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Abstract 

The Technical Document TD2014EAAS was drafted by the World Anti-Doping Agency (WADA) 

in order to fight the spread of endogenous anabolic androgenic steroids (EAAS) misuse in several 

sport disciplines. In particular, adoption of the so-called Athlete Biological Passport (ABP) – 

Steroidal Module allowed control laboratories to identify anomalous EAAS concentrations within 

the athletes’ physiological urinary steroidal profile. Gas chromatography (GC) combined with mass 

spectrometry (MS), indicated by WADA as an appropriate technique to detect urinary EAAS, was 

utilized in the present study to develop and fully-validate an analytical method for the determination 

of all EAAS markers specified in TD2014EAAS, plus two further markers hypothetically useful to 

reveal microbial degradation of the sample. In particular, testosterone, epitestosterone, 

androsterone, etiocholanolone, 5α-androstane-3α,17β-diol, 5β-androstane-3α,17β-diol, 

dehydroepiandrosterone, 5α-dihydrotestosterone, were included in the analytical method. 

Afterwards, the multi-parametric feature of ABP profile was exploited to develop a robust approach 

for the detection of EAAS misuse, based on multivariate statistical analysis. In particular, Principal 

Component Analysis (PCA) was combined with Hotelling T2 tests to explore the EAAS data 

obtained from 60 sequential urine samples collected from six volunteers, in comparison with a 

reference population of single urine samples collected from 96 volunteers. The new approach 

proved capable of identifying anomalous results, including (i) the recognition of samples extraneous 

to each of the individual urine series and (ii) the discrimination of the urine samples collected from 

individuals to whom “endogenous” steroids had been administrated with respect to the rest of the 

samples population. The proof-of-concept results presented in this study will need further extension 

and validation on a population of sport professionals. 

Keywords 

Multivariate statistics; Athlete Biological Passport; Endogenous anabolic androgenic steroids; 

Principal Components Analysis; Hotelling’s T2 test; Gas chromatography–mass spectrometry. 
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1. Introduction 

The recent developments in the fields of chromatography and mass spectrometry allowed 

toxicological laboratories to effectively detect synthetic anabolic steroids in urine samples [1]. As a 

matter of fact, screening methods are designed to monitor also several natural (endogenous) 

steroids, so as to identify Anti-Doping Rule Violations (ADRV) whenever intake of either class of 

steroids occurred. Traditionally, World Anti-Doping Agency (WADA) indicated specific 

endogenous steroids to be determined and compared to a reference population in terms of 

concentration ranges and abundance ratios [2]. Doped athletes taking extra-physiological doses of 

endogenous anabolic androgenic steroids (EAAS) were originally identified by their abnormal 

values of testosterone/epitestosterone (T/E) ratio [3–7], as compared to common physiological 

values and cut-off T/E thresholds established by WADA [2,6]. The detection of an abnormal T/E 

ratio value is reported as an atypical finding and confirmatory analysis by isotopic-ratio mass 

spectrometry (IRMS) is requested to unequivocally recognize the exogenous administration of 

doping agents [8]. 

The exogenous administration of EAAS for doping purposes remains problematic to detect, since a 

clear distinction between endogenous and exogenous origin of EAAS found in urine samples is still 

challenging for anti-doping laboratories [4,9–11]. As remarked by a recent WADA report [12], 

anabolic agents (including EAAS) represent the most abundant misused class of substances in elite 

sports. Moreover, anabolic effects are currently obtained also with low doses of EAAS mixtures 

[13]. In these cases, the wide inter-individual variability of EAAS levels does not lead to 

straightforward identification of drug misuse and confuses the interpretation of individual steroid 

profiles. For this purpose, WADA composed the Technical Document TD2014EAAS [8] with the 

aim of identifying anomalous EAAS urine concentrations within the athletes’ individual 

physiological steroidal profile [14]; in particular, this document describes WADA’s adoption of the 

Athlete Biological Passport (ABP) – Steroidal Module, that consists in monitoring the athletes 
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regularly over time by checking the possible occurrence of significant changes of direct markers 

concentrations within their steroidal urinary profile. 

The ABP approach exploits an adaptive model based on Bayesian inference [3,6–8,14] that 

recognizes anomalous EAAS values possibly induced by ADRVs, by combining the variability 

measured from a reference population with the series of EAAS values progressively collected from 

the individual under examination (prior odds). After a few samplings, ABP compliance intervals 

progressively shift from a distribution based on reference populations to a personalized distribution, 

based on the previous concentration levels measured for the same individual. Atypical passport 

findings (ATP) are notified whenever EAAS values exceed the individualized thresholds, whose 

reduced width enhances the ABP sensibility toward the recognition of ADRV [9]. However, ABP 

does not provide a comprehensive evaluation of the detected EAAS concentration levels, since the 

adaptive Bayesian approach is applied to the longitudinal monitoring of single markers (i.e., 

testosterone) or single ratios of two markers (i.e., T/E), without any combined multivariate strategy. 

