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ABSTRACT 

The neuronal ceroid lipofuscinoses (NCLs) are hereditary neurodegenerative disorders 

characterized by progressive declines in neurological functions, seizures, and premature death.  

NCLs result from mutations in at least 13 different genes.  Canine versions of the NCLs can serve 

as important models in developing effective therapeutic interventions for these diseases.  NCLs 

have been described in a number of dog breeds, including Chihuahuas.  Studies were undertaken 

to further characterize the pathology of Chihuahua NCL and to verify its molecular genetic basis. 

Four unrelated client owned Chihuahuas from Japan, Italy and England that exhibited progressive 

neurological signs consistent with a diagnosis of NCL underwent neurological examinations.  Brain 

and in some cases also retinal and heart tissues were examined postmortem for the presence of 

lysosomal storage bodies characteristic of NCL.  The affected dogs exhibited massive 

accumulation of autofluorescent lysosomal storage bodies in the brain, retina and heart 

accompanied by brain atrophy and retinal degeneration.  The dogs were screened for known 

canine NCL mutations previously reported in a variety of dog breeds.  All 4 dogs were homozygous 

for the MFSD8 single base pair deletion (MFSD8:c.843delT) previously associated with NCL in a 

Chinese Crested dog and in 2 affected littermate Chihuahuas from Scotland.  The dogs were all 

homozygous for the normal alleles at the other genetic loci known to cause different forms of 

canine NCL.  The MFSD8:c.843delT mutation was not present in 57 Chihuahuas that were either 

clinically normal or suffered from unrelated diseases or in 1761 unaffected dogs representing 186 

other breeds.  Based on these data it is almost certain that the MFSD8:c.843delT mutation is the 

cause of NCL in Chihuahuas.  Because the disorder occurred in widely separated geographic 

locations or in unrelated dogs from the same country, it is likely that the mutant allele is widespread 

among Chihuahuas.  Genetic testing for this mutation in other Chihuahuas is therefore likely to 

identify intact dogs with the mutant allele that could be used to establish a research colony that 

could be used to test potential therapeutic interventions for the corresponding human disease. 
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1. Introduction 

The neuronal ceroid lipofuscinoses (NCLs) are inherited progressive neurodegenerative 

diseases characterized by progressive declines in motor and cognitive functions, seizures, and 

vision loss [1].  Most forms of human NCL culminate in premature death.  In affected patients, 

normal early development is followed by onset of clinical signs at ages ranging from infancy to 

adulthood.  Human NCLs result from mutations in one of 13 genes, designated CLN1 through 

CLN14 (no mutation associated with CLN9 has been identified).  Almost all cases exhibit an 

autosomal recessive pattern of inheritance [1].  The NCLs are a class of lysosomal storage 

diseases (LSDs), distinguished from the many other LSDs by the accumulation of storage 

material with distinct autofluorescence and ultrastructural properties and the predominance of 

proteins among the material that accumulates in the storage bodies [1-13]. 

Canine NCLs have been reported to result from mutations in the canine orthologs of 8 of 

the 13 known human NCL genes [14].  Phenotypic signs of NCL have also been reported in 

additional breeds for which the molecular genetic bases are not yet known [15-22].  Of the 

canine NCL mutations, 2 distinct CLN8 mutations have been reported in English Setters and 

Australian Shepherds [23, 24], whereas identical CLN5 mutations have been found in Border 

Collies and Australian Cattle Dogs [25, 26].  Recently a mutation in MFSD8  (the gene 

associated with CLN7 disease) initially identified in a Chinese Crested dog with NCL [27] was 

reported in 2 NCL-affected littermate Chihuahuas [28].  Some other previously described canine 

NCL mutations have been identified only in either a single dog or an isolated line [23, 24, 29], 

whereas for some canine NCLs, the mutant allele has been found to be quite common in the 

affected breed [30, 31].  Making a distinction between these 2 possibilities is important in 

providing breeders advice on whether to screen their dogs for the mutant allele and in 

evaluating the potential for identifying dogs with the mutant alleles that could be used for 

breeding to develop research models.  Therefore, a study was undertaken to better characterize 

the NCL phenotype in the Chihuahua disease, to confirm the association between the MFSD8 
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mutation and the disease, and determine whether this mutation is restricted to a single line of 

dogs or is more widespread in the breed.  
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2.  Materials and Methods 

