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Abstract. We consider recent successful techniques proposed for neural network train-
ing that set randomly the weights from input to hidden layer, while weights from hid-
den to output layer are analytically determined by Moore-Penrose generalised inverse.
This study aims to analyze the impact on performances when the completely random
sampling of the space of input weights is replaced by a local search procedure over
a discretized set of weights. The performances of the proposed training methods are
assessed through computational experience on several UCI datasets.
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1. Introduction

In the past two decades methods based on gradient descent have largely been
used for training of one of the most used architectures, the single hidden layer
feedforward neural network (SLFN). The start-up of these techniques assigns
random values to the weights connecting input, hidden and output nodes; such
values are then iteratively modified, as for the traditional backpropagation algo-
rithms (Rumelhart et al, 1996).

Recently some non-iterative procedures based on the evaluation of general-
ized pseudoinverse matrices (see for instance (Huang et al, 2006) with Extreme
Learning Machine — ELM, (Halawa, 2011) and special issues on Soft Comput-
ing, (Wang et al, 2012) and the International Journal of Uncertainty, Fuzziness
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and Knowledge-Based Systems, (Wang, 2013)) have received considerable atten-
tion in computational intelligence and machine learning communities in both
theoretical study and applications. Unlike the traditional algorithms in which
weights are adjusted iteratively, in such framework input weights and hidden
layer biases are randomly generated, usually according to a uniform distribu-
tion in the interval [-1, 1], and output weights analytically determined using
Moore-Penrose generalized inverse.

Many application-oriented studies in the last years established the effective-
ness of pseudoinversion-basedmethods; some are described for example in (Nguyen
et al, 2010; Kohno et al, 2010; Ajorloo et al, 2007).

Pseudoinversion based methods are claimed to solve the well known problem
concerning the slow learning speed of the traditional backpropagation methods,
avoiding the necessity of tuning the network parameters. i.e. input and output
weights. In (Huang et al, 2006) a pseudoinversion method (specifically, ELM)
is reported to be from 10 up to 100 times faster than backpropagation. The
superior speed of pseudoinversion based methods is further shown in (Deng et
al, 2009; Martinez-Martinez et al, 2011). Hence we focus this study mainly on
pseudoinversion based methods.

The problem of the possible convergence to poor local minima is handled
by repeatedly applying the method with a number of random initializations
(multistart), thereby obtaining a sampling “at large” of the landscape of the
error function.

In the field of combinatorial optimization, a popular alternative to the mul-
tistart approach is the so-called “local search”. Local search algorithms often
work in (but are not limited to) discrete search spaces, generating an improving
sequence of solution points, say y1,y2 . . . ,yk, . . . where each point yk is drawn
from a (finite) set of neighbour solutions N(yk−1); the definition of the neigh-
bourhood structure N(·) basically determines the behaviour of the algorithm.
For an excellent survey we refer the reader to (Aarts and Lenstra, 2003).

The aim of this paper is to study the practical effect of replacing the com-
pletely random sampling of the space of input weights used by pseudoinversion-
based methods with a more sophisticated exploration, guided by a local search
procedure in a discrete (or discretized) set of solutions. We experimentally show
that, while keeping the computational effort substantially unchanged, the multi-
start technique in pseudoinversion-based methods can be effectively replaced by
local search, leading to gains in performances.

The paper is organized as follows. We recall main ideas on SLFN learning by
pseudoinversion in section 2; in section 3 we describe the local search technique.
Finally in section 4 we report results comparing weights setting and local search
strategies.