Under such circumstances, limited variations of EAAS values, resulting for example from urine 

manipulations or replacements (e.g., where the urine of a subject different from the tested one is 

misleadingly provided), could hardly be evidenced from single steroid profiling, since the substitute 

sample is expected to originate from a “clean” healthy individual, likely yielding physiological 

EAAS values within the expected compliance intervals. 

Various techniques of multivariate statistics may assist control laboratories in combining the 

information provided by each EAAS marker together, resulting in comprehensive conclusions about 

the steroidal profile compliance of athletes. A few studies and feasible approaches have been 

already reported in the literature about the evaluation of multivariate methodologies [15,16] and the 

development of classification/discrimination models within the field of anabolic androgenic steroids 

and doping controls [17–19]. 
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In the present study, gas chromatography combined with mass spectrometry (GC-MS) was used to 

detect the six EAAS involved in the ABP – steroidal module, including testosterone (T), 

epitestosterone (E), androsterone (A), etiocholanolone (Etio), 5α-androstane-3α,17β-diol (5a-

Adiol), 5β-androstane-3α,17β-diol (5b-Adiol), plus two further EAAS, namely 

dehydroepiandrosterone (DHEA) and 5α-dihydrotestosterone (DHT), and two markers of microbial 

degradation (5β-androstanedione and 4-androstenedione). Moreover, urinary concentration ratios 

(e.g. T/E, A/T, A/Etio, 5α-diol/5β-diol and 5α-diol/E) were monitored [8]. The quantitative GC-MS 

method was fully validated, and applied to the urine samples collected from a reference population 

of healthy subjects, who did not take any pharmaceutical drug potentially able to influence their 

steroidal profile. Subsequently, we developed a multivariate data analysis strategy that could 

discriminate from one another the urine samples of six individuals longitudinally-monitored during 

40 days, even if they were consistent with the same reference population. Lastly, the same statistical 

method based on principal component analysis (PCA) [20,21] and Hotelling’s T2 tests was applied 

to the urine samples collected from individuals suffering from hormonal imbalance and taking 

Androderm® and Testovis® pharmaceutical drugs containing testosterone, who may represent a 

preliminary prototype for evaluating our procedure. 

 

2. Materials and methods 

2.1. Chemicals and reagents 

Testosterone, epitestosterone, androsterone, etiocholanolone, 5α-androstane-3α,17β-diol, 5β-

androstane-3α,17β-diol, dehydroepiandrosterone, 5β-androstanedione, 4-androstenedione and 

testosterone-d3 were purchased from Steraloids Inc. (Newport, RI, USA); 5α-dihydrotestosterone 

was provided by LGC Promochem SRL (Milan, Italy). Isopropyl alcohol, methanol, methyl tert-

butyl ether (TBME), ethyl acetate, 17α-methyltestosterone, dithioerythritol and N-Methyl-N-
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(trimethylsilyl) trifluoroacetamide (MSTFA) were provided by Sigma-Aldrich (Milan, Italy). β-

glucuronidase from Escherichia coli was purchased from Roche Life Science (Indianapolis, IN, 

USA) and ammonium iodide, was from TCI Co., Ltd. (Tokyo, Japan). C-18 endcapped Solid-Phase 

Extraction (SPE) cartridges were provided by UCT Technologies (Bristol, PA, USA). Ultra-pure 

water was obtained from a Milli-Q® UF- Plus apparatus (Millipore, Bedford, MA, USA). Stock 

standard solutions were stored at −20 °C until used.. Two working solution mixtures were prepared 

in methanol at final concentrations of respectively 1 µg mL−1 (working solution A, composed by all 

reference substances with the exception of androsterone and etiocholanolone) and 10 µg mL−1 

(working solution B, composed by androsterone and etiocholanolone). These concentrations were 

chosen according to the upper limit of their endogenous concentration interval [9,22]. Two separate 

internal standard working solutions were prepared in methanol for testosterone-d3 and 17α-

methyltestosterone at the final concentration of 10 µg mL−1. 

 

2.2. Sample preparation 

The sample preparation was experimentally-designed and optimized on the basis of studies reported 

in the literature [1,23–25] for urinary anabolic steroids. The urine sample (6 mL) was fortified with 

both internal standard solutions including an isotopically-marked molecule (testosterone-d3) and 

17α-methyltestosterone. The UCT C-18 endcapped solid-phase extraction (SPE) cartridge was 

washed with isopropyl alcohol, methanol and distilled water (6 mL) in sequence. Then, the SPE 

cartridge was loaded with the urine sample and washed with 6 mL of distilled water. Lastly, both 

EAAS and their glucuronides were eluted with 6 mL of methanol. The resulting solution was dried 

under nitrogen at 50 °C and the residue was dissolved at pH 7 with 2 mL of a 0.1 M phosphate 

buffer. β-glucuronidase (50 µL) was subsequently added and the mixture was incubated at 55 °C for 

1 h. Once the hydrolysis was completed, the mixture was cooled to room temperature and 2 mL of 
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0.1 M carbonate buffer (pH 9) were added. Liquid–liquid extraction was performed with 5 mL of 

TBME, then, the sample was shaken in a multimixer for 10 min, and subjected to centrifugation at 

2500 rpm for 5 min. The extraction process was repeated and the combined organic phases were 

transferred into a vial and dried under nitrogen at 70 °C. The dry residue was derivatized with 50 

µL MSTFA/NH4I/dithioerythritol (1.000:2:4 v/w/w) solution for 40 min at 70 °C. A 1-µL aliquot 

was injected into the GC/MS system in the splitless mode. 

