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Abstract—It is well known that the problem of finding
a feasible schedule for a partially ordered set of tasks can
be formulated as a Disjunctive Temporal Problem (DTP). In
case we want to find a schedule by taking preferences into
account, there exist extensions to DTPs that augment them by
associating numeric costs to the violation of individual temporal
constraints; however, such extensions make the restrictive
assumption that the costs associated with constraints are
independent of one another. In this paper we propose a further
extension, which enables the designer to specify (directional)
dependencies between the preferences associated with the con-
straints. Such preferences are represented by exploiting Utility
Difference Networks (UDNs), that define objective functions
whose structure reflects conditional independencies among the
nodes of the network. The paper describes the branch-and-
bound algorithm at the core of the scheduling tool we have
implemented for solving this new class of problems. We also
present and discuss encouraging experimental results collected
in two different test domains.
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I. I NTRODUCTION

Since the seminal work by Dechter et al. [1], Temporal
Constraint Satisfaction Problems (TCSPs) have drawn the
attention of several AI researchers, and many problem
formulations have been proposed ever since. In particular,
the notion of Disjunctive Temporal Problems (DTPs) [2]
has been introduced to overcome the limits of Simple
Temporal Problems (STPs) [1] by enabling the specification
of temporal constraints consisting of disjuncts, each of which
represents a temporal interval within which legal solutions
can be found. This class of problems is expressive enough to
model scheduling problems [3], as well as other problems of
interest in AI (e.g., diagnosis [4], [5]). In [6], [7] the notion
of flexible scheduleis introduced. Differently from a usual
scheduling, in a flexible schedule tasks are not associated
with precise starting and ending times, but with intervals
within which they can take place.

Research on DTPs has recently been focused on how to
address temporalpreferences(i.e., soft constraints). Intu-
itively, a soft constraint allows one to express preferences
on the distance between any two time points. For instance,
in a calendar management scenario [8], relevant time points
are reasonably the start and end times of the activities to be
scheduled. Soft constraints can therefore be used to express

the preference that some activities should last as long as
possible, or that the distance between the ending of an
activity and the starting of the subsequent one should be
minimized. While solving an STP or a DTP usually comes
down to verifying the satisfiability of the (hard) constraints
specified in the problem, solving a temporal problem with
preferences requires to find an assignment of values to the
time points that not only satisfies all the hard constraints,but
also maximizes a given objective function defined over the
soft constraints. Two main problem formulations taking into
account preferences have been proposed in the literature:
the Disjunctive Temporal Problem with Preferences (DTPP)
[9], and the Valued Disjunctive Temporal Problem [10].
Both formulations, however, assume that the preferences (or
costs) associated with the constraints are independent of one
another. Such an assumption may prove to be too stringent
in many applicative domains where dependencies among
constraints could even beconditional: The best choice for
satisfying a constraint might be independent on choices for
the other constraintsgiven the choices for a limited set of
constraints.

Surprisingly, the problem of taking into account condi-
tional dependencies among constraints has received little
attention, so far. To the best of our knowledge, only in [8]
the authors propose the Multi-Criteria extension to DTPPs
(MC-DTPP).

In this paper we propose a scheduling tool dealing with
preferences in a flexible way. From our point of view, the
flexibility is achieved by associating tasks with durations
expressed as intervals. Differently from previous approaches
to flexible scheduling ([6], [7]), we do not rely on STPs,
but on DTPs. More precisely, since our goal is to deal
with preferences on such task durations, we propose a novel
extension to DTPs which is suitable to capture a different
kind of dependency.

We consider the VDTP formulation as our starting point,
and complement it with a Utility Difference Network (UDN)
[11] that allows for the definition of structured objective
functions based on the notion ofconditional difference
independence(CDI), after which we name our extended
problem formulationCDI-VDTP. Thanks to such conditional
independencies, the computation of the utility of (partial)
solutions explored during the search for an optimal solution
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Figure 1. A segment of a rover plan.

turns out to be very similar to how probabilities are com-
puted from a Bayesian network.

After motivating our proposal with two examples (section
II), we recall background information (section III). In section
IV we formally define CDI-VDTPs, and in section V we
propose a way to solve them by extending a state-of-the-art
algorithm for VDTPs with the optimization of UDN-based
preferences. Section VI describes the main characteristics of
the scheduling tool we have developed for solving this new
class of problems, while section VII presents experimental
results.

