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NATURAL STATISTICS FOR SPECTRAL SAMPLES

BY E. DI NARDO, P. MCCULLAGH AND D. SENATO

University of Basilicata, University of Chicago and University of Basilicata

Spectral sampling is associated with the group of unitary transforma-
tions acting on matrices in much the same way that simple random sampling
is associated with the symmetric group acting on vectors. This parallel ex-
tends to symmetric functions, k-statistics and polykays. We construct spectral
k-statistics as unbiased estimators of cumulants of trace powers of a suitable
random matrix. Moreover we define normalized spectral polykays in such a
way that when the sampling is from an infinite population they return prod-
ucts of free cumulants.

1. Outline. The goals of this paper are threefold.
We first introduce the notion of spectral sampling as an operation on a finite set

of n real numbers x = (x1, . . . , xn) generating a random set y = (y1, . . . , ym) of
m ≤ n real numbers whose distribution is determined by x. Spectral sampling is
not the same as simple random sampling in the sense that y is not a subset of x,
but the parallels are unmistakable and striking. In particular, there exist symmetric
functions Kλ—analogous to k-statistics and polykays—such that E(Kλ(y) | x) =
Kλ(x). In other words, the average value of Kλ(·) for spectral samples y taken from
x is equal to Kλ(x). The first goal is to obtain explicit expressions for these spectral
k-statistics, which is done in Sections 3–5 using symbolic umbral techniques.

The second goal is to elucidate some of the concepts associated with freeness—
free probability and free cumulants—in terms of spectral sampling and spectral
k-statistics. For this purpose, spectral sampling may be viewed as a restriction
operation X �→ Y from a freely randomized Hermitian matrix of order n into a
freely randomized Hermitian matrix of order m ≤ n, and each spectral k-statistic
is class function depending only on the matrix eigenvalues. In essence, the spectral
k-statistics tell us which spectral properties are preserved on average by freely ran-
domized matrix restriction. For example, K(1)(x) = x̄ tells us that the eigenvalue
average is preserved. Likewise, if k2 denotes the usual sample variance with di-
visor n − 1, the second spectral statistic K(2)(x) = k2(x)/(n + 1) tells us that the
eigenvalue sample variance is not preserved, but is, on average, proportional to the
sample size plus one.

Finally, by considering the limit as n → ∞, we show that the normalized spec-
tral k-statistics are related to free cumulants in much the same way that polykays
are related to ordinary cumulants.
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2. Spectral sampling.

2.1. Definition. A random Hermitian matrix A of order n is said to be freely
randomized if its distribution is invariant under unitary conjugation, that is, A ∼
GAG† for each unitary G. In particular, if H is uniformly distributed with respect
to Haar measure on the group of unitary matrices of order n, HAH † is freely
randomized. If A is freely randomized, each leading sub-matrix is also freely ran-
domized.

Let x = (x1, . . . , xn) be given real numbers, let X = diag(x) be the associated
diagonal matrix and let HXH † be the freely randomized matrix. The sample ma-
trix Y is the leading m × m sub-matrix in the freely randomized matrix, that is,
Y = (HXH †)[m×m].

DEFINITION 2.1 (Spectral sample). The set of eigenvalues y = (y1, . . . , ym) ∈
R

m of the m×m Hermitian random matrix Y = (HXH †)[m×m] is called a spectral
sample of size m from x.

For m = n, the distribution is uniform with the same weight 1/n! on all permu-
tations σ ∈ Sn; that is, y is a random permutation of x. For m < n, however, the
distribution in R

m is nonatomic, so the sample values y do not ordinarily occur
among the components of x.

If the group of unitary transformations in the preceding definition were replaced
by a sub-group, the sampling distribution would be altered accordingly. The most
obvious subgroups are the group of orthogonal transformations and the group of
permutations [n] → [n]; in each case there is an associated family of spectral func-
tions such that E(Kλ(y) | x) = Kλ(x). In particular, if H is a uniform random per-
mutation, y is a simple random sample of size m taken from x, and the associated
spectral functions are the classical k-statistics due to Fisher [9] and the polykays
due to Tukey [21].