 

2.3. Instrumentation 

GC separations were performed using an Agilent 6890N instrument (Agilent Technologies, Milan, 

Italy) equipped with a J&W Scientific HP-1, 17 m × 0.2 mm (i.d.) × 0.11 µm (f.t.) capillary column. 

Helium was employed as the carrier gas at a constant pressure of 21.5 psi. The chromatographic run 

was experimentally-designed and optimized [26] on the basis of previous studies [1,10,27]. The GC 

oven temperature was initially set at 120 °C, then raised to 177 °C with a 70 °C/min heating rate 

and subsequently raised to 236 °C with a 5 °C/min gradient. Lastly, the oven temperature was 

raised to 315 °C with a 30 °C/min ramp and the final temperature was maintained for 3 min. The 

total run time was 18.25 min. The GC injector and transfer line were maintained at 280 °C. The 

trimethylsilyl derivatives of the analytes were ionized and fragmented in EI at 70 eV using an 

Agilent 5975 inert mass-selective detector (Agilent Technologies, Milan, Italy). The MS was 

operated in the selected ion monitoring mode and three diagnostic ions for each analyte were 

monitored with dwell times of 20-50 ms. 

 

2.4. Method validation 
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The following validation parameters were investigated according to WADA requirements [28]: 

linearity range, selectivity, specificity, limit of detection (LOD), limit of quantitation (LOQ), 

trueness, intra- and inter-assay precision, repeatability, matrix effect, extraction recovery and carry-

over.  

Linearity was evaluated in the concentration range of 2.0–500.0 ng mL−1 for testosterone, 

epitestosterone, 5α-androstane-3α,17β-diol, 5β-androstane-3α,17β-diol, dehydroepiandrosterone, 

5α-dihydrotestosterone, 5β-androstanedione and 4-androstenedione; in details, two indipendent 

calibration ranges were tested as follows: 2.0-50.0 ng mL-1 (2.0, 5.0, 10.0, 15.0, 25.0 and 50.0 ng 

mL−1) and 10.0-500.0 ng mL−1 (10.0, 25.0, 50.0, 125.0, 250.0 and 500.0 ng mL−1). This approach 

was adopted in order to guarantee robust calibrations over an extended concentration range. 

Moreover, linearity was evaluated within the range of 100.0–5000.0 ng mL−1 for androsterone and 

etiocholanolone in two calibration ranges, i.e. 100.0-1500.0 ng mL−1 (100.0, 250.0, 500.0, 750.0, 

1000.0 and 1500.0 ng mL−1) and 500.0-5000.0 ng mL−1 (500.0, 1000.0, 1500.0, 2250.0, 3500.0 and 

5000.0 ng mL−1). Testosterone-d3 and 17α-methyltestosterone were used as internal standards. The 

linear calibration parameters were evaluated using the least squares regression method; the 

determination coefficient (R2) was observed and several significance tests were performed to 

evaluate linearity, incuding lack-of-fit tests, Analysis of Variance (ANOVA) test, Mandel’s test (in 

order to evaluate whether the calibration is linear or a quadratic curve), homoscedasticity studies, 

evaluations of the relative standard deviation of the slope and the residual standard error, together 

with the analysis of the deviation from back-calculated concentrations. Moreover, residual plots and 

homoscedasticity parameter were examined and successfully tested. 

Selectivity and specificity were determined by the analysis of ten blank deionized water samples 

spiked with all the target analytes at the second, forth, and sixth concentration levels of both 

concentration ranges. The signal-to-noise ratio (S/N > 3) was measured on the selected-ion 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 
 

chromatograms at the expected retention times of all the analytes of interest. Moreover, the 

presence of interfering compounds at the retention time of the target analytes was examined. 

LOD and LOQ values were determined using the Hubaux-Vos’ technique [29]; in particular, three 

independent calibration lines were prepared for all the target analytes and a significance level of 

95% was selected at the corresponding number of degrees of freedom. Then, Hubaux-Vos’ 

algorithms allowed us to calculate LOD and LOQ values. The calculated values were 

experimentally tested with analyte concentrations extremely close to the detectable and quantifiable 

values, respectively, confirming the correct estimation. 

