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Abstract The phonon dispersion and thermodynamic prop-

erties of Mg3Al2Si3O12, pyrope, and Ca3Al2Si3O12, grossu-

lar, have been computed by using an ab initio quantum me-

chanical approach, an all-electron variational Gaussian type

basis set and the B3LYP hybrid functional, as implemented

in the CRYSTAL program. Dispersion effects in the phonon

bands have been simulated by using supercells of increasing

size, containing 80, 160, 320, 640, 1280 and 2160 atoms,

corresponding to 1, 2, 4, 8, 16 and 27 k points in the first

Brillouin zone. Phonon band structures, density-of-states and

corresponding inelastic neutron scattering spectra are reported.

Full convergence of the various thermodynamic properties,

in particular entropy (S) and specific heat at constant vol-

ume (CV ), with the number of k points is achieved with 27

k points. The very regular behavior of the S(T ) and CV (T )
curves as a function of the number of k points, determined

by high numerical stability of the code, permits extrapola-

tion to an infinite number of k points. The limiting value

differs from the 27-k case by only 0.40% at 100 K for S (the

difference decreasing to 0.11% at 1000 K) and by 0.29%

(0.05% at 1000 K) for CV . The agreement with the experi-

mental data is rather satisfactory. We also address the prob-

lem of the relative entropy of pyrope and grossular, a still de-

bated question. Our lattice dynamical calculations correctly

describe the larger entropy of pyrope than grossular by tak-

ing into account merely vibrational contributions and with-

out invoking “static disorder” of the Mg ions in dodecahe-

dral sites. However, as the computed entropy difference is

found to be larger than the experimental one by a factor of

2-3, present calculations can not exclude possible thermally-
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induced structural changes, which could lead to further con-

formational contributions to the entropy.

Keywords Entropy, specific heat, density functional

theory, hybrid functionals, phonon density of states,

inelastic neutron scattering

1 Introduction

Garnets constitute a large class of rock forming minerals

of great interest. They are fundamental not only from the

technological point of view but also represent the main con-

stituents of the Earth’s lower crust, upper mantle and tran-

sition zone (Anderson 1986, 1989; Ungaretti et al. 1995).

For these reasons, the accurate evaluation of the thermo-

dynamic properties of such compounds is of great interest.

Large amount of work has been carried out during the past

two decades with evident progress in this field, both from

the experimental and the theoretical points of view. Very ac-

curate calorimetric measurement of the specific heat and en-

tropy are available experimentally (Haselton and Westrum

1980; Téqui et al. 1991). Numerical estimates of such prop-

erties have also been obtained by applying a generalization

of the Kieffer model (Kieffer 1979) starting from experi-

mental vibrational frequencies at the centre of the Brillouin

zone (Γ ) and seismic velocities (Hofmeister and Chopelas

1991; Chopelas 2006; Ottonello et al. 1996). Such models

aim at reconstructing the phonon density of states, starting

from spectroscopic data in the case of optical modes, and

from elastic tensors in the case of acoustic branch disper-

sion. From the density of states g(ω), the thermodynamic

properties are calculated by means of the usual statistical

mechanics relations. More accurate and detailed density of

states are obtained by computing the complete phonon dis-

persion. Due to the size and structural complexity of this

kind of minerals, most simulated phonon dispersions to date
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were obtained using empirical rigid atom or shell models

(Chaplin et al. 1998; Mittal et al. 2001; Gramaccioli and Pi-

lati 2003), with few exceptions at the ab initio level (Wentz-

covitch et al. 2010; Yu et al. 2011).

The present study shows that well converged thermody-

namic properties can now be calculated ab initio for large

unit cell complex crystal structures at a good approxima-

tion level such as the B3LYP hybrid exchange-correlation

density functional. The employed method implies the use of

supercells. However, it will be shown that relatively small

supercells are sufficient to obtain an accurate description of

the full lattice dynamics of crystals. In particular, we con-

sider two members of the silicate garnet family, pyrope and

grossular, only differing by the presence of Mg or Ca cations

in the dodecahedral sites. Though containing as many as

80 atoms in the primitive unit cell, full phonon calculations

for garnets can be handled by accessible computational re-

sources, also thank to their high symmetry (Ia3d cubic space

group), which increases the calculation efficiency dramat-

ically if properly used (Orlando et al. 2014; De La Pierre

et al. 2014).

The possibility of computing accurate thermodynamic

properties is of key importance for the correct interpreta-

tion of the experimental evidence. For example, pyrope and

grossular exhibit different values of the entropy and thermal

capacity because of the slight difference in their composi-

tions. However, the observed trends are counter-intuitive and

the origin of such anomalous behaviour is still debated.

It is well known experimentally that the entropy of py-

rope is larger than that of grossular, which is an unexpected

result since heavier Ca ions in grossular should correspond

to lower vibration frequencies than for pyrope, particularly

in the low-frequency range of the spectrum. Indeed, low-

frequency modes are expected to contribute the most signif-

icant part of the entropy and specific heat of crystals, so that

larger values of the entropy and specific heat would be ex-

pected for grossular than for pyrope. This is, however, not

the case. By crystal chemistry intuition, a Mg ion can be

claimed to be just “too small” for a dodecahedral site, a con-

dition that would lead the ion to be “dynamically” or “stat-

ically” disordered, with consequences not only in the ther-

modynamic properties of pure pyrope and grossular, but also

for the the entire range of their solid solutions, with interme-

diate compositions. Several authors in the literature invoke

“dynamical disorder” (Gibbs and Smith 1965; Pavese et al.