II. M OTIVATING EXAMPLES

Let us present two simple examples illustrating the prac-
tical role of the extended preferences we propose.

A. Planetary Rover

First, we consider a simplified planetary rover scenario as
the one discussed in [12], and assume that a mission designer
is finalizing the mission that a rover has to carry out.

The mission plan has already been outlined, and Figure
1 shows a small portion of interest; edges between actions
represent precedence links: Once the rover has collected a
soil sample by means of theDRILL action, it ANALYZEs
the sample and moves (DRIVE) to a position suitable for
uploading (COMM) the collected data. The analysis and the
movement could be carried on simultaneously. The designer
has to decide the mode with which the activities in the plan
segment have to be completed. Such a decision has to be
made balancing the quality and accuracy with which some
activities are performed, against the time these activities take
to be successfully completed. Specifically, for each actionin
the plan, a set of action modes and corresponding duration
intervals are defined; modes and intervals are summarized in
Figure 2. Further inputs for the designer’s decision making
process are also global hard constraints and preferences. The
designer has in fact to take into account that the action
COMM, must be performed within a communication window,
which opens over a precise period. The communication
window is a hard constraint since it depends on the position
of a satellite functioning as relay, and hence it is outside
the control of the mission designer. Moreover, some activity
modes are usually more preferred than others. For instance,
it is usually preferred, and wiser, to perform a drive action
in a slow mode; however, the fast mode can be used, if
necessary, to avoid missing the communication window. In
the tables of Figure 2, the modes of each action, considered

DRIVE
slow [15, 25]
fast [8, 13]

DRILL
deep [10, 13]

shallow [5, 7]

COMM
chn-1 [10, 15]
chn-2 [7, 10]

ANALYZE
test-1 [7, 9]
test-2 [4, 5]
test-3 [3, 4]

Figure 2. Modes and expected durations of tasks.
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Figure 3. A fragment of a working week calendar.

individually, are ordered from the most preferred down to
the least preferred.

The challenge for the designer who has to select a
mode for each action arises when we consider the different
actions as being part of the same mission. In such a case,
the preferred mode for an action might depend on the
mode already selected for another action. For instance, a
scientist would prefer to always drill with modalitydeep,
because such a mode usually enables the collection of more
interesting samples. On the other hand, when such samples
are collected, it is preferable to analyze them with modality
test-1which is the most accurate one. Both modes, however
are very time consuming; moreover the amount of data
produced by means oftest-1 mode is usually huge; this
impacts the communication, since in that case the 2-channel
mode ch-2 would be preferable, even though the general
preference is to usech-1 mode (see Figure 2).

B. Personal Calendar

Let us now consider a simple case of personal calendar
management, similar to the one discussed in [8]. The idea
is to help a user in the allocation of her/his tasks over a
working week, taking into account both personal preferences
and global constraints. In our example, the user can be
involved in four different activities: work, doing some sport,
going to the pub, or watching a movie. Of course, the user
can be involved in only one of these activities at a time.
Figure 3 shows a fragment of the work-week calendar of a
sample user, whose Monday plan includes: work (WKm), do
some sport (SPm), and (possibly) go to the pub (PB) or to
the movies (MV). On Tuesday, the user’s plan encompasses:
working (WKt), doing sport (SPt), and possibly going to the
movies if she/he did not go on Monday.

Similarly to the rover example, for each task there are
some alternatives on how long and/or when the task should
be performed. Figure 4 summarizes the possible modes for



WORK
full [8, 10]
part [4, 5]

SPORT
heavy [2, 3]

medium [1, 2]
light [0, 1]

PUB
yes [2, 3]
no [0, 0]

MOVIES
opt-1 Monday 9pm
opt-2 Tuesday 9pm

Figure 4. Modes and expected durations of tasks.