Trueness, intra- and inter-assay precision were evaluated on ten deionized water samples spiked at 

the concentration levels of 100.0, 1500.0 and 3500.0 ng mL−1 for androsterone and ethiocolanolone, 

and 10.0, 125.0 and 250.0 ng mL−1 concentration levels for the remaining target analytes. Trueness, 

intra- and inter-assay precision were estimated as CV% and percent bias, respectively; satisfactory 

results were expected to lie within ±15%. 

Retention time repeatability was verified on 30 real urine samples together with blank water 

samples spiked at different concentration levels, namely the ones used for trueness, intra- and inter-

assay precision evaluation. Retention times for the real urine samples belonging to the examined 

individuals were also monitored over extended periods of time. Deviations below 1% from 

calibrators and controls were considered acceptable. Ion abundance repeatability was evaluated on 

the selected qualifying-ion chromatogram for each target analyte. In particular, the variations of the 

selected ion intensity were considered satisfactory within ±20%, with respect to the control. 

Matrix effect was assessed by comparing the experimental results from two sets of solutions [30] at 

two concentrations (100.0 and 3500.0 ng mL−1 for androsterone and ethiocolanolone; 10.0 and 

250.0 ng mL−1 for the other target analytes). The first set was composed by blank urine samples 

(collected from a 5 months old female child); the second by blank deionized water samples; both 
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sets were spiked after the extraction step. Then, the matrix effect was calculated as the percentage 

ratio between the quantified concentration levels of the target analytes from the first set and the 

ones detected from the second set. The percentage difference showed matrix suppression (values 

below 100 %) or enhancement (values above 100 %). 

Extraction recovery was assessed by comparing the experimental results from two sets of solutions 

[30] at two concentrations (100.0 and 3500.0 ng mL−1 for androsterone and ethiocolanolone; 10.0 

and 250.0 ng mL−1 for the other target analytes). The first set was composed by blank urine samples 

spiked after the extraction step and the second set was composed by blank urine samples spiked 

before the extraction step. Extraction recovery was calculated by the ratio between the quantified 

concentration levels of the target analytes from the second set and the ones detected from the first 

set. 

Carry-over effect was evaluated by injecting five distilled water extracts and five urine samples 

spiked with all the analytes at the highest concentrations in alternate sequence (5000.0 ng mL−1 for 

androsterone and ethiocolanolone; 500.0 ng mL−1 for the other target analytes). In particular, the 

signal to noise ratio had to be lower than 3 for each monitored ion chromatogram in order to 

consider carry-over effects negligible. 

  

2.5. Samples collection and data description 

Single urine samples were collected from 96 volunteers (80 men, 16 women, aged 18–40) to 

provide a reference population database. Further 60 urine samples were collected from 6 volunteers 

(5 men, 1 woman, aged 23-29) to evaluate the intra-individual variability of steroidal profiles during 

a 40 days period of time, with a 2 sampling/week frequency, and a 3-days minimum interval 

between two consecutive collections. The urine samples collected from volunteers, named S1-S6, 

were as follows: 6 samples from volunteer S1, 11 samples from S2, 13 samples from S3, 9 samples 
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from S4, 10 samples from S5 and 11 samples from S6. Moreover, urine samples were collected 

from 12 individuals suffering from hormonal imbalance and taking Androderm® and Testovis®,  

pharmaceutical drugs containing testosterone. All subjects provided a signed informed consent to 

donate urine. The collected samples were frozen at −20°C, and analyzed within the following 3 

months. 

2.6. Chemometrics 

Multivariate data analysis was carried out on Matlab® (The MathWorks, MA, USA) version 7.13.0 

with PLS_Toolbox version 8.0 [31]. An initial PCA model was built using the 96 single urine 

samples forming the reference population. A training set matrix was arranged, consisting of 96 rows 

(representing each subject) and 13 columns (representing 8 urinary steroids plus the 5 steroids ratios 

suggested by WADA, i.e. T/E, A/T, A/Etio, 5α-diol/5β-diol and 5α-diol/E [8]). The descriptive 

statistics relevant to the training set data matrix is reported in Table 1, including the minimum, 

inter-quartile ranges (IQ1–IQ3), median, mean and maximum concentration values. All data were 

autoscaled and a cross-validation procedure was performed by applying the venetian blinds design 

and a number of data splits equal to 5 [20]. The optimal number of principal components (PC) to 

build the PCA model was determined from the Predicted Residual Sums of Squares (PRESS) and 

Root Mean Squared Error of Cross-Validation (RMSECV) [20,21]. Parameters such as eigenvalues, 

percentage variance captured by each PC (V%) and percentage cumulative variance captured by the 

model (CV%) were evaluated too, together with Q residuals and Hotelling T2 [20,21]. Once the 

PCA model was developed, concentration levels of urine samples from the 6 time-monitored 

volunteers (data matrixes for each volunteer are reported in Appendix A (Supplementary Material) 

were introduced into the model independently, in order to recognize any significant variation in the 

longitudinally-monitored steroidal profiles of the subjects under examination. For this purpose, 

multivariate Hotelling’s T2 test was adopted [32]; in particular, PCA scores values for each 

volunteer were extracted and then compared with the ones belonging to the corresponding time-
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monitored subject by means of Hotelling’s T2 tests. This approach was performed to observe 

whether the new samples of a certain individual monitored over the time could be considered as 

normal (i.e., compatible with the calculated distribution), with respect to his/her previous 

physiological levels, rather than anomalous and, maybe, induced by an ADRV.. This test was 

applied on 6 volunteers’ steroidal profiles and allowed to recognize any anomalous value. 