REMARK 2.2. Within image compression [14], the random Hermitian matrix
Y in Definition 2.1 is called a two-dimensional Haar transform. More generally,
if X is a full matrix whose entries are the pixels ranging from 0 (black) to 255
(white), then Y contains reduced information extracted from X via the rectangular
Haar matrix H . Similar transformations are employed also within classification,
document analysis, hardware implementation and are known as downsampling of
a vector or a matrix [18].

2.2. Natural statistics. For present purposes, a statistic T is a collection of
functions Tn: Rn → R such that Tm(y) and Tn(x) are defined for all samples suf-
ficiently large. For example, the usual sample variance is defined for n ≥ 2, while
the sample skewness is defined for n ≥ 3.
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DEFINITION 2.3 (Natural statistic). A statistic T is said to be natural if, for
each m ≤ n, the average value of Tm(·) over random samples y drawn from x is
equal to Tn(x). In symbols,

E
(
Tm(y) | x

) = Tn(x)

for each m ≤ n.

Obviously, the definition depends on what it means for y to be a random sample
drawn from x, that is, the choice of group in Definition 2.1. Thus, a statistic that is
natural with respect to simple random sampling (a U -statistic) is not, in general,
natural with respect to spectral sampling.

In Tukey [21], such functions were said to be “inherited on the average.” The
key point in Definition 2.3 is that a natural statistic is not a single function in iso-
lation, but a list of functions {Tn : Rn → R}. It is the property of inheritance that
gives these functions a common interpretation independent of the sample size. One
might be inclined to think that inheritance is no different from unbiasedness rela-
tive to a model with exchangeably distributed components. However, unbiasedness
of Tn does not imply the inheritance property, nor does inheritance imply that the
statistic has a limit or that its expectation exists. Unbiasedness in parametric mod-
els is a property of individual functions Tn, whereas inheritance is a property of
the sequence.

For m = n, inheritance implies that each Tn is a symmetric function: Tn(x) is
equal to the average of the values on the permutations of x. Tukey [21] proved that
the symmetric functions

ãr,n(x) = 1

n

∑
i

xr
i , ãrs,n(x) = 1

(n)2

∑
i 	=j

xr
i x

s
j ,

(2.1)

ãrst,n(x) = 1

(n)3

∑
i 	=j 	=k

xr
i x

s
j x

t
k, . . .

defined, respectively, for n ≥ 1, n ≥ 2 and so on, are natural with respect to simple
random sampling. Here and elsewhere (n)r = n(n − 1) · · · (n − r + 1) denotes the
descending factorial function. Ordinarily, we suppress the index n and write ãrs(x)

instead of ãrs,n(x), the value of n being inferred from the argument x ∈ R
n. The

unnormalized polynomials

ar (x) = ∑
i

xr
i , ars(x) = ∑

i 	=j

xr
i x

s
j ,

(2.2)
arsk(x) = ∑

i 	=j 	=t

xr
i x

s
j x

k
t , . . .

are the well-known augmented symmetric functions [19].
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Every expression which is a polynomial, symmetric and inherited on the aver-
age can be written as a linear combination of the statistics in (2.1) with coefficients
that do not depend on the size of the set [21]. Consequently each linear combina-
tion, with scalar coefficients independent of n, also has the inheritance property,
as happens, for example, for U -statistics. The combinations that have proved to
be most useful for statistical purposes are the k-statistics due to Fisher [9] and the
polykays due to Tukey [21, 22], defined as follows:

k(1) = ã(1);
k(12) = ã(12), k(2) = ã(2) − ã(12);
k(13) = ã(13), k(12) = ã(12) − ã(13), k(3) = ã(3) − 3ã(12) + 2ã(13);
k(14) = ã(14), k(122) = ã(122) − ã(14), k(13) = ã(13) − 3ã(122) + 2ã(14);
k(22) = ã(22) − 2ã(122) + ã(14),

k(4) = ã(4) − 4ã(13) − 3ã(22) + 12ã(122) − 6ã(14).