each task, ordered from the most preferred to the least
preferred. Note that the Pub is an optional activity as its
minimal duration is 0. Moreover, the preferences associated
with the Movies activity are not on the duration of the
movie (which is assumed to be 2 hours), but on the day;
in our case, Monday is preferred to Tuesday. Note that the
preferred mode for a task might depend on the mode already
selected for another one. For instance, although in general
we might prefer to go to the Movies on Monday because it
is cheaper, we might prefer to go on Tuesday if on Monday
we work full-time and we do only a light sport activity, and
hence we want to take a good rest at the Pub that evening.
Working full-time on Monday could have an impact on the
working activity on Tuesday, where we could prefer part-
time. Besides user’s preferences, the scheduling system has
also to consider hard, global constraints. For instance, the
user is required to work at least 30 hours a week, but at the
same time the user’s schedule has to include at least 5 hours
of sport and at least one evening at the pub or at the movies.
Thus, the user can ask the system what is the best schedule
that maximizes her/his preferences while satisfying all the
hard constraints.

III. B ACKGROUND

A. DTPs and VDTPs

A DTP is a pair 〈X, C〉 where each elementXi ∈ X

designates a time point, and each elementCi ∈ C is a
constraint of the formci,1∨ . . .∨ci,ni

, and each disjunctci,j
is of the formai,j ≤ Xi,j−X

′

i,j ≤ bi,j , with Xi,j , X
′

i,j ∈ X

and ai,j , bi,j ∈ ℜ. If each constraintCi ∈ C consists of
exactly one disjunct, then the problem becomes a Simple
Temporal Problem (STP), whose consistency can be checked
in polynomial time with a minimum-distance algorithm for
graphs such as the Johnson algorithm.1

A VDTP is a tuple 〈X, C, S, ϕ〉 where X, C are as
in DTPs, while S and ϕ are defined as follows. The
valuation structureS is a tupleS = 〈E,⊛,≻〉 whereE

is a totally ordered (w.r.t.≻) set of valuationsthat can be
combined with⊛, a closed, associative, and commutative

1In the following, sets of variables are denoted as bold-faced, capital
letters, e.g.,X; variables as indexed, capital letters, e.g.,Xi,j ; and assign-
ments to (sets of) variables as bold-faced lowercase letters, e.g.x, xi,j.

binary operator onE. Mappingϕ : C → E assigns a cost
e ∈ E with (the violation of) each constraintC ∈ C. In the
weightedVDTP, structureS is 〈ℜ+ ∪ {∞},+, >〉 and the
function to minimize is:

cost(x) =
∑

i

{ϕ(Ci)|violates(x, Ci)}

i.e., it is simply the sum of the costs of the constraints
violated by an assignmentx to the temporal variablesX.

We can slightly modify the definition of VDTPs in order
to specify preferences instead of costs, and to define a
preference valueϕ(.) for each disjunctci,j of each constraint
Ci. Such a modified definition is equivalent to the standard
one, but we adopt it in the following because it better suits
the form of our scheduling problems.

Example 1:The planetary rover example above (as the
calendar example) could actually be encoded as a (modified)
VDTP. The set of temporal variablesX consists of a pair
of variables for each action in the plan, denoting the start
and end time of the action itself. For instance, given action
DRILL, two variablesdrls anddrle are included inX. Also
the communication window is encoded by means of two
variables,cws and cwe. In addition, a variablez is used to
encode the time point used as a reference. As for the setC

of constraints, we have a soft constraint for each action in
the plan, for instance theDRILL action is associated with
the following constraint:

Cdrl = {[10 ≤ drle − drls ≤ 13] ∨ [5 ≤ drle − drls ≤ 7]}

However, the only preferences one could specify would be
those informally expressed by the order of the action modes
within the tables in Figure 2, that assign a preference with
each satisfied disjunct independently of what disjuncts are
satisfied for other constraints. Solving such a problem, thus,
would lead to a solution that does not take into account
the interactions among different choices in determining the
preference of a global assignment.

B. Utility Difference Networks

Given a set of finite-domain variablesA = {A1, . . . , An}
(attributes), a multiattribute utility functionu(A1, . . . , An)
associates a numeric value with each assignmenta =
a1. . .an to the attributes. Utility Difference Networks (UDN)
(see [11], [13]) are a graphical representation of multiat-
tribute utility functions that exhibit strong analogies and
properties with the way Bayesian Networks (BN) represent
joint probability distributions.