1995; Kolesov and Geiger 1998; Geiger 2013) to comply

with the experimental evidence, while others propose that

“static disorder” only affects a “subsite” of the 24c dodeca-

hedral site of Mg (Cressey 1981; Pilati et al. 1996; Gramac-

cioli and Pilati 2003). Rigid ion model simulations enable

to predict the correct entropy inversion by explicitly taking

into account the excess disorder entropy resulting from the

displacement of Mg ions (Gramaccioli and Pilati 2003), but

it should be noted that rigid ion as well as shell model calcu-

lations encounter some difficulties in dealing with the lowest

part of the spectrum at Γ (Chaplin et al. 1998; Gramaccioli

and Pilati 2003). Density Functional Theory (DFT) results

can provide a more solid basis for the analysis and discus-

sion of this behavior. A detailed description of the potential

of Mg ions in the dodecahedral site in previous DFT stud-

ies led to exclude the possibility of static disorder (Winkler

et al. 2000) and to a one-to-one comparison between the ex-

perimental and calculated vibrational frequencies (Pascale

et al. 2005; Zicovich-Wilson et al. 2008). In such studies,

however, the ab initio description of the lattice dynamics of

the system was limited either to the Mg ion or to all modes

at the Γ point.

By virtue of recent advances, both in the hardware and in

the software, (Bush et al. 2011; Orlando et al. 2012; Dovesi

et al. 2014a) ab initio investigation of thermodynamic prop-

erties of complex materials has become a feasible task. We

show here thermodynamic data obtained for pyrope and Gro-

ssular end member garnets with the CRYSTAL14 program

(Dovesi et al. 2014b) by including phonon dispersion in the

direct (frozen-phonon) approach. The method consists in ob-

taining the vibrational spectrum in reciprocal space points

other than Γ from the Hessian matrix on a supercell of the

original primitive cell. How dense does a reciprocal space

sampling need to be in order to achieve the calculation of

well-converged thermodynamic properties? Such convergen-

ce trend is analyzed in this work as a function of the number

of k-points used for integration in the reciprocal space. The

method used implies construction of consistent supercells

in each case. On this purpose, supercells of increasing size

were considered, ranging from the conventional cell con-

taining 160 atoms to one with 2160 atoms by progressively

doubling the supercell size through the cases with 320, 640

and 1280 atoms.

This work is organized as follows. First, we provide the

computational details about our calculations and give a brief

description of the method implemented in CRYSTAL for the

calculation of the phonon dispersion. Then, we discuss the

convergence trend of the thermodynamic properties of py-

rope as a benchmark for our method. We also illustrate and

analyze phonon density-of-states and inelastic neutron scat-

tering spectra of pyrope and grossular. Finally, we compare

our result for the entropy and specific heat of pyrope and

grossular to the experimental data, analyzing the problem of

the higher entropy of pyrope than grossular into detail.

2 Computational details and method

Calculations were performed with the ab initio quantum me-

chanical CRYSTAL program (Dovesi et al. 2014b,a), that

uses a local basis set of Gaussian-type functions, in con-

junction with the hybrid B3LYP functional (Becke 1993).
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Table 1 Consistency of the total energy and vibration wavenumbers

of pyrope in supercells (SC) of increasing number of atoms (N) with

reference to X27. ∆E is the total energy difference per formula unit

(in micro-hartree); ∆νMax and RMS (in cm−1) are the maximum dif-

ference and the Root Mean Square of the full set of wavenumbers ob-

tained in Γ . The various SCs belong to different lattice types: primitive

(P), body-centered (I) and face-centered (F). s denotes the shrinking

factor defining the Pack-Monkhorst net for each SC.

SC Lattice N s ∆E ∆νMax RMS(ν)

X1 I 80 3 1.22 0.357 0.050

X2 P 160 3 1.64 0.066 0.016

X4 F 320 2 2.15 0.032 0.009

X8 I 640 2 0.99 0.025 0.007

X16 P 1280 1 0.74 0.012 0.001

X27 I 2160 1 - - -

The atomic orbitals on oxygen, silicon, aluminum and mag-

nesium were described by (8s)-(411sp)-(1d), (8s)-(6311sp)-

(1d), (8s)-(611sp)-(1d) and (8s)-(511sp)-(1d) contractions,

respectively. Five parameters, which were set to 7, 7, 7, 7,

16, control the truncation of the Coulomb and exchange in-

finite series (Dovesi et al. 2014b). We sampled reciprocal

space by a regular sublattice with shrinking factor s= 3, cor-

responding to four independent k vectors in the irreducible

wedge of the Brillouin zone for the primitive cell contain-

ing 80 atoms. The shrinking factor has progressively been

reduced for larger supercells, as documented in Table 1. The

exchange-correlation contribution to the Fock matrix was

evaluated by numerical integration over the unit cell vol-

ume. Radial and angular points of the integration grid were

generated as suitable for Gauss-Legendre radial quadrature

and a Lebedev two-dimensional angular distribution. In the

present work, a pruned grid with 99 radial points and a max-

imum of 1454 angular points was used, as obtained by using

the XXLGRID keyword in the CRYSTAL14 manual (Dovesi

et al. 2014b). Convergence threshold on the energy for the

self-consistent-field (SCF) step of the calculations was set

to 10−11 Ha for both the structure optimizations and phonon

calculations.

All structures were optimized by use of analytical en-

ergy gradients with respect to both atomic coordinates and

unit-cell parameters (Doll 2001; Doll et al. 2001; Civalleri

et al. 2001), with a quasi-Newton technique combined with

the BFGS algorithm for Hessian updating (Broyden 1970;

Fletcher 1970; Goldfarb 1970; Shanno 1970). Convergence

was checked on both gradient components and nuclear dis-

placements; the corresponding tolerances on their root mean

square were chosen to be 10 times more severe than the de-

fault values, that is, 0.00003 a.u. and 0.00012 a.u., respec-

tively.