The single index k’s are the k-statistics; the multi-index k’s are the polykays. For a
sample of i.i.d. variables, each k-statistic is an unbiased estimator of the population
cumulant, and each polykay is an unbiased estimator of cumulant products. The
degree of each k is the sum of the subscripts. The set of natural polynomial statis-
tics of degree i is a vector space, of dimension equal to the number of partitions of
the integer i, spanned by the k’s of degree i.

3. Moment symbolic method. Univariate case. The moment symbolic
method relies on the classical umbral calculus introduced by Rota and Taylor
in 1994 [16], which has been developed and refined in a series of papers starting
from [7, 8]. The result is a calculus in which certain symbols represent scalar or
polynomial sequences, thereby reducing the overall computational apparatus. We
now review the key components.

Let R be the real or complex field whose elements are called scalars. An um-
bral calculus consists of a generating set A = {α,β, . . .}, called the alphabet,
whose elements are named umbrae, a polynomial ring R[A] and a linear func-
tional E:R[A] → R called evaluation. The linear functional is such that E[1] = 1
and

E
[
αiβj · · ·γ k] = E

[
αi]E[

βj ] · · ·E[
γ k] (uncorrelation property)(3.1)

for any set of distinct umbrae in A and for i, j, k nonnegative integers. To each
umbra α ∈ A there corresponds a sequence of scalars ai = E[αi] for i = 0,1, . . .

such that a0 = 1. The scalar ai is called the ith moment of α. Indeed any scalar ran-
dom variable possessing finite moments can be represented by an umbra. A scalar
sequence {ai} with a0 = 1 is said to be represented by an umbra α if E[αi] = ai

for i = 0,1, . . . .
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EXAMPLE 3.1. The sequence 1,0,0, . . . is umbrally represented by the aug-
mentation umbra ε, and 1,1,1, . . . is umbrally represented by the unity umbra u.
These are the umbral versions of two degenerate random variables such that
P(X = 0) = 1 and P(Y = 1) = 1. The sequence of moments of a unit Poisson
random variable is umbrally represented by the Bell umbra β . This umbra plays
a fundamental role in the symbolic method, as we will see later. Its ith moment
is the Bell number, which is the coefficient of zi/i! in the Taylor expansion of
exp(ez − 1).

Since an umbra is a formal object, questions involving the moment problem
are not taken into account. Indeed, not every umbra corresponds to a real-valued
random variable.

EXAMPLE 3.2. The sequence 1,1,0,0, . . . is represented by the singleton
umbra χ . Its variance E[χ2] − E[χ ]2 = −1 is negative, so there is no real-valued
random variable corresponding to χ . Nevertheless this umbra plays a fundamental
role in dealing with cumulant sequences, as we will see later.

It is always possible to make the alphabet large enough so that, to each scalar
sequence {ai}, there corresponds an umbra α ∈ A, which is not necessarily unique.
The same applies to identically distributed random variables. Two umbrae α and
γ having the same moment sequence are called similar, in symbols α ≡ γ , and A
contains an unlimited supply of distinct umbrae similar to α, usually denoted by
α′, α′′, . . . . If the sequence {ai} is umbrally represented by α, then

the sequence
{
2iai

}
is represented by α + α = 2α,

the sequence

{
i∑

k=0

(
i

k

)
akai−k

}
is represented by α + α′.

An expression such as 2α or α +α′ is an example of an umbral polynomial, that is,
a polynomial p ∈ R[A] in the umbrae of A. The support of an umbral polynomial
is the set of all umbrae that occur in it. So the support of α + α′ is {α,α′}, and the
support of 2α is {α}. The formal power series

eαz = u + ∑
i≥1

αi z
i

i! ∈ R[A][[z]](3.2)

is the generating function of the umbra α. Moreover, each exponential formal
power series

f (z) = 1 + ∑
i≥1

ai

zi

i! ∈ R[[z]](3.3)
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can be umbrally represented by a formal power series (3.2) in R[A][[z]] [20].
In fact, if the sequence 1, a1, a2, . . . is umbrally represented by α, the action of
evaluation E can be extended coefficient-wise to formal power series (3.2), so that
E[eαz] = f (z). For clarity we denote the generating function of α by f (α, z) =
E[eαz]. Therefore α ≡ α′ if and only if f (α, z) = f (α′, z).