2. Training by pseudoinversion

In this section we introduce notation and we recall basic idea concerning the
use of generalized inverse for neural training. In a typical setting, we consider a
standard SLFN (see Fig. 1) with P input neurons, M hidden neurons, Q output
neurons (labeled o in the figure) and nonlinear activation function Φ in the hidden
layer. The output layer is assumed to have linear activation functions. A dataset
of N training samples consisting of input instances x1,x2, . . . ,xN ∈ R

P , along
with respective desired outputs t1, t2, . . . , tN ∈ R

Q is given; we arrange the xj ’s
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Fig. 1. A Single Layer Feedforward Neural Network

and tj ’s in twoN -row matricesX ∈ R
N×P and T ∈ R

N×Q. The training problem
consists of finding matrices of input weights C = (cij : i = 1, . . . ,M, j = 1, . . . , P )
and output weights W = (wij : i = 1, . . . ,M, j = 1, . . . , Q) in order to

minimize
C,W

E(C,W ) = ‖Φ(XC)W − T ‖22, (1)

which is the so-called training error function.
The classical pseudoinversion-based approach to the training problem is based

on the following simple key observation. If the matrix of input weight C is fixed,
problem (1) reduces to the unconstrained, convex optimization problem

minimize
W

ED(W ) = ‖HW − T ‖22, (2)

where H = Φ(XC) is now fixed. For given C, problem (2) is known to be
optimally solved by

W ∗ = H+T, (3)

where H+ ∈ R
N×M is the Moore-Penrose generalized pseudoinverse. An ap-

proximated (heuristic) solution for problem (1) is then computed by randomly
generating (from a uniform distribution in [−1, 1]) a number of C matrices and
taking among them the one that delivers the minimum ED.

Since most learning problems are ill-posed, instead of directly using eq. (3)
often regularization methods have to be used (Badeva and Morosov, 1991; Cancel-
liere et al, 2015) to turn the original problem into a well-posed one. Tikhonov reg-
ularization is one of the most common (Tikhonov and Arsenin, 1977; Tikhonov,
1963), and leads to solve

minimize
W

ED(W ) + ER(W ) = ||HW − T ||22 + λ||W ||22. (4)

The regularised solution Ŵ that minimises the error functional in (4) has the
form (see e.g. (Fuhry et al, 2012)):

Ŵ = (HTH + λI)−1HTT . (5)

According to a vast experience, regularization not only improves on stability,
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but also contains model complexity avoiding overfitting, as largely discussed in
(Gallinari and Cibas, 1999). Applications to different neural network models are
discussed for instance in (Poggio and Girosi, 1990; Girosi et al, 1995; Haykin,
1999).

In our work we always utilise regularised pseudoinversion; direct non-iterative
application of eq. (5) for output weights determination will be referred to as
PINV technique (PINV is therefore used as a shortening for pseudoinversion).
Input weights setting is discussed in section 4.

3. Enhancing training by local search

We elaborated on the framework of pseudoinversion-based learning, proposing a
local search procedure that generates a sequence of input weightsC1, C2, . . . , Ck, . . .
such that Ck ∈ N(Ck−1) and Ê(Ck) < Ê(Ck−1) where Ê(C) is the error com-
puted on a suitable validation set V :

Ê(C) = ‖Φ(V C)Ŵ − TV ‖22 + λ‖Ŵ‖22 (6)

with

Ŵ = argmin
W

{

‖Φ(XC)W − T ‖22 + λ‖W‖22
}

. (7)

Ŵ is computed accordingly with Section 2. The structure of the neighbourhood
N(·) largely determines the behaviour of the procedure. We define a discrete
neighbourhood N(C) made up of all matrices C′ that can be obtained by per-
muting a pair of distinct rows of C. Other neighborhood definitions are obviously
possible. It is usually reasonable to select the neighbour C′ ∈ N(C) for which

Ê(C′) is minimum; this is called a best-improve neighbourhood exploration.
Anyway a single neighbourhood of C containsM(M−1)/2 matrices, meaning

O(M2) pseudoinversions that need to be computed, and this can be considered
computationally too heavy for many applications. We then implemented a so-
called first-improve variant of local search where the neighbourhood exploration
is terminated as soon as an improving neighbour has been generated. The routine
moves through such neighbourhoods as shown in Procedure LS.

At the k-th iteration, the neighbors C′ ∈ N(Ck) of the current solution Ck

are generated and the corresponding value of validation error Ê(C′) is computed.