2.1 Subject dogs 

Four Chihuahuas that exhibited similar progressive neurological signs were evaluated for 

this study.  Two of these were unrelated longhaired dogs from Japan that were previously 

reported to have suffered from NCL [35].  Also evaluated were short-haired Chihuahuas from 

Italy and England (Figure 1) that exhibited clinical signs with a progression similar to those of 

the dogs from Japan.  Descriptions of the clinical disease signs are included in the Results 

section of this paper.  There were no known relationships between any of the affected 

Chihuahuas evaluated in this study.  For molecular genetic analyses, in addition to the DNA 

from the 4 clinically affected Chihuahuas, we utilized archived DNA samples from 1818 dogs 

that were either clinically normal or suffered from an unrelated disease (see below for details).  

All procedures involving animals were reviewed and approved by the University of Missouri 

Animal Care and Use Committee and were performed in compliance with the EU Directive 

2010/63/EU for animal experiments and were approved by the University of Missouri Animal 

Care and Use Committee.  All samples utilized in this study were obtained with the owners’ 

consent.  Euthanasias were performed using standard protocols for clinical practice in the 

countries in which the dogs were euthanized.  
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2.2 Histopathology and electron microscopy 

Brain histopathology in the Japanese cases was described previously [35]. Brain, eye and 

heart tissues were collected from the Italian Chihuahua at necropsy performed shortly after 

euthanasia.  The eyes were enucleated and the corneas removed immediately.  One eye from 

each dog was placed in a fixative consisting of 3.5% formaldehyde, 0.05% glutaraldehyde, 120 

mM sodium cacodylate, 1mM CaCl2, pH 7.4 (immuno fix), and the other eye was placed in 2.5% 

glutaraldehyde, 100 mM sodium cacodylate, pH 7.4 (EM fix).  Likewise, slices of the cerebral 

cortex, cerebellum and heart ventricle wall were each placed in the same fixatives shortly after 

euthanasia.  Samples were incubated in these fixatives at room temperature until being further 

processed for microscopic examination.  Prior to further processing, the eyecups were dissected 

 

Figure 1.  Photographs of the subject dogs from Italy (A) and England (B).  The dogs 
exhibited the typical conformations of short-haired Chihuahuas. 

 

A B 
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to obtain regions from the posterior poles adjacent to the optic nerve heads, and these regions 

were used for examination. 

Slices of each of these tissues were processed, embedded and frozen for cryostat 

sectioning.  The tissues were incubated with gentle agitation successively in 170mM sodium 

cacodlylate buffer, pH 7.4, 10% sucrose in the cacodylate buffer, 25% sucrose in the cacodylate 

buffer, and a 1:1 mixture of the 25% sucrose solution and Tissue-Tek (Sakura Fintek, Torrance, 

CA) for a minimum of 30 minutes each.   The samples were then transferred to cryomolds filled 

with Tissue-Tek, incubated at 40C for 40 minutes then frozen on a block of dry ice.  Cryostat 

sections of each of these tissues were cut at a thickness of 8 m, mounted on Superfrost Plus 

slides (Fisher Scientific, Fairlawn, NJ) in 170mM sodium cacodylate.  The sections were 

examined and photographed using fluorescence microscopy as previously described [32] 

except that images were acquired using an Olympus DP72 color digital camera.   

Pieces of the tissue samples that had been fixed in 2.5% glutaraldehyde were post-fixed 

with osmium tetroxide and embedded in epoxy resin.  Sections of the embedded tissues were 

cut on an ultramicrotome at thicknesses of 0.5 to 0.8 m, mounted on glass slides and stained 

with toluidine blue.  Areas of interest were identified by microscopic examination of these 

sections, and the blocks were trimmed to remove tissue from outside the areas of interest.  

Sections were then obtained from the trimmed blocks at thicknesses of 70 to 90 nm.  The latter 

sections were mounted on 200 mesh copper thin-barred grids, stained with uranyl acetate and 

lead citrate, and were then examined and photographed using a JEOL 1400 transmission 

electron microscope. 

Slices of immuno--fixed cerebellum from a normal 3 year old Beagle and from the Italian 

Chihuahua were embedded in paraffin.  Four µm thick sections of these tissues were mounted 

on positively charged glass slides, deparffinized, and immunostained with an antibody directed 

against glial fibrillary acid protein (GFAP) as described previously [27].  Slides were 
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counterstained in hematoxylin (Biocare Medical) at a 1:10 dilution for 5 min followed by a Tris-

buffered rinse, dehydrated, coverslipped, and then imaged with light microscopy. 