The first advantage of umbral notation is the representation of operations on
generating functions with operations on umbrae. For example, multiplication of
exponential generating functions is umbrally represented by the sum of the corre-
sponding umbrae, that is,

f (α + γ, z) = f (α, z)f (γ, z).

Therefore f (α, z)2 is the generating function of α +α′, which is different from the
generating function f (α,2z) of 2α. The sum of generating functions is represented
by the auxiliary umbra α +̇ γ , named the disjoint sum of two umbrae, that is,

f (α +̇ γ, z) = f (α, z) + f (γ, z) − 1,

so that E[(α +̇ γ )i] = E[αi]+E[γ i] for all positive integers i. Then 2f (α, z)− 1
is the generating function of α +̇ α or α +̇ α′, and α +̇ α ≡ α +̇ α′.

It is also possible to compose generating functions and to represent the com-
position as the generating function of an umbra. First consider n uncorrelated
umbrae α′, α′′, . . . , α′′′ similar to α and take their sum: the resulting umbra
α′ + α′′ + · · · + α′′′, denoted by n.α, is called the dot product of the integer n and
the umbra α. Its generating function is f (n.α, z) = [f (α, z)]n and the moments
are [3]

E
[
(n.α)i

] = ∑
λ�i

dλ(n)l(λ)aλ with dλ = i!
(1!)r1r1!(2!)r2r2! · · · ,(3.4)

where λ is a partition of the integer i into l(λ) parts, and aλ = a
r1
1 a

r2
2 · · · is the mo-

ment product [8]. The right-hand side of (3.4) corresponds to E[(X1 + · · ·+Xn)
i]

with X1, . . . ,Xn i.i.d. with moment sequence represented by the umbra α. In (3.4),
set E[(n.α)i] = qi(n), which is a polynomial of degree i in n. If the integer n is
replaced by any umbra γ ∈ A, and (γ )j = γ (γ −1) · · · (γ − j +1) denotes the de-
scending factorial polynomial, then we have qi(γ ) = ∑

λ�i (γ )l(λ)dλaλ. The sym-
bol γ .α such that E[(γ .α)i] = E[qi(γ )] is called the dot-product of the umbrae
α and γ . This last equality could be rewritten by using the umbral equivalence 

such that p 
 q iff E[p] = E[q] with p,q ∈ R[A]. Then we have (γ .α)i 
 qi(γ ).
More generally, the umbral equivalence turns out to be useful in dealing with um-
bral polynomials with nondisjoint supports as we will see later. The replacement
of the integer n with the umbra γ is an example of the main device employed in
the symbolic method, allowing us to represent more structured moment sequences
starting from (3.4). Observe that we move from the generating function [f (α, z)]n
to the generating function f (γ .α, z) = f (γ, log[f (α, z)]), which is not yet the
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composition of f (α, z) and f (γ, z). For this purpose, the umbra α in the dot prod-
uct γ .α has to be replaced by a dot product involving the Bell umbra, that is,
β.α. The dot product β.α is called the α-partition umbra with generating function
f (β.α, z) = exp(f (α, z) − 1). A special property which we use later is

β.(α +̇ γ ) ≡ β.α + β.γ.(3.5)

The symbol γ .(β.α) has generating function which is the composition of f (α, z)

and f (γ, z)

f
(
γ .(β.α), z

) = f
(
γ,f (α, z) − 1

)
.(3.6)

Parenthesis can be avoided since γ .(β.α) ≡ (γ .β).α. The moments are

E
[
(γ .β.α)i

] = ∑
λ�i

gl(λ)dλaλ,(3.7)

where {gi} are the moments of the umbra γ [8].