The calculation of vibration frequencies at the Γ point

(k = 0, the center of the First Brillouin Zone, FBZ), within

the harmonic approximation, has for long been available in

the CRYSTAL program. For a detailed description of the me-

thod, we refer to previous works (Pascale et al. 2004; Zicovich-

Wilson et al. 2004). Here, we simply recall that they are ob-

tained from diagonalization of the mass-weighted Hessian

matrix:

WΓ
ai,b j =

H0
ai,b j√

MaMb

with H0
ai,b j =

(

∂ 2E

∂u0
ai∂u0

b j

)

, (1)

where E denotes the total energy per cell and atoms a and b

in the reference cell, with atomic mass Ma and Mb, are dis-

placed along the ith and jth Cartesian directions from the

equilibrium configuration. First order derivatives are com-

puted analytically, whereas second order derivatives are ob-

tained numerically, using a two-point formula.

Calculation of the vibration frequencies of a large unit

cell system such as pyrope is, in general, a resource demand-

ing problem. The algorithm illustrated above, in principle,

would require 481 SCF-plus-Gradient (SCF+G) calculations

(two sets of displacements along each of three independent

coordinates for each of the 80 atoms in the unit cell plus the

equilibrium structure). However, symmetry reduces the set

of required SCF+G runs to 17 only.

The calculation of thermodynamic properties is more de-

manding as it implies knowledge of the phonon dispersion

inside the full FBZ. Beside WΓ , in this case, a set of dynam-

ical matrices, Wk, need to be formed for a set of wavevectors

k = ∑i
κi
Li

bi expressed as linear combinations of reciprocal

lattice basis vectors bi with fractional coefficients referred

to shrinking factors Li, κi being an integer ranging from 0 to

Li−1, thus including Γ and points within the FBZ. Phonons

at k points other than Γ can be obtained by the direct method

(Parlinski et al. 1997; Togo et al. 2008; Alfè 2009; Erba et al.

2013), which requires the construction of supercells (SC) of

the original unit cell:

W k
ai,b j = ∑

g∈SC

H
g
ai,b j√

MaMb

eık·g . (2)

Indeed, equation (2) shows that each dynamical matrix in

the FBZ is obtained by Fourier transforming the Hessian

matrices, Hg, for an adequate set of real space lattice vec-

tors g. Lattice vectors g = ∑i l
g
i ai, expressed in terms of

the real lattice basis vectors {ai} through the integer coeffi-

cients l
g
i , are all contained in the SC in real space whose size

and shape are determined by parameters Li. At variance with

equation (1), matrix element H
g
ai,b j = ∂ 2E/(∂u0

ai∂u
g
b j) refers

to a displacement of atom b in cell g inside the SC along the

Cartesian direction j, along with all its images throughout

the superlattice generated by the SC. Li are the same both

in the real and the reciprocal space so as to maintain a one-

to-one matching between g vectors in the SC and sampled

k points. From diagonalization of the dynamical matrices

the normal modes and corresponding vibration frequencies
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(νkp) are sampled over the entire FBZ. The corresponding

energy levels are given by the usual harmonic expression:

ε p,k
m =

(

m+
1

2

)

ωkp , (3)

where m is an integer and ωkp = 2πνkp. The overall vibra-

tional canonical partition function of a crystal, Qvib(T ), at a

given temperature T , can be expressed as follows:

Qvib(T ) =
1

nk
∑
k

∑
p

∑
m

exp

[

− ε
p,k
m

kB T

]

, (4)

where kB is Boltzmann’s constant and nk the number of k

points considered. According to standard statistical mechan-

ics, thermodynamic properties of crystalline materials such

as entropy, S(T ), and thermal contribution to the internal en-

ergy, E (T ), can be expressed as (Erba et al. 2015e):

S(T ) = kBT

(

∂ log(Qvib)

∂T

)

+ kB log(Qvib) , (5)

E (T ) = kBT 2

(

∂ log(Qvib)

∂T

)

. (6)

From the above expression for E (T ), the constant-volume

specific heat, CV (T ), can also be computed according to

CV (T ) = ∂E (T )/∂T . By casting equation (4) into equations

(5) and (6) one gets the following harmonic expressions:

S(T ) = kB∑
kp









h̄ωkp

kBT

(

e
h̄ωkp
kBT −1

) − log(1− e
− h̄ωkp

kBT )









, (7)

CV (T ) = ∑
kp

(h̄ωkp)
2

kBT 2

e
h̄ωkp
kBT

(

e
h̄ωkp
kBT −1

)2
. (8)

This method is easily implemented, the main drawback be-

ing its computational cost, which depends on the size of the

SC. However, all the SCs considered here preserve cubic

symmetry, so that in all cases only 17 SCF+G calculations

are needed. Because the thermodynamic properties are the

result of an integration over a finite set of k points, con-

vergence of the properties needs to be checked carefully by

considering supercells of increasing size. On this purpose

the trend of thermodynamic properties was monitored for Li

varying from 1 to 3, with the content of the corresponding

SC increasing from 80 to 2160 atoms.

Let us stress that if, in principle, equation (2) could be

used to compute and then diagonalize the dynamical matri-

ces of just the L = ∏i Li k-points defined above, this restric-

tion disappears when long-range electrostatic contributions

to the force constants vanish within the SC. In this case, such

an expression can be used to construct the dynamical matri-

ces of a denser set of k-points through Fourier interpolation.

Alternative approaches might also be used (and some of

them have actually been used in the present study for the cal-

culation of phonon band structures; see the Supplementary

Information), which allow for computing converged ther-

modynamic properties of solids by keeping the size of the

adopted SC relatively smaller by explicitly evaluating long-

ranged electrostatic contributions to the interatomic force

constants (Gonze et al. 1994; Gonze and Lee 1997; Wang

et al. 2010; Baroni et al. 2001).