 

2.3 Molecular genetic analyses 

Genomic DNA was isolated from EDTA-anticoagulated whole blood or buccal swabs of 

each of the dogs as described previously [23, 33].  The NCL-affected Chihuahua from Italy was 

genotyped for previously reported NCL-causing mutations in TPP1, PPT1, CLN5, CLN8, CTSD, 

and MFSD8 with assays described in earlier publications [14, 23, 27, 29, 31, 34]. The previously 

described TaqMan allelic discrimination for an MFSD8 1 bp deletion and frameshift [27] was 

also used to genotype the two NCL-affected Chihuahuas from Japan, the NCL-affected 

Chihuahua from England, and previously archived DNA samples from 57 Chihuahuas that were 

either clinically normal or suffered from an unrelated disease, and 1761 additional unaffected 

dogs representing 186 other breeds.  The latter included 1478 Chinese Crested dogs [27]. 
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3. Results 

3.1 Clinical signs of neurological disease 

The clinical signs and other aspects of the disease phenotype of the two affected dogs 

from Japan were described as cases 1 and 2 in a previous report in which multigenerational 

pedigree information was included [35].  The neurological signs in these dogs had an onset of 

16 and 18 months respectively and included progressive vision loss, anxiety, ataxia, cognitive 

impairment, and seizures.  Magnetic resonance imaging of both dogs demonstrated diffuse 

brain atrophy and ventricular enlargement [35].  The dogs died at 23 and 24 months of age 

respectively.  These 2 dogs had no ancestors in common for at least three generations.  

Unrelated affected short-haired Chihuahuas from Italy and England (Figure 1) exhibited a 

clinical progression similar to the dogs from Japan.  Starting at 16 to 18 months of age these 

signs included loss of house training, severe anxiety, especially when handled or on a lead, 

personality changes including altered interactions with other dogs and occasional 

aggressiveness toward people, profound loss of learned behaviors including responsiveness to 

commands and to being called by name, excessive sensitivity to loud noises, development of 

compulsive behaviors including circling, bouts of persistent vocalization, impaired ability to climb 

up or down stairs, loss of coordination, severe vision loss in both bright and dim light conditions, 

and bouts of trance-like behavior.  Although pupillary light reflexes were intact, neither eye in 

these dogs exhibited a dazzle or menace response or visual tracking in either eye.  Generalized 

brain atrophy and ventricular enlargement similar to that of the Japanese cases were observed 

with magnetic resonance imaging both dogs.  The Italian dog was euthanized at approximately 

25 months of age after suffering from severe seizures and the Chihuahua from England was 

euthanized at approximately 22 months of age due to the severity of the clinical signs.  A DNA 

sample but no tissues were obtained from the English dog.  Brain, eye and heart tissues were 

obtained from the Italian dog shortly after death and preserved as described previously.  There 

were no known relationships between any of the affected Chihuahuas evaluated in this study. 
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3.2.  Histopathology and electron microscopy 

No postmortem tissues were available for examination from the English dog. 

Histopathological examination of tissues from the 2 Japanese cases was restricted to 

examination of stained paraffin sections of the cerebellum, cerebral cortex, medulla and 

meninges.  Neurons throughout the brain exhibited massive perinuclear accumulations of 

storage bodies that stained with Sudan black [35], consistent with a lysosomal storage disease. 

We were able to collect the brain, eyes and heart from the affected Italian Chihuahua 

shortly after euthanasia.  These tissues were examined for the presence of the autofluorescent 

lysosomal storage material that is characteristic of the NCLs.  The affected Chihuahua exhibited 

massive accumulations of autofluorescent storage material in the brain, retina, and heart 

(Figures 2 and 3).  In the cerebral cortex storage material accumulation occurred throughout the 

tissue.  In the cerebellum autofluorescent storage material was most abundant in the Purkinje 

cell layer.  Within this layer storage material was present not only in what could be recognized 

as Purkinje cells, but also in masses much larger than the Purkinje cell bodies (Figure 2A).  

Substantial amounts of autofluorescent storage material were also present in the molecular and 

granule cell layers (Figures 2A and 2B).  The retina was severely thinned, lacked clearly 

recognizable normal retinal layers (Figure 2E) and massive amounts of storage material were 

present throughout what remained of the retina (Figure 2D).  Autofluorescent storage material 

was present throughout the ventricular wall muscles (Figure 3).  At the ultrastructural level the 

contents of the storage bodies from the cerebellar, cerebral cortical and retinal neurons all were 

composed of numerous aggregates of compacted multilaminar membrane-like material (Figure 

4). 