EXAMPLE 3.3. The composition umbra arises naturally in connection with
random sums X1 + · · · + XN , where the X’s are i.i.d., and N is distributed inde-
pendently of X. The cumulant generating function of the sum is the composition
KN(KX(t)) of the two generating functions. In probability theory, N is necessarily
integer-valued, but there is no such constraint on the umbra γ .

Strictly connected to the composition umbra is the compositional inverse umbra
α〈−1〉 of an umbra α, such that

α〈−1〉.β.α ≡ χ ≡ α.β.α〈−1〉.(3.8)

A special compositional inverse umbra is u〈−1〉, with u the unity umbra, having
generating function

f
(
u〈−1〉, z

) = 1 + log(1 + z)(3.9)

so that its ith moment is

E
[(

u〈−1〉)i] = (−1)i−1(i − 1)!.(3.10)

Multivariate case. Let {ν1, . . . , νm} be a set of umbral monomials with support
not necessarily disjoint. A vector sequence {gi}i∈N

m
0

∈ R, with gi = gi1,i2,...,im and
g0 = 1, is represented by the m-tuple ν = (ν1, . . . , νm) if

E
[
νi] = gi(3.11)

for each multi-index i ∈ N
m
0 . The elements {gi}i∈N

m
0

in (3.11) are called multivari-
ate moments of ν.
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REMARK 3.4. Within random variables, the m-tuple ν = (ν1, . . . , νm) corre-
sponds to a random vector (X1, . . . ,Xm). If {νi}mi=1 are uncorrelated umbrae, then

gi = E[νi1
1 ] · · ·E[νim

n ], and we recover the univariate symbolic method. The same
happens if {νi}mi=1 are umbral monomials with disjoint supports.

As done in (3.2), the generating function of ν is the formal power series

eν1z1+···+νmzm = u + ∑
k≥1

∑
|i|=k

νi zi

i! ∈ R[A][[z1, . . . , zm]](3.12)

with z = (z1, . . . , zm), |i| = i1 + · · · + im and i! = i1! · · · im!. If the sequence {gi} is
umbrally represented by ν and has (exponential) generating function

f (z) = 1 + ∑
k≥1

∑
|i|=k

gi
zi

i! ,(3.13)

then E[eν1z1+···+νmzm] = f (z). Taking into account (3.11), the generating function
in (3.13) is denoted by f (ν, z). Two umbral vectors ν1 and ν2 are said to be similar,
in symbols ν1 ≡ ν2, if and only if f (ν1, z) = f (ν2, z), that is, E[νi

1] = E[νi
2] for

all i ∈ N
m
0 . They are said to be uncorrelated if and only if E[νi

1ν
j
2] = E[νi

1]E[νj
2]

for all i, j ∈ N
m
0 .

An equation analogous to (3.4) could be given for the multivariate case, pro-
vided that integer partitions are replaced with multi-index partitions [4]. A partition
of a multi-index i is a composition λ, whose columns are in lexicographic order,
in symbols λ � i. A composition λ of a multi-index i is a matrix λ = (λij ) of non-
negative integers and with no zero columns such that λr1 + λr2 + · · · + λrk = ir
for r = 1,2, . . . , n. The number of columns of λ is the length of λ and denoted
by l(λ). As for integer partitions, the notation λ = (λ

r1
1 ,λ

r2
2 , . . .) means that in

the matrix λ there are r1 columns equal to λ1, r2 columns equal to λ2 and so on,
with λ1 < λ2 < · · · . We set m(λ) = (r1, r2, . . .). The dot-product n.ν of a non-
negative integer n and a m-tuple ν is an auxiliary umbra denoting the summation
ν′ + ν′′ + · · · + ν′′′ with {ν′, ν′′, . . . , ν′′′} a set of n uncorrelated and similar m-
tuples. For i ∈ N

m
0 and m-tuples ν of umbral monomials, we have

E
[
(n.ν)i] = ∑

λ�i

i!
m(λ)!λ!(n)l(λ)gλ,(3.14)

where the sum is over all partitions λ = (λ
r1
1 ,λ

r2
2 , . . .) of the multi-index i, gλ =

g
r1
λ1

g
r2
λ2

· · · and gλi
= E[νλi ]. The sequence in (3.14) represents moments of a sum

of i.i.d. random vectors with sequence of moments {gi}. If we replace the integer n

in (3.14) with the dot-product α.β we get the auxiliary umbra α.β.ν representing
the sequence of moments