Hotelling’s T2 test was performed on R software version 3.2.1 [33] with Hotelling package [34]. 

 

3. Results and discussion 

3.1. Method validation 

Linear calibration was observed for all the target analytes within their specific calibration ranges; 

satisfactory squared correlation coefficients (R2) were observed (Table A in the Supplementary 

Material) and all significance tests checking various calibration parameters were positively verified, 

as they showed no significant deviation from linearity. Moreover, homoscedasticity tests were 

successfully passed. Retention time precision, selectivity and specificity also proved to be 

satisfactory, and no interfering signals were detected at the retention times of the target analytes. 

LOD and LOQ values calculated with Hubaux-Vos’ technique are reported in Table B of the 

Supplementary Material. Remarkably, the developed method provided LOQ values for testosterone 

and epitestosterone equal to 1.7 and 1.9 ng mL−1, respectively, satisfying WADA requirements for 

these target analytes (LOQ ≤ 2.0 ng mL−1). Trueness, intra- and inter-assay precision results turned 

out adequate too, as the percent bias and the CV% were lower than 15.0% at all tested concentration 

levels (Table C in the Supplementary Material). For each target analyte, matrix effect and extraction 

recovery results are shown in Table D in the Supplementary Material. Both parameters showed 

variations within ±20% for all the analytes under investigation. It was concluded that neither the 
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extraction recovery nor the matrix effect prevented the correct determination of the corresponding 

analytes, Lastly, absence of any carry-over effect was observed. 

 

3.2. Data summary 

A typical GC-MS chromatogram obtained from a real urine sample is reported in Figure 1. The 

mean results for both reference population (96 urine samples) and six volunteers S1-S6 (60 urine 

samples) are reported in Figure 2, while the complete data are reported in Table 1 and Appendix A, 

respectively. For some EAAS and ratios, WADA provides reference limits, which are denoted by 

red squares in Figure 2. For example, WADA’s reference limit for T/E ratio is equal to 4.0, 

concentrations for T or E are equal to 200 ng mL−1, concentrations for A and Etio are equal to 

10.000 ng mL−1, while A/Etio ratio has a lower limit of 0.4 for males and an upper limit of 4 for 

both males and females. All EAAS concentrations obtained from all subjects lied within the 

WADA’s reference limits: although average values are reported in Figure 2 for simplicity, neither 

maximum nor minimum values for each EAAS and ratios exceeded WADA’s reference limits. 

Moreover, concentration of T and E lower than 50 ng mL−1 were always found in females for both 

reference population and selected volunteers. CV% values were less than 30% for all the target 

analytes and ratios of longitudinally-monitored volunteers. 

 

3.3. Reference Population PCA model 

The 96×13 data matrix was adopted as the training set in order to develop a PCA model. From 

calculation, the RMSECV value equal to 0.79, together with CV% of 82.47%, indicated that the 

optimal number of PCs to be considered was five. Accordingly, also Q residuals and Hotelling T2 

criteria were satisfied. Scores plots reporting PC1 (V% = 25.90%) vs. PC2 (V% = 22.58%) and PC3 
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(V% = 16.08%) vs. PC4 (V% = 9.93%) are depicted in Figure 3A-3B. The single urine collection 

for each of 96 volunteers yielded no significant clusters nor subpopulations in the scores plots. 

Loading plots showing PC1 vs. PC2 and PC3 vs. PC4 are reported in Figure 3C-3D. No variables 

selection techniques were applied, making all the target analytes and their relative ratios equally 

contribute to the statistical analysis, as required by WADA for ABP. 

 

3.4. Time-monitored volunteers: PCA models & Hotelling’s T2 tests 

The concentration levels of 8 steroidal markers plus 5 urinary ratios were evaluated for 60 urine 

samples collected from 6 volunteers under longitudinal time-monitoring conditions for over one 

month. Six matrices (one for each volunteer; Appendix A) were prepared and used as evaluation 

sets; in particular, a 6×13 matrix was set for volunteer named S1, while the number of rows 

(samples) were 11 for both volunteer S2 and S6, 13 for S3, 9 for S4, and 10 for S6. These data 

matrices were translated into the new PCA space (using the loading matrix obtained from the 

reference population) and introduced into the PCA model independently from one another, in order 

to evaluate the scores distributions for each volunteer, and obtain an interpretation model as close as 

possible to ABP. PC1 vs. PC2 scores plots from the time-monitored volunteers are reported in 