As soon as a neighbour with Ê(C′) < Ê(Ck) is found the neighbourhood ex-
ploration is interrupted and C′ becomes the new current solution in the next
iteration. A full neighbourhood exploration is performed only when no neigh-
bour solution is better than the current one (i.e., Ck is locally optimal). Each
neighbor C′ is obtained by a “small perturbation” of Ck, still the perturbation
is not taken along the gradient direction and the search can avoid the very small
improvements that cramp the basic gradient-descent procedures. Instead, the
landscape of the function Ê is sampled with a wider step, without a completely
random restart. The rationale behind this is that we would like to pursue ex-
ploration of the landscape “not too far” from a point that can be perceived as
a good solution, exploiting locality in the search. Anyway, similarly to what is
done with the basic pseudoinversion approaches, a multistart application of the
local search procedure is recommended for better performances: after a region
of the landscape of Ê has been explored, a random restart can drive the search
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towards a different region, that would not be reachable only through exploration
of neighborhoods, providing what is usually called “diversification” of the search.

In order to handle the classification problems, some care has to be taken.
Indeed, the landscape of the misclassification error often exhibits large plateaus,
so it’s very difficult to improve a solution (i.e., changing plateau) switching only
two rows per time. To avoid this problem we have introduced in the LS procedure
a second level error function: we measure the RMSE between the target tuple
and the network output. We accept the new solution if the misclassification error
is lower or if the misclassification error is equal but the RMSE is decreased.

4. Experimental investigation

In this section we report results of some numerical experiments performed on the
twelve benchmark datasets from the UCI repository (Asuncion and Newman,
2007) listed in Table 1. We investigate neural networks with the architecture
shown in Fig. 1 having sigmoidal hidden neuron activation function Φ. The
number of input and output neurons is determined by dataset features.

All simulations are carried out in Matlab 7.3 environment.
Founding on the results obtained in (Rubini et al, 2014), we also investi-

gated the effectivness of initializing inputs weigths C not only with the standard
uniform-random setting, but also using random projections.

The random mapping is a tool developed to treat high dimensional data
reducing the complexity.

The theoretical basis of this method come for from the Johnson-Lindenstrauss
lemma (Johnson and Lindenstrauss, 1984): if a set of points in a vector space
is projected onto a randomly selected subspace of suitable dimension, then the
distances between each points are approximately preserved in the new space.

Procedure LS(C,X, T, V, TV λ)

input : An initial M × P matrix of input weights C, a training set
X = (xj : j = 1, . . . , N) with desired output T = (tj : j = 1, . . . , N), a
validation set V with desired output TV , the regularization parameter λ.

output: An improved M × P matrix of input weights Ck and related output weights
W k

Set k := 1;

Set Ck := C, compute W k = argmin
W

{

‖Φ(XCk)W k − T‖22 + λ‖W k‖22
}

and

Ê(Ck) := ‖Φ(V Ck)W k − TV ‖22 + λ‖W k‖22;
repeat

Set Improved := false;

for C′ ∈ N(Ck) do

Compute W ′ = argmin
W

{

‖Φ(XC′)W − T‖22 + λ‖W‖22
}

and

Ê(C′) := ‖Φ(V C′)− TV ‖22 + λ‖W ′‖22;

if Ê(C′) < Ê(Ck) then

Set Ck+1 := C′, W k+1 := W ′;
Set Improved := true;
break;

Set k := k + 1;
until not Improved;

return Ck, W k;
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Table 1. The UCI datasets and their characteristics. (a) size of regression
datasets, and (b) size of classification datasets with class numbers and fre-
quencies.

Dataset Instances Attributes

Abalone 4177 8
Mach. Cpu 209 6
Delta Ail. 7129 5
Housing 506 13
Concrete Compressive Strength 1030 9
Combined Cycle Power Plant 9568 4

(a)

Dataset Instances Attribs. Classes num. Classes freqs.