E
[
(α.β.ν)i] = ∑

λ�i

i!
m(λ)!λ!al(λ)gλ,(3.15)
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where the sequence {ai} is umbrally represented by α. In particular the generating
function of the auxiliary umbra α.β.ν turns to be the composition of the univariate
generating function f (α, z) and the multivariate generating function f (ν, z)

f (α.β.ν, z) = f
[
α,f (ν, z) − 1

]
.(3.16)

From Example 3.3, the umbra α.β.ν is a generalization of a multivariate com-
pound randomized Poisson random vector. In the next section, we show how this
umbra allows us to write a formula for multivariate cumulants involving multi-
index partitions. More details on the symbolic composition of multivariate formal
power series can be found in [5].

4. Formal cumulants.

4.1. Definition. Among the sequences of numbers related to a real-valued ran-
dom variable, cumulants play a central role. Whether or not the sequence {ai} cor-
responds to the moments of some distribution, we define cumulants {ci} by the
following equation:

1 + ∑
i≥1

ai

zi

i! = exp
{∑

i≥1

ci

zi

i!
}
.(4.1)

If α is an umbra representing the sequence {ai}, and κα is an umbra representing
the sequence {ci}, then by comparing (4.1) with (3.6) we have

α ≡ u.β.κα,(4.2)

since f (u, z) = exp(z). The umbra κα is called the α-cumulant umbra [3] and is
such that

f (κα, z) = 1 + log
(
f (α, z)

)
.(4.3)

By comparing (4.3) with (3.6) and (3.9), we have

κα ≡ u〈−1〉.β.α.(4.4)

Since u〈−1〉.β.u ≡ u〈−1〉.β ≡ χ , then equivalence (4.4) reduces to

κα ≡ χ .α.

The algebraic properties of cumulants can be formalized as

Homogeneity χ .(aα) ≡ a(χ .α) if a ∈ R,
(4.5)

Additivity χ .(α + γ ) ≡ χ .α +̇ χ .γ.

The semi-invariance under translation follows from both equivalences in (4.5) by
choosing as umbra α the unity umbra u.

As done in (4.1), multivariate formal cumulants {ci} of a sequence of multi-
variate moments {gi} can be defined via generating functions. Indeed, if {gi} is
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umbrally represented by the m-tuple ν, then the sequence {ci} is umbrally repre-
sented by the m-tuple κν such that

f (ν, z) = exp
[
f (κν, z) − 1

]
.(4.6)

The m-tuple κν is named ν-cumulant. By comparing (3.16) with (4.6), the follow-
ing equivalence follows:

ν ≡ u.β.κν .(4.7)

Equivalence (4.7) can be inverted in

κν ≡ u〈−1〉.β.ν with f (κν, z) = 1 + log
[
f (ν, z)

]
,(4.8)

where u〈−1〉 is the compositional inverse of the unity umbra u. Moments of
u〈−1〉.β.ν can be computed via equation (3.15) by recalling (3.10). As before,
the umbra u〈−1〉.β may be replaced by the umbra χ , so that

κν ≡ χ .ν.(4.9)

Thanks to this last representation, the algebraic properties of cumulants can be
formalized as

Homogeneity χ .(aν) ≡ a(χ .ν) if a ∈ R,

Additivity χ .(ν1 + ν2) ≡ χ .ν1 +̇ χ .ν2(4.10)

if ν1 and ν1 are uncorrelated n-tuples.