 

 

 

 



11 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Fluorescence micrographs of cryostat sections of the cerebellum (A and B), cerebral 

cortex (C) and retina (D) and a light micrograph of a Toluidine blue-stained section of the 
retina from the affected Italian Chihuahua.  Abbreviations: m: molecular layer; pc: Purkinje 
cell layer; g: granule cell layer; v: vitreous body of eye; gc: retinal ganglion cell; pe: retinal 
pigment epithelium.  Arrows in (A) and (B) indicate Purkinje cells.  Arrows in (E) indicate 
ganglion cells.  Bar in (B) indicates the magnification for both panels (A) and (B). 
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Figure 3. Fluorescence micrographs of the heart ventricular wall muscle with the muscle fibers 

oriented in longitudinal (A) and cross-section (B) orientations. Bar in (B) indicates 
magnification for both micrographs.  
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Figure 4.  Electron micrographs of 
disease-specific storage bodies 
from a cerebellar Purkinje cell (A), 
a cerebral cortical neuron (B), and 
a retinal ganglion cell (C). 
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The NCLs, like many progressive neurodegenerative diseases, are characterized by 

astrogliosis, as demonstrated by increased amounts of glial fibrillary acid protein (GFAP) in 

astrocytes [24, 27, 35-37].  The cerebellum of the Italian Chihuahua was evaluated for GFAP 

expression using immunohistochemistry.  Very high numbers of cells that stained strongly with 

an antibody directed against GFAP were present in both the cerebellar medulla (Figure 5A) and 

the granule cell layer (Figure 5C).  By comparison, little GFAP immunostaining was observed in 

either of these cerebellar areas in a normal healthy dog (Figures 5B and 5D). 

 

  

Figure 5.  Light micrographs of sections of the cerebellar medulla (A and B) and granule cell layer (C 
and D).  All sections were immunostained for GFAP.  GFAP staining is a reddish brown color.  
Micrographs (A) and (C) are from sections from an affected Chihuahua and micrographs (B) and 
(D) are from a normal healthy Beagle of similar age.  Bar in (B) indicates magnification of all 4 
micrographs. 
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3.3. Molecular genetic analyses 

The NCL-affected Chihuahua from Italy was homozygous for the normal alleles at the loci 

in TTP1, PPT1, CLN5, CLN8, and CTSD previously associated with NCL in dogs.  By contrast, 

this dog, along with the affected Chihuahuas from Japan and England was homozygous for the 

MFSD8 single base pair deletion (MFSD8:c.843delT) previously associated with NCL in a 

Chinese Crested dog from Los Angeles, CA [27] and in 2 littermate Chihuahuas from Scotland 

[28].  Archived DNA samples from 57 Chihuahuas that were either clinically normal or suffered 

from an unrelated disease, and 1761 unaffected dogs representing 186 other breeds were 

tested for the mutant MFSD8 allele.  Of these dogs, all were homozygous for the normal allele 

except for one previously reported Chinese Crested dog that was heterozygous for the one 

base deletion [27].  
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4.  Discussion 

A homozygous one base pair deletion and frameshift in MFSD8 is associated with the 

clinical and histopathological signs of NCL from 4 unrelated Chihuahuas from around the world.  

This same mutation was previously associated with NCL in 2 littermate Chihuahuas with no 

apparent close relationship with the dogs described in this study [28].  The widespread 

geographic distribution of the disease among Chihuahuas and the fact that it occurs in both 

long-haired and short-haired varieties suggests that the mutant allele may be relatively common 

among Chihuahuas, and warrants at least a broad random screening of unrelated Chihuahuas 

to obtain an estimate of the mutant allele frequency in the breed.  Although screening of DNA 

samples from 57 archived DNA samples from Chihuahuas in our repository did not identify any 

dogs with the mutant allele, our archive does not represent a random sampling of the general 

Chihuahua population, since samples collected for this archive are usually targeted to specific 

diseases, which in the case of the Chihuahua samples did not include NCL.  Until the MFSD8 

mutant allele frequency can be better estimated in the Chihuahua population, it would be 

prudent to screen Chihuahuas for this mutation prior to breeding, particularly for males that may 

be used widely for breeding based on certain perceived desirable characteristics.  Such 

screening could identify intact dogs that could be used to establish a research colony or provide 

semen that could be preserved for use in establishing such a colony in the future.  We already 

have preserved semen from dogs with the CLN2 and CLN5 forms of NCL. 