Figure 4, in the presence (4A) or absence (4B) of the reference population. The longitudinal scores 

for each volunteer are designated by green diamonds (S1), green squares (S2), blue triangles (S3), 

light blue inverted triangles (S4), purple stars (S5), yellow circles (S6), and red diamonds (reference 

population). In considering Figure 4, it should be taken into account that only PC1 and PC2 are 

depicted, accounting for no more than 48.5% variance. Since also PC3, PC4, and PC5 proved to be 

significant in representing the data distribution, perception of data point distances in Figure 4 is 

somehow distorted. 
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Hotelling’s T2 tests were initially performed on the scores values of each volunteer in comparison 

with the ones of the reference population: no significant differences were observed among these 

groups. In fact, Hotelling’s T2 test results suggest that the scores of the collected samples are 

arranged within the multidimensional space occupied by the scores of the reference population 

individuals, indicating that their steroid profile is not remarkably different from the reference 

population. Moreover, within-group multivariate Hotelling’s T2 test was separately performed on 

the scores values of each volunteer: no significant difference was found within the steroidal 

profiles’ variations of subjects S1, S2, S3, S5 and S6, as p-values ranged from 0.439 up to 0.8474. 

In contrast, Hotelling’s T2 test showed a significant p-value of 7.20×10−7 (i.e., much less than 0.05, 

corresponding to 95% significance level) when executed on male subject S4 scores. One sample 

turned out anomalous after the application of Hotelling’s T2 test, namely sample S4.5 marked by an 

arrow in Figure 4B. The original S4.5 urine sample was intentionally replaced with one belonging 

to a female individual during sampling operations. Despite the overall steroidal profile of S4.5 is 

appreciably different from the other S4 samples even without using statistical tools, it is still 

interesting that the PCA model, combined with multivariate Hotelling’s T2 test, provides a 

quantitative evaluation of the dissimilarity of this specific steroidal profile with respect to the 

others, since it uses the p-value based on the whole information provided by the extended panel of 

steroidal markers (Figure 4B). On the other hand, single steroidal markers may not show any 

significant variation from sample replacement, possibly making the application of the ABP 

approach unable to recognize the extraneous sample. For example, the T/E ratio for sample S4.5 did 

not exceed the Bayesian threshold calculated on the S4 longitudinal measurements (Figure 4C). 

The same approach within the PCA model was applied to all collected samples from longitudinally-

monitored volunteers, after removal of sample S4.5 from S4 series. Further Hotelling’s T2 analysis 

was performed on selected samples, in order to test the robustness of our method. First, all S5 PCA 

scores were compared with the closest scores relative to different volunteers, whose data points are 
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located nearby S5 data points in the PC1 vs PC2 Cartesian diagram reported in Figure 4D. Five 

urine samples were tested, namely samples S2.2, S2.4, and S2.10 from subjects S2, and S4.1 and 

S4.2 from subject S4 (Figure 4D). All S2, S4, and S5 are male individuals. Hotelling’s T2 tests were 

executed to compare S5 samples vs. S2 and S4 samples. In the multi-dimensional space of 

significant PC variables, our PCA model proved to distinguish the samples belonging to subject S5 

from each one collected from S2 (p-values of 1.71×10−4, 2.11×10−4, and 7.82×10−5) and S4 (p-

values of 2.89×10−4 and 1.54×10−3). Notably, S5 provides the most scattered data-points among the 

studied subjects, corresponding to the highest variance and the least discriminating conditions, but 

nevertheless all S2 and S4 samples were easily recognized as extraneous to the S5 series. 

On the other hand, the S2 and S4 samples previously tested were introduced in the sequence of 

longitudinal S5 samplings, as envisaged in the traditional ABP protocol. The steroid markers’ 

values for all S2 and S4 samples fell inside the expected limits of the monovariate adaptive 

Bayesian model built on the S5 series, as is depicted for the T/E ratio in samples S2.10 and S4.1 

(Figures S1A-B in the Supplementary material). Again, it was not possible to recognize any sample 

extraneous to the S5 series using the monovariate ABP approach, since the values of their steroid 

markers invariably fell below the estimated Bayesian threshold build from the S5 longitudinal 

measurements. In contrast, the PCA model combined with Hotelling’s T2 tests proved to represent a 

useful tool to distinguish extraneous samples, anomalous marker values, or significant variations in 

the steroidal profiles of individuals. 

Hotelling’s T2 tests were also utilized among all time-monitored volunteers (S1-S6), in order to 

evaluate the sensitivity and the specificity of the model. Again, the model proved  satisfactory, as 

no false positives for S1-S6 (0%) and only two false negatives results for S3 (4%) were observed. In 

particular, false positive rate described the number of urine samples provided from a certain 

individuals that were classified as belonging to a different subject. Conversely, false negative rate 

reported the number of samples belonging to different individuals that were labelled as belonging to 
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the same subject. Calculated p-values ranged from a minimum of 1.11×10−16 to a maximum of 

1.39×10−4. 