In the additivity property (4.10), we have used the disjoint sum of two m-tuples,
that is, E[(ν1 +̇ ν2)

i] = E[νi
1] + E[νi

2] for all i ∈ N
m
0 . The semi-invariance under

translation follows from both equivalences in (4.10) by choosing the m-tuple u =
(u, . . . , u) as ν.

4.2. Cumulants of trace powers. Let us represent the eigenvalues of a random
matrix M of dimension m by the m-tuple of umbral monomials ν = (ν1, . . . , νm).
Cumulants of ν can be recovered via (4.7) and (4.8). In this section we will charac-
terize cumulants of Tr(M), that is, cumulants of the sequence E[(ν1 + · · · + νm)k]
for k = 1,2, . . . . Observe that

f (ν1 + · · · + νm, z) = E
[
e(ν1+···+νm)z] = f (ν, z)(4.11)

by using (3.12) and (3.13) with z = (z, . . . , z). Compositions of multivariate for-
mal power series like f (ν, z) in (4.11) are represented by symbols with a peculiar
expression. Indeed, if ν is a m-tuple of umbral monomials with generating function
f (ν, z), and ξ is a m-tuple of umbral monomials with generating function f (ξ , z),
the m-tuple having generating function f [ξ , (f (ν, z) − 1, . . . , f (ν, z) − 1)] is
(ξ1 + · · · + ξm).β.ν, that is,

f
[
(ξ1 + · · · + ξm).β.ν, z

] = f
[
ξ ,

(
f (ν, z) − 1, . . . , f (ν, z) − 1

)]
.(4.12)
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As in (4.2) and (4.4) for univariate and multivariate cumulants, respectively, in
order to characterize cumulants of f (ν, z) in (4.11), we replace the m-tuple ξ
with the m-tuple u = (u, . . . , u) in (4.12). Denote by cν the m-tuple such that
ν ≡ (u + · · · + u).β.cν , that is,

f (ν, z) = f
[
(u + · · · + u).β.cν, z

]
(4.13)

with f (ν, z) in (4.11). If cν = (c1,ν, . . . , cm,ν), then f (cν, z) = f [c1,ν + · · · +
cm,ν, z] and

f
[
(u + · · · + u).β.cν, z

] = exp
{
m

(
f [c1,ν + · · · + cm,ν, z] − 1

)}
.

DEFINITION 4.1. For fixed m, formal cumulants of the sequence {E[(ν1 +
· · · + νm)k]} are umbrally represented by the umbral polynomial c1,ν + · · · + cm,ν ,
such that

ν1 + · · · + νm ≡ m.β.(c1,ν + · · · + cm,ν)(4.14)

with cν = (c1,ν, . . . , cm,ν) given in (4.13).

In order to prove that the moments of the umbral polynomial c1,ν + · · · + cm,ν

satisfy the characterizing algebraic properties of cumulants, we need to invert
(4.14).

PROPOSITION 4.2. We have c1,ν + · · · + cm,ν ≡ χ . 1
m

.(ν1 + · · · + νm).

PROOF. Indeed from (4.14), we have 1
m

.(ν1 + · · · + νm) ≡ β.(c1,ν + · · · +
cm,ν), so χ . 1

m
.(ν1 + · · · + νm) ≡ χ .β.(c1,ν + · · · + cm,ν). The result follows since

χ .β ≡ u. �

Thanks to Proposition 4.2, the umbral polynomial c1,ν + · · · + cm,ν is similar to
an umbra like χ .p, with p ∈ R[A]. So it has to satisfy the additivity and homo-
geneity properties like those in (4.10).

THEOREM 4.3. Additivity: If ν1 and ν2 are uncorrelated m-tuples, then

c1,ν1+ν2 + · · · + cm,ν1+ν2 ≡ (c1,ν1 + · · · + cm,ν1) +̇ (c1,ν2 + · · · + cm,ν2);
Homogeneity: if a ∈ R, then c1,(aν) + · · · + cm,(aν) ≡ a(c1,ν + · · · + cm,ν).