UDNs introduce the notion of areference valuear
i

for
each attributeAi. The notion ofreference utility functionof
a subset of attributesH ⊆ A is defined as:

ur(H) = u(H,h
r

)

where h
r

is the reference assignment for variablesH =
A\H. Based onur, theconditional utility functionof subset



H1 given subsetH2 is defined as:

ur(H1|H2) = ur(H1,H2)− ur(H2)

The Conditional Independence relationCDIr and the UDNs
are defined then as follows.

Definition 1: [13] Let H1, H2, H3 be subsets of at-
tributes. SetH1 is said to be Conditionally Independent
of H2 given H3 (denotedCDIr(H1,H2|H3)) if for any
assignmenth3 ∈ dom(H3), ur(H1|H2,h3) = ur(H1|h3).
Let A be a set of attributes. A Utility Difference Network
(UDN) is a DAG G = (A,E) such that:

∀Ai ∈ A : CDIr(Ai, Co(Ai)|Pa(Ai))

wherePa(Ai) are the parents ofAi, Dn(Ai) are the descen-
dants ofAi, andCo(Ai) = A\({Ai}∪Pa(Ai)∪Dn(Ai)).
UDNs decompose a multiattribute utility function into a
sum in a similar way as BNs decompose a joint probability
distribution into a product, namely:

u(A) =
n∑

i=1

ur(Ai|Pa(Ai))

i.e., in order to compute the utility of an assignmenta to the
attributes, it is sufficient to sum the values of the reference
utility functions of each family of the UDN. The values of
ur(Ai|Pa(Ai)) are specified in Conditional Utility Tables
(CUT).

IV. GENERALIZING VDTPS TO CDI-VDTPS

A CDI-VDTP is an extension to VDTPs in which the
evaluation structureS and mappingϕ are substituted by a
Utility Difference NetworkG, and a utility functionu over
G.

More formally, a CDI-VDTP is a tuple〈X, C,G, u〉,
where X and C are as in a standard VDTP; whereas,
G = 〈A,E〉 is a directed acyclic graph representing a Utility
Difference Network such that:

• A is the set of network nodes (attributes). For each
constraint Ci ∈ C, there is an attributeAi ∈ A

s.t. dom(Ai) consists of the set{ci,1, . . . , ci,ni
} of

disjuncts inCi;
• E is a set of oriented edges〈Ai, Aj〉 such thatAi, Aj ∈

A. The edges inE describe the dependencies among
the attributes over which one is interested in finding an
assignment that maximizes the utilityu. For instance,
the edge〈Ai, Aj〉, means that the selection of a value
for Ai (disjunct for constraintCi) (possibly) affects the
utility of the value selection forAj (i.e., disjunct for
Cj) for maximizing the global utility.

Thanks to the properties of UDNs, the utility functionu is
compactly represented as a set of reference utility functions
ur(Ai|Pa(Ai)) for eachAi ∈ A. In the following, we shall
need to compute the maximum utility achievable given an
assignmenth to a subsetH ⊆ A of variables. In analogy

with the Most Probable Explanation (MPE) for Bayesian
Networks, we define the Most Preferred Completion (MPC)
of an assignmenth as:

MPC (h) = argmax
h

(u(h,h)).

Namely,MPC (h) is the assignmenth that completesh and
yields a maximal utility. The computation of the MPC of a
hypothesish can be performed by adapting algorithms for
computing the MPE of some evidence in a BN. We have
chosen to use the well known Jointree algorithm, which
is particularly well-suited to the reuse of cached partial
results for the incremental computation of the MPC of a
new hypothesish′ (see the experiments in section VII).

Example 2:Let us consider again the planetary rover
scenario. To model the preference values associated with
its constraints, we have to consider the dependencies among
them. In particular, we can assume thatDRILL does not de-
pend on any previous action, but it does influenceANALYZE,
which in turn influencesCOMM. On the other hand,DRIVE
can be considered as independent of the other actions. Re-
lying on these assumptions, in Figure 5 we sketch the UDN
for this problem: Each node corresponds to a constraint in
C (including the hard constraint on the communication win-
dow); edges between nodes denote preference dependencies;
in addition, in analogy to a Bayesian network, each node is
associated with a CUT that defines the preferences for a
constraint given its parent nodes.

