERIMENTAL RESULTS

Both the plan and UDN are represented in memory as
directed graphs by exploiting th&raph.pmmodule from
CPAN?, a very flexible and feature rich Perl implementation



c1 DRV1 c2 DRV2 Table |
- ° CHARACTERISTICS OF THE TEST SET3SiFOR THEROVER (TOP) AND

ow CALENDAR (BOTTOM) DOMAINS.

AN1 . AN2 naw
RV #len #tks #vars #c-cfg #c-cs  #edgs
TS1 10 40 84 142 7 29
DRLL DRL2 > TS2 20 80 164 282 14 59
TS3 30 120 244 422 21 89
P1 P2 P3 P4

TS2 20 72 146 236 14 94

/\wm
\ / TS3 30 107 216 351 21 141
PRJ2

Figure 8. The UDNs for the Rover Domain (top) and Calendar Domai
(bottom). the two domains, the number of tasks (and thus of variables,

since each task requires a start and an end variable) isrhighe
for RV.

Table I also reports the numb#gc-cfg of constraints that

s /N M2 oo, P3 M34 SPA/N CAL  #len #tsks #vars #c-cfg #c-cs  #edgs
P1
A TS1 10 37 76 119 7 42
WK1 \WKZ WK3
PRJ1

In particular, for the RV domain, the UDN consists of

a number of repetitions of the structure discussed in the

. : apply to any configuration of task modes in the given test set.
example above (Figure 5), connected by influences betwe . . . .
. S . For theRVdomain, they include a min and max duration for
the drill actions; namely, we have made the assumption

that the choice of the mode for a drill (deep, shallow) will each task, plus precedence constraints and two constraints

influence the choice for the next drill (e because drillsdefining the communication window (e.g., 142 constraints
g for the test seRV.TS] Finally, Table | reports the number

are made close to each other, and similar choices are usual(l)\f edges in the UDNs used in the test sets. This statistic is

made). For the CAL domain, we have considered a StrlJCturgignificantly higher for the&CAL domain, witnessing a higher

capturing some of the possible influences mentioned in the . ?
X . . . : complexity of the preference structure w.r.t. fR& domain.

example: the time spent working and doing sport influences _

the willingness to go to the pub, and the choice on when to We have run the test cases in each test set. Table Il shows

go to the movies. Then, we have connected such structures {8€ average of the following statistics:

projects PRJ that we can decide to work on, that influence

the daily workload (and can overlap).

We have generated three test s@iS] TS2 and TS3
of increasing scale for each domain. Table | reports théNote that each test set has been solved both with and
following characteristics of each test set: without activating caching in the algorithm used in the

« length len of the problems, expressed in terms of computation of the Most Preferred Completions (see section
number of drills (RV domain) or days (CAL domain) |V)- Moreover, for each test case we have computed all of

« number#tsksof tasks to allocate and numbivarsof  the preferred solutions.
variables Looking at the results obtainedth the use of caching, we

« number#c-cfgof temporal constraints for any specific observe a good performance in both domains. Even the test
configuration of modes andc-cs of additional con- setsRV.TS3and CAL.TS3that have hundreds of variables,

« time/sol time to compute a solution;
« #sols number of preferred solutions found.

straints that change for each test case constraints and influence edges between preferences can find
« #edgesf the UDN describing the dependencies amongeach preferred solution in a very reasonable amount of time.
constraints In general, even if the corresponding test s&&i have

The number of task#tskscorresponds to the number of More tasks, variables and constraints in B\édomain, the
disjunctive temporal constraints in the test cases; fomexa Performance achieved fdRV is generally better than that
ple, a case belonging to test-RYV1.TS1(i.e., test sefrs1  achieved forCAL This is easily explained by the fact that
of domainRV) needs to assign a mode to 40 tasks, namely=AL has more complex preference structures, that make the
the four tasks DRILL, ANALYZE DRIVE, and COMM) — many MPC computations more expensive.
associated with each of the 10 drills. Similarly, a case Finally, we note that caching reduces very significantly
belonging to test-seEAL.TS1needs to assign a mode to 37 the time needed for finding a solution in both domains. In
tasks: three tasks for each d&yRORT WORK andPUB), particular, in theCAL domain, such a reduction is between
plus five movies and two projects. Note that, considerings7% and72% for the three test sets; in tH&V domain it is
the pairs of corresponding test s&®¥.TSi(i = 1,...,3) in between57% and and62%.



Table 1l
AVG TIME/SOL (SEC), AND NUMBER OF SOLS FOR THEROVER (TOP)
AND CALENDAR (BOTTOM) DOMAINS.

RV TS1 TS2 TS3
cache [ yes| no [ yes| no yes no
time/sol | 26 | 6.1 | 88 | 23.3| 154 | 409

#sols 3 3.8 3.7
CAL TS1 TS2 TS3
cache | yes| no | yes no yes no

time/sol | 2.1 | 6.4 | 11.8 | 40.0 | 22.2 | 77.9
#sols 4.2 2.1 2.9

VIII. CONCLUSIONS
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(1]

(2]

(3]

In this paper we addressed the problem of synthesizing

a flexible schedule taking into account soft constraings,(i.

preferences). Our approach goes beyond previous methodl#]
ologies on disjunctive temporal problems since it is capabl

of dealing with temporal preferences that are oobndi-
tionally independent of one another.

The paper contributions are twofold. On the one side, the
paper presented a formal methodology, named CDI-VDTP,

(5]

(6]

which extends the VDTP formulation [10] of temporal
problems with the notion of Conditional Difference Indepen
dence. CDI-VDTP enables a user to take advantage of the”]
causal dependencies between the preferences associtdted wi
the constraints, and to define an objective function shaped

over a Utility Difference Network (UDN), in which each

(8]

node corresponds to a constraint and (oriented) edges be-

tween nodes represent causal dependencies. Solving a CDI-

VDTP, thus, consists in computing solutions whose utility

is optimal; this can be achieved by exploiting algorithms [9]
which are similar to those used for computing probabilities

in a Bayesian network, but applied to the UDN.

On the other side, the paper also presented a tool whichyj
relying on a branch-and-bound algorithm, enables a user
to submit and solve CDI-VDTPs by exploring the space
of possible solutions. Results collected by a preliminary[ll]
implementation have been discussed, and show that the
proposed solution is actually feasible even for quite large

problems.

As a future work, we intend to further extend the CD

1. [12]

VDTP formulation with the addition of a set of variables
that, although included within the UDN, are not associated
with temporal constraints. The rationale would be to explic

ity model via these variables aspects of the domain und
consideration that might affect the preference values of a
subset of constraints. For instance, in the planetary rover
scenario, the level of battery power could be representeti4]
explicitly within the UDN by means of a specific variable;
such a variable could then affect the duration of actions suc

as drive, depending on the assumed level of power. Task$15]
such as planning and diagnosis could exploit such a richer

formulation to create expectations or verify hypotheses.
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