Iris 150 4 3
50
50
50

Diabetes 768 8 2
268
500

Landsat 4435 36 7

1072
479
961
415
470
0

1038

Statlog 2310 19 7

330
330
330
330
330
330
330

Transfusion 748 5 2
178
570

Wine 178 13 3
59
71
48

(b)

We can see the projection as a linear transformation as in the next equation,

XRP
N×K = XN×PCP×K (8)

where XN×P is the original set of N P -dimensional data, CP×K the random
entries matrix of dimensions P ×K and XRP

N×K are the mapped data onto the
new K-dimensional space.

Some different random projections have been proposed in literature. For in-
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stance entries of C can be randomly sampled from a gaussian distribution, but
this is by no means a constraint of the method. Achlioptas (Achlioptas, 2001)
has recently shown that the gaussian distribution can be replaced by a much
simpler distribution, such as:

cij =
√
3 ·

{

+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(9)

that will be named sparse in this context.
In (Rubini et al, 2014) we performed three series of experiments where the

input weights and biases are selected according to (i) a conventional strategy,
where cij is sampled from a uniform random distribution in the interval [−1, 1]
or (ii) using random projection matrices belonging to two different types, respec-
tively with elements cij gaussian distributed, with mean value zero and variance
1 or sparsely distributed according to eq.(9). Note that eq.(9) corresponds to
restricting each hidden node to processing only a subset of the inputs.

Because the random projection approach turned out to be the winner in
almost all cases, we retain this approach also for local search test.

4.1. Testing the local search

We performed a series of experiments in order to compare the relative strenghts
of the PINV approach vs a local-search enhanced approach (LS). We randomly
partitioned the datasets in a 2/3 training set, a 1/6 validation set and a 1/6
test set. The regularization parameter λ and the hidden layer size NH have
been calibrated through a 3-fold cross-validation scheme over the training set.
We recall that the local search procedure at each neighbourhood exploration is
driven by the descent of the validation error Ê defined by eq. (6). Referring to
Procedure LS we note that, if C is a random projection, any neighbour C′ ∈ N(C)
generated by swapping rows is still a valid random projection. In order to limit
more effectively the computation time, we anyway terminate the local search
after a prefixed number of neighbours have been evaluated; we set such limit to
2000 after some preliminary experiment. The limit has been reached in less than
7% of the runs.

We tested the PINV approaches against LS ones. For a fair comparison we ran
the two kinds of method as follows. We first ran the LS based learning starting
from a random initial configuration of input weights, also counting the number S
of neighbor solutions generated during the execution of the procedure. We then
ran S executions of the PINV learning method, collecting error values obtained
on the test set after each executon and averaging them over the S executions.
This way both methods sample S times the landscape of the error function. Then
we compute the test error for both models. In order to perform a statistically
significative comparison the above procedure was repeated 15 times: we experi-
mentally verified that in this way the sample size was large enough to obtain the
statistical significance within an acceptable computational cost. We compared
LS and PINV approaches with uniform, gaussian and sparse initializations. The
main results are collected in Table 2 for regression datasets and Table 3 for clas-
sification datasets; average errors (either RMSE or misclassfication percentages)
obtained on the test set are reported. The comparison is made evaluating the
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Table 2. LS vs. PINV: regression datasets.

Dataset Type Method RMSE

Avg StD NH λ

Abalone
Sparse PINV 2.1624 0.0079 150 7 · 10−2

Sparse LS 2.1595 0.0051 150 7 · 10−2

Mach. Cpu
Sparse PINV 58.312 1.1461 100 3 · 10−1

Sparse LS 58.695 1.5371 100 3 · 10−1

Delta Ail.
Unif. PINV 1.541 · 10−4 4 · 10−7 100 1 · 10−3

Unif LS 1.154 · 10−4 5 · 10−7 100 1 · 10−3

Housing
Unif. PINV 2.8031 0.1449 150 2 · 10−2

Unif. LS 2.7636 0.0967 150 2 · 10−2

Co. Co. Strength
Gauss PINV 6.268 0.31441 150 9 · 10−3

Gauss LS 6.3288 0.34324 150 9 · 10−3

CCPP
Gauss PINV 2.0656 0.00093921 150 7 · 10−2

Gauss LS 2.0654 0.0006321 150 7 · 10−2

winning approach (either PINV or LS), then comparing it against its counterpart
with the same initialization, requiring a confidence level of 95% unless otherwise
stated.