In this particular case, the utility network has three com-
ponents. Two components areCdrv and Ccw, representing
the constraints associated with the drive action and the
communication window, respectively. Being roots, a utility
value is directly assigned to each of their disjuncts. For
instance, the utility table associated withCdrv states that
slow is generally preferred tofast. In addition, since the
constraint about the communication window is hard, it is
associated with two “fake modes”,satisfiedandunsatisfied,
and the latter one has utility−∞, meaning that any solution
that violates the communication window constraint is not
acceptable. The root of the third component isCdrl, which
influences the constraintCanl associated with the analysis
action. In this case, the utility associated with each disjunct
in Canl depends on the disjuncts that have been selected
for its parents (onlyCdrl in this example). This results in
a CUT which looks like a Conditional Probability Table in
a Bayesian network. The particular table in the figure is to
be interpreted as follows; independently of how deep the
drill operation is, there is a strong preference in performing
test-1; however, if thetest-1 is not possible,test-2 should
be preferred when the drill action wasdeep, whereastest-3
should be preferred when the drill wasshallow. Similarly,
Canl affects Ccom (i.e., the constraint associated with the
communication). Note, in this case, that when the analysis
was carried out with modetest-1, the usage of modech-1 is



CdrvCdrl

Canl

Ccom

Ccw

deep 2
shallow 1

deep shallow
test-1 2 2
test-2 1 0
test-3 0 1

test-1 test-2 test-3
ch-1 -∞ 1 1
ch-2 1 0 0

slow 2
fast 1

satisfied 1
unsatisfied −∞

Figure 5. The Utility Difference Network for the rover example.

solve-CDI-VDTP(h,mpc,H, lwb,∆)
1. util← u(h,mpc)
2. if util < lwb then
3. return
4. end if
5. if H = ∅ then
6. if util > lwb then
7. ∆← ∅
8. lwb← util

9. end if
10. ∆← ∆ ∪ {h}
11. return
12. end if
13. Ai ← select-attribute(H); H

′

← H− {Ai}
14. modes← dom(Ai)
15. while modes 6= ∅ do
16. m← select-mode(modes); modes← modes\{m}
17. h′ ← h ∪ {Ai ← m}
18. if consistent(h′) then
19. solve-CDI-VDTP(h′,MPC(h′),H

′

, lwb,∆)
20. end if
21. end while

Figure 6. The solve-CDI-VDTP algorithm.

practically forbidden. On the other hand, the usage ofch-1
should be preferred when the analysis was conducted either
with test-2or test-3mode.

It is worth noting that at this stage of development,
we assume that the utility values indicated in these tables
result from information provided by the problem designer,
who takes into account features of the rover that are not
explicitly addressed by the temporal problem. For example,
the preference on a slow drive could be motivated by security
reasons; whereas the preference of the usage ofch-1 to ch-2
could depend on the fact that the second mode is more
resource consuming.

V. SOLVING CDI-VDTPS

To solve a CDI-VDTP problem we adopt a strategy
similar to the one proposed in [10]. The strategy recursively
proceeds in a depth-first manner, and branches are pruned
whenever their utility is guaranteed to fall below the cost of
the best (i.e., maximal) solution found so far.

Our search strategy is outlined in the algorithm in Figure
6. The algorithm takes as inputs:

• h: a (partial) assignment of modes to a subset of
attributesH, i.e., a (partial) hypothesis;

• mpc: the Most Preferred Completion ofh;
• H = A\H is the set of attributes whose mode has not

been assigned yet;
• lwb: the utility of the best solution found so far;
• ∆: the set of all the best solutions found so far.

It is worth noticing that, while the first three arguments
are passed by value, the last two arguments are passed by
reference. Thereby, any change made during an invocation
of solve-CDI-VDTP impacts all instances of the algorithm
possibly active on the stack. In particular, when the search
terminates∆ contains the set of best solutions andlwb their
utility.

At each invocation, the algorithm determines the upper
bound of the utility achievable by completing the current
(partial) solutionh (line 1), and checks whether it is lower
than the best one so far (line 2); if yes, such a branch is not
useful so it is pruned with the return statement. Otherwise,
the algorithm checks whether there are still variables to be
assigned (line 5): ifH is empty, then all attributes have
been assigned andh is a complete solution. At this stage,
the algorithm checks whether the new complete solution is
better than any other solution found so far (lines 6-9); in the
positive case,lwb is updated to be the utility ofh, and∆ is
emptied as all the solutions found so far were not optimal.
In any case,h is added to∆ (line 10).