The same MFSD8 mutation associated with NCL in Chihuahuas was previously 

associated with NCL in a single Chinese Crested dog.  It is likely that the mutation originated in 

one of these breeds and was transferred to the other breed by either intentional or accidental 

interbreeding.  Although only one affected Chinese Crested dog has been reported to date, the 

finding of a heterozygote among the archived DNA samples from an apparently unrelated dog of 

this breed indicates that the mutant allele is not restricted to this single case and further 

screening for the mutant allele in Chinese Crested dogs may be warranted.   
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Although all of the dogs that were homozygous for the MFSD8 mutation exhibited a 

similar pattern of clinical signs, the retina of the affected dog from Italy that was euthanized at 

25 months of age was much more severely degenerated than that of the dog from Scotland that 

was euthanized at 23 months of age [28].  This suggests that retinal degeneration may 

accelerate late in the disease process, although this difference may simply represent variation 

between dogs.  Unfortunately retinal tissue from the NCL-affected Chinese Crested dog that 

was homozygous for the MFSD8 mutation was not available for examination [27].  Although 

visual deficits occur in most of the canine NCLs and in their human counterparts, the degree of 

retinal degeneration observed in the affected Chihuahua from Italy was much more profound 

than in most other canine NCLs [22, 27, 32, 38-43], and all 4 dogs included in this report 

exhibited profound visual deficits.  Similar visual deficits have been reported in human subjects 

with MFSD8 mutations associated with NCL [44, 45].  In most types of canine NCL the 

autofluorescent storage body accumulation in the retina is concentrated primarily in the ganglion 

cells and along the outer limiting membrane.  However, in the Italian Chihuahua the storage 

material was present throughout the severely degenerated retina (Figure 2).  

Although the NCLs are generally considered primarily neurological disorders, expression 

of the genes that harbor the disease-causing mutations are not restricted to the nervous system.  

It is likely that the NCLs considered primarily neurological diseases because the central nervous 

system and retina are more sensitive to the effects of the mutations than are other tissues.  

However, as we have shown in the Chihuahua and another canine NCL [14], the disease is 

accompanied by substantial accumulation of autofluorescent storage material in the heart 

muscle.  Storage body accumulation has been demonstrated in other tissues in various other 

types of human NCL as well [1, 11, 46].  Although these storage body accumulations in non-

neuronal tissues do not appear to be associated with substantial functional impairment in 

untreated individuals, such impairment may become evident if patients receive treatments 

targeted to the central nervous system.  Indeed, we have found evidence for heart pathology in 
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dogs with the CLN2 form of NCL that have achieved extended lifespans as a result of CNS-

targeted enzyme replacement therapy (unpublished finding). 

Dogs with the various forms of NCL are potentially excellent models for the evaluation of 

potential therapeutic interventions that may then be translated to human application.  Indeed, 

evaluation of enzyme replacement therapy in treating the CLN2 form of NCL in a Dachshund 

model [47] formed the basis of a human clinical trial of this treatment that has just been 

successfully completed (https://clinicaltrials.gov/ct2/show/NCT02678689?term=CLN2&rank=3), 

for the first time making an effective treatment available for children with any form of NCL.  

Unfortunately, for some of the canine NCLs in which the causative mutation has been identified, 

the mutations were discovered in isolated cases or specific lines and it was not possible to 

obtain and preserve semen from affected or carrier dogs so that development of a canine model 

has not yet been possible.  Including the previously reported cases in NCL in 2 littermates [28], 

we have now shown that the NCL-causing mutation in MFSD8 is widespread among 

Chihuahuas.  Thus by screening relatives of the affected dogs or by genotyping of a large 

Chihuahua population, it should be possible to identify intact affected male carriers and 

preserve semen to use in generating dogs for future therapeutic studies.  We have already 

initiated this effort which will expand on our current endeavors to obtain and preserve semen 

from other forms of canine NCL.  Our goal is to make these semen samples widely available so 

that once promising treatment approaches have been developed the canine models will be 

available to validate their efficacy and optimize their application to the corresponding human 

disorders. 

 

 

 

 

 

https://clinicaltrials.gov/ct2/show/NCT02678689?term=CLN2&rank=3
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