3 Results and discussion

3.1 Assessment of the method

As the construction of SCs is a necessary step in the appli-

cation of the direct method to the evaluation of the thermo-

dynamic properties of crystals, a preliminary check of the

size-consistency of the method is mandatory. DFT meth-

ods are intrinsically size-consistent. However, accuracy of

the results of a complex numerical procedure strongly de-

pends on the implementation robustness and the choice of

the computational parameters. Two properties that are in-

variant with respect to the unit cell size were considered for

such a test: the total energy per formula unit and the full set

of wavenumbers associated with the normal vibration modes

at the Γ point. They were computed for six different SCs,

namely X1, X2, X4, X8, X16 and X27, with X1 denoting

the primitive cell and Xn a SC with volume n times as large

as that of the primitive cell (and corresponding to a sampling

of the phonon dispersion over n k points in the FBZ). The

same set of SCs was, then, used to study the convergence of

the thermodynamic properties.

The fifth column in Table 1 reports the total energy dif-

ference per formula unit (∆E, in µHa) between X27 (the

largest SC considered in this work) and the smaller SCs.

In spite of the fairly large size of the SCs, the total energy

per formula unit can be computed with extreme accuracy

in all cases, fluctuations being in the order of the µHa. It

must be remarked that the total energy is not only almost

size-invariant, it is also shape-invariant as the various super-

cells along the series span different kinds of cubic lattices:

body-centered (I), primitive (P) and face-centered (F). Simi-

lar considerations hold true also for the full set of wavenum-

bers at the Γ point. The two columns on the right of Table

1 give the maximum differences in the computed wavenum-

bers observed along the series in the range between X1 and

X27 and their root mean square, with respect to X27. All

such indices correspond to just a fraction of 1 cm−1: a tiny

uncertainty.

Within such a numerically stable framework we can con-

fidently analyze the dependence of the thermodynamic prop-

erties on the size of the k point grid used for integration in

the reciprocal space, so relying on the absence of spurious
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effects connected to the creation of SCs that might affect our

results. In particular, we refer to the thermal entropy S and

specific heat at constant volume, CV , which were evaluated

at four different temperatures: 30, 100, 300 and 1000 K.

The four plots in either Figures S1 and S2 in the Sup-

porting Information show fairly neat convergence trends of

S and CV for pyrope upon increasing the k point grid, de-

spite numerical evaluation of integrals is generally not ex-

pected to be necessarily regular and monotonic (taking also

into account the fact, mentioned above, that I, P and F cu-

bic lattices are alternating when the volume increases). In

such conditions it was easy to fit the data of each set to an

arbitrary curve with equation f (nk) = a+ b
nk
+ c

n2
k

through

parameters a, b and c, whose values are reported in the in-

set of each diagram. Computed data are better aligned to the

respective fitting curves at higher temperatures. By extrapo-

lating to the limit of an infinite supercell, X27 is estimated to

yield 99.89% of S and 99.95% of CV at 1000 K, an excellent

level of convergence in both cases. Nevertheless, even at 50

K, S and CV result to be underestimated by less than 2% with

respect to their limiting values. Convergence rates are better

appreciated in Figures 1 and 2 (dot-dashed lines) reporting

the difference between the values of S and CV obtained with

the various supercells and the estimated asymptotic limit as

a function of the temperature. It is fairly evident that X27

yields very well converged results almost irrespectively of

the temperature. However, low frequency modes, which are

dominant contributions to the partition function at low tem-

peratures, appear to depend more critically on the accuracy

of the integration grid (the acoustic branch varies rapidly

around Γ ). Slight discontinuities observed particularly for

X4 and X8 may also reflect the change in the shape of the

supercells from that of a face-centered to a body-centered

lattice, so that it is not only the number of k points in the

grid to change, but also the grid topology. At higher tem-

peratures, also higher frequency modes contribute to Q and

curves become progressively smoother.

3.2 Comparison with experimental thermodynamic

properties: pyrope

Both S and CV were computed in the 10-1000 K tempera-

ture range with X27, which was shown in the above section

to yield very well converged properties. The experimental

data are due to Haselton and Westrum (1980) for a synthetic

sample of pyrope in the T range between 5 and 350 K and to

Téqui et al. (1991) for T ≥ 400 K. We obtained these latter

data from the following equation (where CP is given in J/(K

Fig. 1 Calculated (solid line, X27) and experimental (circles) entropy

S of pyrope. Dash-dotted curves illustrate the convergence of the calcu-

lated entropy as a function of the number of reciprocal space k points

used for the integration of the phonon bands. The six curves show the

difference ∆S between the entropy obtained on the X1, X2, X4, X8,

X16, X27 supercells and the asymptotic limit obtained by extrapola-

tion.

mol)):

CP(T ) =−592.635+138.003lnT +
1.91204 ·105

T

− 7.2066 ·107

T 2
+

7.9749 ·109

T 3
,

(9)

which is singled out by the authors as their “preferred” fit-

ting function of the experimental data in that range of T .

Heat capacities are reported as CP in the experimental pa-

pers. We transformed them to CV by means of the stan-

dard anharmonic correction (Kieffer 1979; Erba 2014; Erba

et al. 2015b,a,c), as suggested by Hofmeister and Chopelas

(1991):

CV (T ) =CP(T )−T α2(T )V K , (10)

where the product of the volume times the bulk modulus

(V K) has been considered constant with T and set to the val-

ues reported in Table 2 in Hofmeister and Chopelas (1991)

along with that of the thermal expansion coefficient α(T ).