In caseh is still a partial solution, the algorithm tries to
get closer to a solution by selecting an attributeAi from
H (line 13). Then the algorithm considers each modem

in dom(Ai) (lines 15-21), in the order determined by func-
tion select-mode(line 16), and generates new hypotheses
from them. In particular, for eachm ∈ dom(Ai), a new
hypothesish′ is obtained by adding the assignmentAi ← m

to h. The temporal consistency of the new hypothesish′

is then verified by means of functionconsistent(line 18),
that performs a consistency check on the STP induced
by the modes inh′. Finally, function solve-CDI-VSDPis
recursively invoked over the new hypothesish′ and the new
set of unassigned variablesH

′

(line 19).
The choice of the next attribute/mode to assign (calls

to select-attributeand select-mode) can benefit from the
heuristics established for DTP solving [14], such as conflict-
directed backjumping, removal of subsumed variables, se-
mantic branching, and no-good recording. However, in ad-
dition to such standard techniques, the choice of the next
modem to try for an attributeAi can be determined by
exploitingmpc. In particular, ifmpc = MPC(h) assigns
mode mmpc to attribute Ai which is chosen next, that
should be the first mode to try forAi, since it maximizes
the utility according to the UDN. Note that, in general,



given a hypothesish there may be several completions that
maximize the utility, that may assign different modes toAi.
If the MPC computation is able to return all of them, the
calls to select-modeshould return them before the other
modes ofAi.

Since there is no room for a detailed computational
analysis of the algorithm, we refer to [15] where we analyze
a similar branch-and-bound approach, and show that the
complexity is exponential in the number of the attributes.

Example 3:Let us go back to the simple mission plan
given in Figure 1, and consider a first scenario in which the
communication window opens at 35 and closes at 50 time
units. Such a global constraint is not particularly stringent for
the plan. In fact, the CDI-VDTP algorithm finds a schedule
satisfying all the preferences with their maximal utility;
more precisely, the modes associated with actions are as
follows: 〈 DRILL: deep〉, 〈 DRIVE: slow〉, 〈 ANALYZE:
test-1〉, and 〈 COMM: ch2〉. It is easy to see that even
when all these actions take the longest possible time, the
communication action would occur from time 38 to 48. On
the other hand, if we consider the communication window
[30, 45], the algorithm has to save some time, e.g., by
performing a shallow drill. The lack of time has also an
impact on the usage of channelch2 that, despite not being
the preferred one in case of a shallow drill, is required to
meet the window. Thus, in this scenario the best assignments
would be:〈 DRILL: shallow〉, 〈 DRIVE: slow〉, 〈 ANALYZE:
test-3〉, and〈 COMM: ch2〉.

VI. SCHEDULING TOOL

We have implemented the approach described in this paper
as a scheduling tool written in Perl 5.16. The main inputs
to the tool are:

• a UDN that defines theaction types(e.g., analyze-
type), their modes(e.g., thetest-1 mode for analyze,
which takes[7, 9] time units), and the (conditionally
independent) preferences associated with such modes

• a plan that defines the actual actions (e.g., there may
be two actionsANALYZE1and ANALYZE2of type
analyze-type) and the precedence constraints among
them (e.g., actionANALYZE1must follow DRILL1)

• a specificcase, specifying additional constraints that
only apply to the scheduling problem under considera-
tion; such constraints consist in the time of occurrence
of certain events (e.g., theANALYZE1action must end
within 20 time units from the start of the mission)
or modes associated with actions (e.g., theANALYZE2
action must be performed intest-2mode)

Both the plan and UDN are represented in memory as
directed graphs by exploiting theGraph.pmmodule from
CPAN 2, a very flexible and feature rich Perl implementation

2Comprehensive Perl Archive Network, a global archive of user-
contributed, open source Perl modules.

analyze-type:
agent-type: rover
modes:
- {label: test-1, lb: 7, ub: 9, rank: 3}
- {label: test-2, lb: 4, ub: 5, rank: 2}
- {label: test-3, lb: 3, ub: 4, rank: 1}
conditioned-by:
- drill-type:
cut:
- [2, 2]
- [1, 0]
- [0, 1]