From the table, we can make the following observations.

(i) In 6 out of 12 cases the best-performing LS approach is significantly better
than the corresponding PINV approach with the same initialization. For
the Abalone and Housing datasets, statistical significance is achieved with
a 90% and 80% confidence level respectively. For the remaining 6 datasets
LS achieves a lower error in 2 cases, whereas in 4 cases PINV delivers a
lower error; anyway, because of the absence of statistical significance, these
results have to be considered as draws.

(ii) In all but two cases (namely Delta Ailerons and Housing), the best per-
forming LS method employs a random projection initialization.

The running times of both approaches were substantially equivalent.

5. Conclusions

The discussed results support our previous findings that initializing input weights
by random projection matrices in a PINV based training can lead to significant
performance improvements with respect to current practice, where uniformly dis-
tributed random weights are used. Taking a step further, we added a local search
phase relying on a combinatorial-style neighbourhood definition that allows to
locally explore the error surface along different directions with respect to the
classical gradient-based algorithms. This allows to gain additional improvement
over the basic approach with random projections. The local search framework is
quite flexible, and several variants can be tried in order to improve performances.
We recall that several types of neighbourhoods can be designed and implemented
— swapping rows is just a possibility. Also, we adopted the first-improve neigh-
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Table 3. LS vs. PINV: classification datasets.

Dataset Type Method Err%

Avg StD NH λ

Iris
Sparse PINV 0.8 1.6562 50 6 · 10−2

Sparse LS 0.0 0.0000 50 6 · 10−2

Diabetes
Sparse PINV 22.552 0.7738 150 5 · 10−2

Sparse LS 21.458 1.0592 150 5 · 10−2

Landsat
Gauss. PINV 9.9729 0.5463 500 3 · 10−1

Gauss. LS 10.3070 0.5004 500 3 · 10−1

Wine
Sparse PINV 1.1494 2.1283 150 9 · 10−1

Sparse LS 1.6092 1.7807 150 9 · 10−1

Transfusion
Gauss PINV 24.194 1.4933 100 1 · 10−5

Gauss LS 24.032 1.0647 100 1 · 10−5

Segment
Sparse PINV 3.4978 0.35215 500 9 · 10−3

Sparse LS 3.0996 0.59284 500 9 · 10−3

Table 4. Learning times for local search

Dataset NH Time (s.)

Abalone 150 8.455
Mach. Cpu 100 0.168
Delta Ail. 100 0.950
Housing 150 3.510
Concrete Compressive Strength 150 1.399
Combined Cycle Power Plant 150 2.149
Iris 50 0.040
Wine 150 0.545
Diabetes 150 1.271
Landsat 500 787.5
Transfusion 100 0.221
Segment 50 191.1

bourhood exploration strategy for reducing the computational load. For certain
applications it could be viable to revert to the best-improve neighbourhood ex-
ploration.

We report in Table 4 the average learning times required by the tests with
the local search procedure. The multistart PINV approach requires substantially
equivalent times; this is a consequence of how the tests were designed, so that
in order to get a fair comparison both procedures perform the same number of
pseudoinversions. Reducing the number of trials (and time) for PINV makes the
error figures grow significantly. We did not attempt a detailed comparison with
computation times of a classical backpropagation procedure, since we rest on the
results of (Huang et al, 2006; Deng et al, 2009; Martinez-Martinez et al, 2011);
anyway in a number of tests performed on the largest datasets (for instance
Landsat) with a traditional backpropagation procedure the learning time almost
doubled while testing errors raised significantly.
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Adding some search device on top of a PINV based approach is an idea that
has been tested for example in (Zhu et al, 2005), where the so-called differential
evolution technique is coupled with ELM. A quick comparison on the common
datasets reported in (Zhu et al, 2005) shows that the local search approach is
simpler and yet competitive, delivering comparable performances.
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