For T ≥ 400 K, the experimental values of S were obtained

as

S(T ) = S(298.15)+
∫ T

298.15

CP

T
dT , (11)

where S(298.15) was taken from Haselton and Westrum (1980)

and CP was obtained from equation (9). Let us stress that

the experimental entropy derived following this procedure

is at constant-pressure whereas our computed entropy is ob-

tained at constant-volume, a difference which could account

for some slight discrepancies between the two. The ab initio

calculation of the constant-pressure entropy would indeed

require a complete quasi-harmonic treatment (Erba 2014),
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Fig. 2 Calculated (solid line, X27) and experimental (circles) heat ca-

pacity at constant volume CV of pyrope. The plot is organized as in

Figure 1.

which is behind the scope of the present investigation. Some

of the present authors are currently performing such a study

on six end-members of the silicate garnet family and results

will be presented in a forthcoming paper.

Figures 1 and 2 show that the agreement between the

calculated and the experimental data obtained from calori-

metric measurements (Haselton and Westrum 1980; Téqui

et al. 1991; Hofmeister and Chopelas 1991; Chopelas 2006)

is remarkable: in the scale of the figure the curves of the

calculated data run through the experimental points fairly

well. On closer inspection, however, one sees that the two

sets of data are not precisely superimposed. The differences

between them (∆S and ∆CV ) are reported in Tables S1 and

S2 of the Supplementary Information. Such differences are

fairly small as in no case they exceed 7.5 J/(K mol) for S and

5 J/(K mol) for CV within the considered range of T , that is,

they are about two orders of magnitudes less than the actual

values of the two properties. The ∆S data show a nearly sys-

tematic trend of the calculated data to overestimate the ex-

perimental values of S, particularly in the low T range. This

can be related to the well known fact that the B3LYP func-

tional, despite its excellent overall behavior in reproducing

vibrational spectra of solids, undershoots systematically low

wavenumbers, roughly those below 150 cm−1(Demichelis

et al. 2010b; De La Pierre et al. 2011; Maschio et al. 2011;

Dovesi et al. 2011; Maul et al. 2015). Indeed, common ex-

perience with B3LYP shows that this Hamiltonian describes

softer structures with respect to reality, (Demichelis et al.

2010a) overestimating the lattice parameters.

Table S3 of the Supplementary Information shows that

also in the case of pyrope the agreement with experimen-

tal spectra is quite good, with an overall slight underestima-

tion of the frequencies (∆ν=-1.3 cm−1) and a mean abso-

lute error (MAE) of 5.7 cm−1. The systematic underestima-

tion, however, originates in the low frequency region, and

taking into account only frequencies above 150 cm−1 the

mean difference becomes 0.3 cm−1 and the MAE reduces

to 4.5 cm−1. This effect was already observed in the study

of the simulated IR spectra of the six most abundant garnets

(Dovesi et al. 2011), and appears only in garnets containing

small cations (Mg and Fe). The low frequency vibrations

in garnets are indeed dominated by motions of the cations

hosted in octahedral and dodecahedral sites, as we will dis-

cuss into more detail in Section 3.3 where atomic phonon-

density-of-states will be illustrated. In particular, magnesium

ions in pyrope lie in a rather weak potential, which allows

them to move quite freely. Mg ions give rise to a triple de-

generate low frequency inactive mode, as well as a triple de-

generate Raman active mode, falling in the same frequency

range of the acoustic branches around the zone border. In

B3LYP calculations the cage in which Mg ions move is larger

than reality due to the error on the lattice parameters. Thus

the frequency of the Raman active mode and likely of the in-

active mode are underestimated. As belonging to the lowest

frequency range, these two modes significantly contribute

to thermodynamic properties, particularly at low T . Spec-

tra computed using the experimental cell parameters instead

of the optimized ones display a worse overall agreement

with experiment but a much better agreement in the low fre-

quency region, confirming the connection between the error

in frequency and lattice parameter (Dovesi et al. 2011). A

calculation at the experimental volume on the primitive cell

reduces S by about 6% at 298 K.

Comparison of the calculated with the experimental spec-

tra is, of course, limited to the set of modes available experi-

mentally at Γ only, whereas the full set of modes at several k

points contribute to the thermodynamic properties. In partic-

ular, in addition to low lying Γ modes, low energy phonons

include the acoustic bands, which are directly related to the

elastic properties of the system (Wallace 1972; Kieffer 1979;

Dove 1993; Artioli et al. 1996). As documented in a few

recent studies, where P−V equations-of-state are also re-

ported (Erba et al. 2014b,c,a; Mahmoud et al. 2014; Lacivita

et al. 2014), the B3LYP elastic constants obtained for all

investigated silicate garnets at 0 K turn out to be in good

agreement with experimental results obtained at room tem-

perature, thus suggesting that the softening of the structures

due to thermal vibrations may compensate for the systematic

softening of B3LYP. This would imply that B3LYP acoustic

branches have slightly lower energy with respect to the real

low temperature limit.

The agreement between the calculated and experimen-

tal values of S seems to improve at higher temperature (T >

400) where the low-frequency modes become less dominant.

At T =1000 K ∆S becomes even negative (Table S1). How-

ever, despite one could envisage a trend of ∆S for 400 <

T ≤ 1000, this cannot be considered very significant as the

variation of ∆S in that range is very small and the exper-
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imental values of S are affected by the form of the fitting

function used (see equation 9), for which several proposals

have been reported.

The behavior of CV (Table S2) is similar to that observed

for S, with a slightly better agreement of the calculated with

respect to the experimental data for T > 400 K. In this case

comparison also relies on the correctness of equation (10)

for the conversion of the experimental CP to CV . In partic-

ular, equation (10) does not appear to be applicable to very

low T such as 10 K, where a negative value is obtained for

CV , though very close to zero.