In order to expand the Bayesian adaptive model into a multivariate statistical pattern, 

multidimensional Bayesian boundaries were built within the PC space for each of the S1-S6 

longitudinal samplings. To visualize these boundaries, confidence ellipses at a significance level of 

95% were calculated and reported in Figures 5A-5B (limited to a two-dimensional space), which 

are relative to volunteers S2 and S3. These ellipses were drawn in PC1 vs PC2 scores plot in 

sequential refinement with respect to the progressive introduction of each single sample of the time-

monitored volunteers. In particular, the first confidence ellipse was calculated on the basis of the 

original reference population. Then, a second ellipse was calculated after the introduction of the 

first sample from subject S2 (or S3). The same Bayesian approach, providing prior odds, was 

followed after the introduction of the second, the seventh, and the last sample for each investigated 

subject. As is evident in Figures 5A-5B, the narrowest ellipses perfectly enclose the distributions of 

the longitudinally-monitored samples, thus indicating a specific space limit in the scores plot where 

the samples related to the corresponding subjects are expected to be found. Any displacement out of 

these confidence ellipses for further samples subsequently analyzed highlights a suspected ATP 

sample, which requires further investigation in order to clear up an alleged ADRV case. S2 and S3 

extended series (13 samples each) were selected as examples of distinct behaviors, the former 

showing a progressive focusing within narrower dimensions of the same space, whereas in S3 a 

shift toward low PC1 values is observed as long as new samples are added to the series. Notably, S3 

is the only female volunteer, while the reference population has a 83% prevalence of male subjects, 

which explains the partial displacement of the S3 series. Nevertheless, in the five-dimensional space 

of PC1-PC5, no S3 samples would be classified as abnormal with respect to the initial reference 

population ellipse, unlike it misleadingly appears in the two-dimensional Figure 5B. Similar models 

can be obtained from shorter series, as it occurs for S1, with six data-points only. 
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3.5. Testosterone intake: PCA models & Hotelling’s T2 tests 

The described multivariate approach was utilized to compare a new model built with the reference 

population together with S1-S6 urine samples with the samples collected from 12 individuals 

suffering from hormonal imbalance and taking either Androderm® or Testovis®. The steroid 

profile data of these individuals are shown in Appendix B (Supplementary Material).  The 

corresponding PCA scores plot is reported in Figure 6A, where the urine samples relative to 

pharmacologically-treated subjects are denoted by green diamonds. Quite obviously, the PCA 

model combined with Hotelling’s T2 test effectively singled out the subjects taking testosterone, as 

their position within the multimensional score space proved to be significantly different from any 

other population of untreated subjects (for example, the p-value relative to the comparison between 

the treated subjects and S5 samples was equal to 3.09×10−7). In this case, however, also the 

monovariate ABP approach proved adequate to detect the anomalous steroid profile (Figure 6B) 

induced by Androderm® or Testovis® intake. For example, the mean T and T/E values for the 

treated subjects were 58.9 and 2.77, respectively, while the mean T and T/E values were 33.6 and 

1.20 for the reference population.Thus, both multivariate data analysis and monovariate ABP 

equally represent efficient ways to detect anomalous steroid marker values associated to the use of 

pharmaceutical drugs containing testosterone. 

 

4. Conclusions 

At the current stage, the monovariate adaptive model utilized in the steroidal module of the ABP 

proved to be a useful tool for detecting EAAS misuse [35], even if many confounding factors may 

be considered in the evaluation of individual steroid profiling [36]. The presence of both 
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endogenous and exogenous influencing variables suggest extreme care in the application of purely 

statistical rules in the probabilistic assessment an ADRV [36]. 

The present concept study has been intended to verify and measure the potential advantages arising 

from the use of a simple multivariate statistical approach to the interpretation of data that are 

intrinsically multi-parametric and highly inter-correlated. More sophisticated statistical methods, 

including variable selection algorithms and partial least squares based methods, could be applied to 

the ABP interpretation in the future, once the seeming advantages of the multivariate approach had 

been verified on solid databases from real sport athletes. 

The contribution offered by the present study conducted on a generic reference population without 

specific involvement in professional sport practice consists of several starting points to be sustained 

with experiment conducted under a variety of experimental conditions. First of all, the intake of 

EAAS-containing drugs for clinical purposes results in a macroscopically modified urinary steroid 

profile, which is clearly distinguishable from those of subjects not under pharmacological treatment. 

On a PCA scores plot, these samples are confined within a rather restricted area to form a cluster 

located at large geometrical distance from the reference population samples distribution. A 

forthcoming study will investigate how long, after the intake of the last EAAS dose, does this easy 

discrimination lasts. 

A second notable evidence offered by the present study is that, on the multivariate scale provided 

by the steroid profile, a single urine sample collected from a certain individual can be almost 

unfailingly be distinguished from a series of urine samples collected from a different subject. This 

conclusion represents a reasonable basis to check the suspect cases of urine replacement, and 

facilitate the decision process of recognizing this type of ADRV. 