Figure 7. Fragment of YAML encoding the UDN for the Rover Domain.

of the graph data structure. On disk,plan and UDN are
convenientely encoded in the YAML format (Yet Another
Markup Language), which achieves a fairly good level of
human-readability without being too verbose. A fragment of
the YAML representation of the UDN for the Rover domain
in shown in Figure 7; note that the CUT table specifies the
conditional preferences of the mode ofANALYZEgiven the
mode ofDRILL (as given in Figure 5). A companion tool
of the scheduler, written in Java, is able to automatically
generate specificcases from theUDN and plan files, thus
allowing the creation of test cases of different sizes for the
experiments (section VII).

While Graph.pm is used to represent and manipulate
plans and UDNs, the STPs that are built during the search
process and checked for consistency (line 18 in Figure 6) are
represented using another module from CPAN, namely the
Boost::Graph.pmmodule. Such a module is a Perl wrapper
for the well known C++ Boost Graph Library (BGL), which
makes the consistency checks much faster than in pure Perl.

As an output, the tool computesall of the preferred as-
signments of modes to actions which satisfy the constraints
and preferences specified in the inputsUDN, plan, andcase.
Each of such assignments is actually a flexible schedule,
where the start of each action corresponds to an interval of
allowed values. The derivation of a specific schedule from
the output of the tool can be made efficiently off-line (e.g.,
by picking as the start time of each action the lower bound
of its interval), or dynamically during plan execution (e.g.,
deciding the start time of an action only after the actions
preceding it have terminated).

VII. E XPERIMENTAL RESULTS

Since the CDI-VDTP is a new type of problem, not di-
rectly comparable with previous approaches on VDTPs and
DTPPs, we set out experiments for assessing the feasibility
and scalability of our methodology. The tests have been run
on a virtual machine running Linux Ubuntu 12.04, equipped
with an i7 M640 CPU at 2.80 GHz, and 4 GB RAM.

We have considered the two domains sketched in the ex-
amples, namely Planetary Rover (RV) and Calendar (CAL).
Figure 8 shows the UDN structures we have adopted to
generate test cases of increasing sizes for the two domains.
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Figure 8. The UDNs for the Rover Domain (top) and Calendar Domain
(bottom).

In particular, for the RV domain, the UDN consists of
a number of repetitions of the structure discussed in the
example above (Figure 5), connected by influences between
the drill actions; namely, we have made the assumption
that the choice of the mode for a drill (deep, shallow) will
influence the choice for the next drill (e.g., because drills
are made close to each other, and similar choices are usually
made). For the CAL domain, we have considered a structure
capturing some of the possible influences mentioned in the
example: the time spent working and doing sport influences
the willingness to go to the pub, and the choice on when to
go to the movies. Then, we have connected such structures to
projects (PRJ) that we can decide to work on, that influence
the daily workload (and can overlap).

We have generated three test setsTS1, TS2 and TS3
of increasing scale for each domain. Table I reports the
following characteristics of each test set:

• length len of the problems, expressed in terms of
number of drills (RV domain) or days (CAL domain)

• number#tsksof tasks to allocate and number#varsof
variables

• number#c-cfgof temporal constraints for any specific
configuration of modes and#c-cs of additional con-
straints that change for each test case

• #edgesof the UDN describing the dependencies among
constraints

The number of tasks#tskscorresponds to the number of
disjunctive temporal constraints in the test cases; for exam-
ple, a case belonging to test-setRV1.TS1(i.e., test setTS1
of domainRV) needs to assign a mode to 40 tasks, namely
the four tasks (DRILL, ANALYZE, DRIVE, and COMM)
associated with each of the 10 drills. Similarly, a case
belonging to test-setCAL.TS1needs to assign a mode to 37
tasks: three tasks for each day (SPORT, WORK, andPUB),
plus five movies and two projects. Note that, considering
the pairs of corresponding test setsRV.TSi(i = 1, . . . , 3) in

Table I
CHARACTERISTICS OF THE TEST SETSTSiFOR THEROVER (TOP) AND

CALENDAR (BOTTOM) DOMAINS.