Previous computational estimates of S and CV are based

on two main strategies:

1. Properties obtained from phonon dispersion calculated

with empirical rigid ion or shell models (Artioli et al.

1996; Mittal et al. 2001)

2. Properties obtained from a model phonon density of states,

reconstructed from the elastic constants/seismic veloci-

ties providing information relative to the acoustic bands

and from the IR-Raman vibrational data providing in-

formation about the optical branches (Hofmeister and

Chopelas 1991; Chopelas 2006; Ottonello et al. 1996).

Gramaccioli and Pilati (2003), who based their calculations

on strategy 1, underestimate S and CV by as much as 30 and

14 J/(K mol), respectively, particularly at low T (see SG(vib)

in Table S1 and CG
V (vib) in Table S2). They are able to re-

markably improve the agreement with the experimental data

by assuming an additional contribution to the purely ther-

mal S and CV due to configurational disorder (SG(cor) and

CG
V (cor) in Tables S1 and S2) of the Mg atoms being dis-

placed from their equilibrium positions (Haselton and Westrum

1980; Cressey 1981; Hofmeister and Chopelas 1991; Pavese

et al. 1995; Mittal et al. 2001; Chopelas 2006). However,

previous ab initio calculations provided a detailed analysis

of the potential energy surface around the Mg atoms, con-

cluding that there is no subsite dodecahedral ordering of Mg

in pyrope (Winkler et al. 2000). The results from our cal-

culations show that their model indeed undershoots SG(vib)

and CG
V (vib). This point of view is also supported by Geiger

(2013) ascribing large observed heat capacities for pyrope

to “low energy phonons related to the large amplitude Mg

vibrations” rather than to static disorder.

The quality of the results obtained by Hofmeister and

Chopelas (1991) following strategy 2 is amazingly good, as

they were able to deduce the full vibrational spectrum in Γ

from a clever analysis of the available experimental data.

Their estimated values of S and CV undershoot the experi-

mental data by just 12 and 9 J/(K mol), respectively, at most.

On the basis of the results from our calculations (dot-dashed

lines in Figures 1 and 2) we are able to provide a quanti-

tative assessment of the error associated with neglecting the

effects of dispersion in their model, that is, about 6 J/(K mol)
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Fig. 3 (color online) Total (black continuous line) and atomic (dashed

green line for O, blue dotted for Al, dark red dot-dashed for Si and con-

tinuous red for either Mg or Ca) phonon density-of-states (PDOS) for

pyrope and grossular, computed on the largest supercell (X27) with ad-

ditional k points obtained by Fourier interpolation (for a total of 13824

points).

but for very low T in the case of CV , while the amount of the

correction to S shows a stronger dependence on T and is as

large as 18 J/(K mol) at T = 1000 K. Adding such a cor-

rection to SH would improve the agreement with the experi-

mental data in the lower range of T , though it would lead to

overestimating data at higher T . The results obtained with a

similar approach by Ottonello et al. (1996) display an even

better agreement with experiments, but at the price of fit-

ting explicitly a parameter of the model to calorimetric data

at room temperature instead of deriving it from vibrational

spectra.

3.3 Phonon density-of-states and inelastic neutron

scattering spectra

Knowledge of the full phonon dispersion of a system also

allows to compute the phonon density-of-states (PDOS) and

to simulate the results of inelastic neutron scattering (INS)

experiments. The total PDOS g(ω) is defined by the equa-

tion:

g(ω) =
1

VBZ

∫

BZ

3N

∑
p=1

δ (ωkp −ω)dk , (12)
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where VBZ is the volume of the Brillouin zone and the inte-

gration is performed over it. From equation (12), the PDOS

is normalized to 3N, being N the number of atoms per cell

(
∫

g(ω)dω = 3N). The total PDOS can be partitioned into

atomic contributions g(ω)=∑a ga(ω)xa where the sum runs

over the atomic species of the system, xa is the fraction of

atomic species a with respect to N, and

ga(ω) =
1

nk
∑
p,k

|ep,k;a|2δ (ωkp −ω) , (13)

where ep,k are the eigenvectors of the dynamical matrices

W k defined in equation (2) and the integral in equation (12)

has been replaced by the sum over the sampled points within

the FBZ.

Total and atomic projected PDOS of both pyrope and

grossular are reported in Figure 3. As previously pointed

out by Mittal et al. (2001) by means of semi-empirical inter-

atomic potential calculations, overall, the total PDOS of sil-

icate garnets exhibit the same features for all end-members:

a broad band up to about 700 cm−1, a phonon band-gap of

about 120 cm−1 and a second, sharper band above approx-

imately 800 cm−1 and below about 1100 cm−1. The upper

band is seen to be utterly dominated by motions of the SiO4

tetrahedra for both pyrope and grossular. The interesting part

of the spectrum (particularly so for thermodynamic proper-

ties) is the low-frequency one, which is seen to be mostly

affected by the motions of cations in dodecahedral sites (Mg

and Ca for pyrope and grossular, respectively). By compar-

ing the two panels of the figure, we clearly see that Mg

ions in pyrope are involved in lower-frequency modes (low-

est peak in the corresponding atomic PDOS at about 100

cm−1) than Ca ones in grossular (lowest peak at about 180

cm−1), thus confirming the picture we introduced in previ-

ous paragraphs. The complete dispersion of phonon bands of

pyrope and grossular is plotted in Figures S3 and S4 of the

Supplementary Information, as computed from the dynami-

cal matrices of the largest supercell (X27) with additional k

points obtained by Fourier interpolation along four indepen-

dent paths between high-symmetry points within the FBZ.