The third practical suggestion provided by this study is that the concepts of (i) Bayesian adaptive 

model of steroid profile and (ii) individualized threshold of steroid physiological variation find 
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straightforward extension into the multidimensional space of statistically significant Principal 

Components, possibly delimiting a tolerance hyperspace with concurrent higher confidence and 

selectivity. Likewise the current ABP, the tolerance threshold hyperspace progressively shrink as 

many urine samples are longitudinally collected from the same individual. 
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Table 1. Descriptive statistics of the monitored steroids in the reference population (80 men, 16 women, aged 
18–40) including the minimum, inter-quartile ranges (IQ1–IQ3), median, mean and maximum concentration 
values. 
 

 
Min  

(ng mL-1) 
IQ1  

(ng mL-1) 
Median  

(ng mL-1) 
Mean  

(ng mL-1) 
IQ3  

(ng mL-1) 
Max  

(ng mL-1) 
5a-Adiol 22.7 47.5 61.7 63.8 78.1 110.7 
5b-Adiol 28.8 72.1 96.5 89.8 108.5 141.5 

A 926 1730 2329 2382 2968 4288 
DHEA 5.8 23.9 40.8 40.6 53.7 94.9 
DHT 3.4 7.9 10.1 12.7 13.8 48.9 

E 9.6 21.5 27.0 27.6 33.2 52.9 
Etio 853 1395 1925 1847 2231 3618 

T 9.4 25.3 33.1 33.6 41.3 58.9 
5a-Adiol/5b-Adiol 0.2 0.6 0.7 0.8 0.9 2.2 

5a-Adiol/E 0.7 1.8 2.3 2.5 2.9 5.2 
A/Etio 0.4 1.0 1.2 1.3 1.6 3.0 

A/T 26.9 56.7 66.0 78.1 95.4 219.8 
T/E 0.9 1.1 1.2 1.2 1.3 1.9 
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Figure 1. GC-MS chromatogram snapshot. Coded target analytes are: 1) 5β-androstan-3,17-dione; 2) androsterone; 
3) etiocholanolone; 4) 5α-androstane-3α,17β-diol; 5) 5β-androstane-3α,17β-diol; 6) dehydroepiandrosterone; 7) 
epitestosterone; 8) 5α-dihydrotestosterone; 9) 4-androsten-3,17-dione; 10) testosterone and testosterone-d3; IS) 17α-
methyltestosterone. 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 
 

 

Figure 2. Mean values relevant to 8 target analytes concentration levels (ng mL−1) plus 5 urinary ratios for 
reference population and volunteers S1-S6. WADA reference limits (when available) are indicated by red 
squares. 
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Figure 3. (A) Scores plots relevant to PC1 (V% = 25.90%) vs. PC2 (V% = 22.58%) and (B) PC3 (V% = 
16.08%) vs. PC4 (V% = 9.93%); (C) loading plots relevant to PC1 vs. PC2  and (D) PC3 vs. PC4. 
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Figure 4. PC1 vs PC2 Scores Plots relevant to the time-monitored volunteers S1-S6 in the presence (A) and 
absence (B) of the reference population, whose urine samples are represented by red diamonds. In particular, 
green diamonds stand for S1, green squares for S2, blue triangles for S3, light-blue inverted triangles for S4, 
purple stars for S5 and yellow circles for S6. Anomalous sample S4.5 is evidenced by an arrow. (C) ABP 
model representing S4 samples (light blue inverted triangles) and the Bayesian threshold (red line). (D) PC1 
vs PC2 Scores plot. Tested samples relative to subjects S2 (S2.2, S2.4, S2.10) and S4 (S4.1, S4.2) are 
indicated by light blue inverted triangles and green squares, respectively. Purple stars represents urine 
samples belonging to subject S5. 
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Figure 5. PC1 vs PC2 Scores plot and confidence ellipses (95% significance level). Urine samples relative to 
subjects S2 are indicated by green squares (A), while subjects S3 is represented by blue triangles (B). 
Confidence ellipses are distinguished by various dashed and continue lines; such ellipses were initially 
calculated on the reference population, then they were evaluated after the introduction of the first, the 
second, the seventh and the last urine samples from S2 and S3 time-monitored volunteers. 
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Figure 6. (A) PC1 vs PC2 Scores plot. Urine samples relative to subjects S5 are indicated by purple stars. 
Green diamonds (evidenced by an arrow) represent urine samples collected from Androderm® and 
Testovis® users. (B) ABP model representing S5 samples (purple triangles), Androderm® user sample 
(green diamond) and the Bayesian threshold (red line). 
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Detection of endogenous anabolic androgenic steroids misuse is made possible by multivariate 
statistical approach. 

Principal Component Analysis and Hotelling’s T2 tests techniques are used to recognize anomalous 
values within the athletes’ physiological urinary steroidal profile. 

Suspect cases of urine replacement can be detected, too. 

The present proof-of-concept approach might corroborate the conclusions of the Athlete Biological 
Passport – Steroidal Module that was drafted in 2004 by the World Anti-Doping Agency. 
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