RV #len #tks #vars #c-cfg #c-cs #edgs

TS1 10 40 84 142 7 29

TS2 20 80 164 282 14 59

TS3 30 120 244 422 21 89

CAL #len #tsks #vars #c-cfg #c-cs #edgs

TS1 10 37 76 119 7 42

TS2 20 72 146 236 14 94

TS3 30 107 216 351 21 141

the two domains, the number of tasks (and thus of variables,
since each task requires a start and an end variable) is higher
for RV.

Table I also reports the number#c-cfgof constraints that
apply to any configuration of task modes in the given test set.
For theRVdomain, they include a min and max duration for
each task, plus precedence constraints and two constraints
defining the communication window (e.g., 142 constraints
for the test setRV.TS1). Finally, Table I reports the number
of edges in the UDNs used in the test sets. This statistic is
significantly higher for theCAL domain, witnessing a higher
complexity of the preference structure w.r.t. theRV domain.

We have run the test cases in each test set. Table II shows
the average of the following statistics:

• time/sol: time to compute a solution;
• #sols: number of preferred solutions found.

Note that each test set has been solved both with and
without activating caching in the algorithm used in the
computation of the Most Preferred Completions (see section
IV). Moreover, for each test case we have computed all of
the preferred solutions.

Looking at the results obtainedwith the use of caching, we
observe a good performance in both domains. Even the test
setsRV.TS3and CAL.TS3that have hundreds of variables,
constraints and influence edges between preferences can find
each preferred solution in a very reasonable amount of time.
In general, even if the corresponding test setsTSi have
more tasks, variables and constraints in theRV domain, the
performance achieved forRV is generally better than that
achieved forCAL. This is easily explained by the fact that
CAL has more complex preference structures, that make the
many MPC computations more expensive.

Finally, we note that caching reduces very significantly
the time needed for finding a solution in both domains. In
particular, in theCAL domain, such a reduction is between
67% and72% for the three test sets; in theRV domain it is
between57% and and62%.



Table II
AVG TIME /SOL (SEC), AND NUMBER OF SOLS FOR THEROVER (TOP)

AND CALENDAR (BOTTOM) DOMAINS.

RV TS1 TS2 TS3
cache yes no yes no yes no

time/sol 2.6 6.1 8.8 23.3 15.4 40.9
#sols 3 3.8 3.7

CAL TS1 TS2 TS3
cache yes no yes no yes no

time/sol 2.1 6.4 11.8 40.0 22.2 77.9
#sols 4.2 2.1 2.9

VIII. C ONCLUSIONS

In this paper we addressed the problem of synthesizing
a flexible schedule taking into account soft constraints (i.e.,
preferences). Our approach goes beyond previous method-
ologies on disjunctive temporal problems since it is capable
of dealing with temporal preferences that are onlycondi-
tionally independent of one another.

The paper contributions are twofold. On the one side, the
paper presented a formal methodology, named CDI-VDTP,
which extends the VDTP formulation [10] of temporal
problems with the notion of Conditional Difference Indepen-
dence. CDI-VDTP enables a user to take advantage of the
causal dependencies between the preferences associated with
the constraints, and to define an objective function shaped
over a Utility Difference Network (UDN), in which each
node corresponds to a constraint and (oriented) edges be-
tween nodes represent causal dependencies. Solving a CDI-
VDTP, thus, consists in computing solutions whose utility
is optimal; this can be achieved by exploiting algorithms
which are similar to those used for computing probabilities
in a Bayesian network, but applied to the UDN.

On the other side, the paper also presented a tool which,
relying on a branch-and-bound algorithm, enables a user
to submit and solve CDI-VDTPs by exploring the space
of possible solutions. Results collected by a preliminary
implementation have been discussed, and show that the
proposed solution is actually feasible even for quite large
problems.

As a future work, we intend to further extend the CDI-
VDTP formulation with the addition of a set of variables
that, although included within the UDN, are not associated
with temporal constraints. The rationale would be to explic-
itly model via these variables aspects of the domain under
consideration that might affect the preference values of a
subset of constraints. For instance, in the planetary rover
scenario, the level of battery power could be represented
explicitly within the UDN by means of a specific variable;
such a variable could then affect the duration of actions such
as drive, depending on the assumed level of power. Tasks
such as planning and diagnosis could exploit such a richer
formulation to create expectations or verify hypotheses.
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