From atomic projected PDOS, a neutron-weighted phonon

density-of-states (NW-PDOS) may be defined, which can be

compared to the outcomes of INS experiments:

gNW(ω) =C∑
a

σa

Ma

ga(ω)xa , (14)

where C is a normalization factor such that
∫

gNW(ω)dω =
3N, and the weight of each atomic species a is given by the

ratio of the atomic scattering cross-section σa and the atomic

mass Ma (Osborn et al. 2001; Lucas et al. 2008). Depending

on whether the inelastic scattering is coherent or incoher-

ent, different cross-sections have to be considered, which are

tabulated and available on-line (Sears 1992; Hudson 2001).

In Figure 4, we report both the coherent (orange lines) and
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Fig. 4 (color online) Calculated incoherent (blue thin line) and co-

herent (thick orange line) neutron-weighted phonon density-of-states

(NW-PDOS) for pyrope and grossular. Experimental data in red (INS

spectrum for grossular, INS peak positions for pyrope).

incoherent (blue lines) NW-PDOS of pyrope and grossular

and we compare them with available INS experimental data:

a coherent INS spectrum, normalized to 3N as in present cal-

culations between 0 and 1100 cm−1 (that is, by neglecting

the spurious spectral region above 1100 cm−1, as already

observed by Mittal et al. (2001)), is reported for grossular

as measured by Zhao et al. (1997); coherent INS data for

pyrope (Pavese et al. 1998) have not been reduced to NW-

PDOS and therefore may be compared with the calculations

only in terms of peak positions, shown as red bars in the py-

rope panel. The agreement is very satisfactory in both cases:

for pyrope on peak positions only, for grossular also on the

absolute amplitude.

By comparing Figures 3 and 4, we see that the coher-

ent NW-PDOS does not differ much from the total PDOS,

particularly so for pyrope while in grossular the only differ-

ence is a slight damping of the low-frequency region. This

is due to the fact that the σ coh
a /Ma ratios are very similar for

Si (0.08), Al (0.06), Ca (0.07) and Mg (0.15); only O, which

dominates the whole spectrum but the low-frequency range,

has a larger ratio of 0.26. This is no more the case for the in-

coherent spectrum where the Mg or Ca ions have a σ inc
a /Ma

ratio of one or two orders of magnitude larger (0.003 and

0.001, respectively) than the other atomic species (0.0001

for Si, 0.00005 for O and 0.0003 for Al), thus drastically
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modifying the shape of the spectrum by damping it for fre-

quencies above about 400 cm−1.

3.4 Relative entropy of pyrope and grossular

As anticipated in the Introduction, the entropy of pyrope is

slightly larger than that of grossular. This is counter-intuitive

because the two garnets only differ by the atomic species

hosted in the dodecahedral site (Mg instead of Ca) and Mg

in pyrope is lighter than Ca in grossular. Then, one would

expect lighter atomic species to imply higher vibration fre-

quencies and lower statistical occupation of the correspond-

ing harmonic oscillator energy levels. Thus, the capability

of reproducing such a trend is a very good test of the quality

of a model.

The higher entropy of pyrope has generally been inter-

preted as the result of a subtle order/disorder transition men-

tioned in the previous section due to the small size of Mg

ions in dodecahedral sites. Although the equilibrium posi-

tion of the ion is to be expected at the center of the dodeca-

hedron, the most common interpretation reported in the liter-

ature invokes entropy-driven transitions occurring at low T

between an ordered phase and a phase where the Mg atoms

are randomly displaced either statically or dynamically to-

wards the edges of the coordination polyhedron (Hofmeister

and Chopelas 1991; Artioli et al. 1996; Kolesov and Geiger

2000; Gramaccioli and Pilati 2003; Chopelas 2006). In fact,

lattice dynamical calculations based on rigid ion models (Pi-

lati et al. 1996; Gramaccioli and Pilati 2003) or on the recon-

struction of the density of states from IR and Raman spectra

(Hofmeister and Chopelas 1991; Chopelas 2006) could not

predict the correct trend of S of pyrope and grossular un-

less additional terms such as disorder were included in the

model.

In this study, we want to document which is the descrip-

tion of the entropy difference between pyrope and grossu-

lar when fully converged ab initio lattice dynamical calcula-

tions are performed, which include phonon dispersion. Hav-

ing this purpose in mind, we performed phonon dispersion

calculations on a X27 SC of grossular, which was proved

to provide well converged thermodynamic results as for py-

rope. We calculated S for grossular in the same range of tem-

peratures as for pyrope. Also in this case the experimental

data for comparison up to T = 350 K are taken from Hasel-

ton and Westrum (1980). For T ≥ 400 we refer to the fitting

function for CP obtained by Krupka et al. (1979), where CP

is given in units of J/(K mol):

CP(T ) =1633.3−0.7599T +
9.113 ·106

T 2

− 20783√
T

+2.669 ·10−4T 2 ,

(15)
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Fig. 5 Calculated (solid line, X27) and experimental (circles) heat ca-

pacity at constant volume CV (bottom panel) and entropy S (upper

panel) of grossular.

and the corresponding entropy values were calculated by

equation (11). Figure 5 and table S4 of the Supplementary

Information show that B3LYP generally undershoots the ex-

perimental values, only slightly in the range of low T and by

as much as 15 J/(mol K) for higher T . At variance with the

case of pyrope, all mode wavenumbers are predicted in good

agreement with experiment. The larger size of Ca than Mg

prevents the vibration modes in which Ca is involved from

being affected by the tendency of B3LYP to predict softer

structures than real due to steric effects.

The entropy S is also underestimated by Pilati et al. (1996)

by as much as 7 J/(mol K) at the higher temperatures. On

the other hand, the values of S obtained for grossular by

Hofmeister and Chopelas (1991) sligthly overestimate the

experimental data in the whole range of temperature where

measurements were carried out (see SH data in Table S4).

Their results were obtained from vibration spectra of a nat-

ural sample, likely containing impurities of other garnets

while experimental data by Haselton and Westrum (1980)

and Krupka et al. (1979) were measured on a synthetic sam-

ple. Thus, there is clearly an issue about purity of samples,

that must be taken into account when comparing results from

different experiments and calculations. Indeed, in order to

explain the discrepancy between their results and experi-

ment, Hofmeister and Chopelas (1991) claim that the syn-

thetic sample of grossular used in the experimental works
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Fig. 6 Entropy difference between pyrope and grossular. Calculated

(B3LYP) data are shown with a solid blue line for full phonon dis-

persion and with a dashed blue line for Γ only vibration frequencies;

experimental data by Haselton and Westrum (1980) and Krupka et al.

(1979) are given as black circles. Results from empirical models by

Hofmeister and Chopelas (1991) (triangles) and Gramaccioli and Pi-

lati (2003) and Pilati et al. (1996) (squares) are also shown for compar-

ison. The blue dotted line represents the calculated entropy difference

as obtained by calculations performed on the experimental primitive

cell.

might contain a hydrogrossular component (Lacivita et al.

2015; Erba et al. 2015d), calling the attention on the fact that

none of the samples used in the experimental determination

corresponds to a pure grossular phase.

Availability of the two sets of data of S for pyrope and

grossular allows us to compare them and verify the observed

“inversion”. The difference in entropy of pyrope with re-

spect to grossular is represented in Figure 6. The experi-

mental data (black solid circles) are affected by a slight dis-

continuity between T = 350 K and T = 400 K, at the con-

junction of the two different sets of measurements. In the

same figure, the entropy difference obtained in this study

with B3LYP calculations at Γ point only (dashed blue line)

and by fully converging the description of the phonon dis-

persion (solid blue line) are shown. While the entropy of the

individual systems was previously discussed to change by

as much as 18 J/(K mol) with the inclusion of a converged

phonon dispersion, their difference is almost not affected at

all, confirming that the entropy difference is due to lower op-

tical frequencies at Γ point rather than to phonon dispersion

in this case.

It is shown that current B3LYP calculations predict the

larger entropy of pyrope as compared to grossular correctly,

whereas neither the model by Hofmeister and Chopelas (1991)

(triangles) nor the purely vibrational (vib) one by Gramac-

cioli et al. (Pilati et al. 1996; Gramaccioli and Pilati 2003)

(squares) were accurate enough to predict the correct trend.

The model by Gramaccioli et al. gives the correct positive

entropy difference only after including an additional term

assuming structural disorder of pyrope (cor), as discussed in

the previous section.

Although the sign and the general trend of the relative

entropy of pyrope and grossular is correctly predicted by

present ab initio simulations, its magnitude appears to be

significantly overestimated (roughly by a factor of 3 up to

about 600 K and even more so above this temperature). This

discrepancy might have several origins: i) the underestima-

tion of the low-frequency optical modes (main responsible

for the entropy difference) of pyrope, which are better de-

scribed in the case of grossular; ii) the constant-volume con-

straint in the calculation of the entropy; iii) a thermally-

induced static disorder in pyrope with a more complex en-

tropy effect than a simple additive contribution.

In order to understand whether or not (and to which ex-

tent) the overestimation of the lattice parameter (and its ef-

fect on the low vibration frequencies) may be a key factor

in the corresponding overestimation of the entropy differ-

ence, frequency calculations were repeated using the exper-

imental lattice parameter for both pyrope and grossular, on

their primitive cells (as the effect of phonon dispersion has

been demonstrated to be negligible on the entropy differ-

ence). The obtained results are given in Figure 6 as a dotted

blue line. It is seen that the entropy difference still exhibits

the correct sign and has a lower magnitude even if it still

overestimates the experiment. However, it must be noticed

that adopting the experimental lattice parameters results in

a systematic blue-shift of all vibration frequencies (not just

of the low ones of pyrope), thus significantly deteriorating

the description of the optical part of the spectrum of both

systems, particularly so for grossular.

4 Conclusions

Phonon dispersion and thermodynamic properties of pyrope

and grossular silicate garnets have been studied at ab ini-

tio level with the B3LYP hybrid density functional. A direct

method has been applied involving the construction of su-

percells in order to obtain the phonon dispersion on a grid

of reciprocal space points. The convergence of the thermo-

dynamic properties (namely entropy and specific heat) of

pyrope as a function of supercell size has been explicitly in-

vestigated, showing that a supercell containing 2160 atoms

(27 times the primitive cell) ensures a very satisfactory con-

vergence on the calculated properties. Plausible assumptions

based on the nuclear masses of Mg and Ca ions suggest

that the entropy of grossular should exceed that of pyrope.

However, this is not observed in experimental calorimet-

ric determination of this property on the two compounds.

Previous calculations based on rigid ion models for the lat-

tice dynamic or on the reconstruction of the phonon den-

sity of states from IR and Raman spectra failed at repro-
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ducing the experimental ordering of the entropies: for this

reason it was proposed in the past and widely discussed in

the literature the possibility of a subtle entropy driven order-

disorder transition involving the Mg ions in pyrope. These

atoms are in fact located in a very soft potential due to the

large size of the coordination polyhedron as compared to

the radius of Mg ions themselves. Our ab initio calculations

show that a merely vibrational analysis of the two systems as

performed at the DFT level of theory with a hybrid B3LYP

functional is able to correctly reproduce the larger entropy of

pyrope. The absolute entropy difference, however, is overes-

timated by a factor of 2-3, which leaves open the possibility

of static disorder being present in pyrope but playing a sub-

tler role. The relative description of low-frequency modes

in pyrope and grossular has also been discussed in terms of

total and atomic projected phonon density-of-states, and of

corresponding inelastic neutron scattering spectra.
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