PROOF. Observe that a.(p + q) ≡ a.p + a.q if c ∈ R and p,q are umbral
polynomials with disjoint supports [3]. The previous equivalence holds in partic-
ular for a = 1/m and p = (ν1,1 + · · · + ν1,m) and q = (ν2,1 + · · · + ν2,m). From
Proposition 4.2,

c1,ν1+ν2 + · · · + cm,ν1+ν2 ≡ χ .
1

m
.(p + q) ≡ χ .

[
1

m
.p + 1

m
.q

]
.
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From the additivity property in (4.10), we have

χ .

[
1

m
.p + 1

m
.q

]
≡ χ .

1

m
.p +̇ χ .

1

m
.q

for p and q umbral polynomials with disjoint supports. The result follows by ob-
serving that c1,ν + · · · + cm,ν ≡ χ . 1

m
.q and c1,ν + · · · + cm,ν ≡ χ . 1

m
.p. The homo-

geneity property follows since b.(ap) ≡ a(b.p), for a, b ∈ R and p ∈ R[A] [3].
The previous equivalence holds in particular for a = 1/m and p = (ν1 +· · ·+νm).

�

The semi-invariance under translation follows since (c1,u + · · · + cm,u) ≡
χ . 1

m
.m ≡ χ whose moments are all zero except the first. The connection between

multivariate cumulants of ν and those of ν1 + · · · + νm is given in the following
proposition.

PROPOSITION 4.4. We have κν ≡ χ .m.β.cν .

PROOF. We have (u + · · · + u).β.cν ≡ m.β.cν , and from (4.13) we have
m.β.cν ≡ ν. Therefore from (4.7), we have u.β.κν ≡ m.β.cν so that χ .u.β.κν ≡
χ .m.β.cν . The result follows since χ .u.β ≡ u and χ .u.β.κν ≡ κν . �

5. Spectral k-statistics. Tukey [21] introduced the multi-index k-statistics in
connection with finite-population sampling. He showed that the multi-index k’s
are multiplicative in the limit as n → ∞, and that they are equal to the product
of Fisher’s single-index k’s. In the ordinary i.i.d. setting considered by Fisher, this
means that each multi-index k converges to a cumulant product.

We now construct matricial polykays, indexed by an integer partition λ, as un-
biased estimators of cumulant products of trace powers of a random matrix Y .
Then, when the random matrix Y is defined by sub-sampling as in Section 2, that
is, when a spectral sample is considered, we will prove the inheritance property by
assuming that the elements of the diagonal matrix X are umbrally represented by
similar and uncorrelated umbrae.

DEFINITION 5.1. The matricial polykay κλ(y) of class λ � i is the symmetric
polynomial in the eigenvalues y = (y1, . . . , ym) such that

E
[
κλ(y)

] =
l(λ)∏
j=1

E
[
(c1,y + · · · + cm,y)

λj
]
.

Set l(λ) = r . From Proposition 4.2 and equation (3.14), with n replaced by
the umbra χ , a first expression of cumulant products of trace powers in terms of
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moments of Y is
r∏

j=1

E
[
(c1,y + · · · + cm,y)

λj
]

(5.1)

= ∑
(η1�λ1,...,ηr�λr )

r∏
j=1

(−1)
νηj

−1

m
dηj

(νηj
− 1)!gη1+···+ηr ,

where η1 + · · · + ηr = (t1, t2, . . .) is the summation of the partitions {η1, . . . , ηr}
and gη1+···+ηr = ∏l(η1+···+ηr )

j=1 E[Tr(Y tj )]. Equation (5.1) takes into account that

E[(χ .χ)i] = (−1)i−1(i − 1)! for all nonnegative integers i.
A second expression which is more suitable for spectral sampling is in terms of

joint moments of Y , that is, in terms of products of its trace powers. To this end,
we need to work with permutations Si and with the group algebra R[A](Si ) on
the polynomial ring R[A].

A permutation σ of [i], or σ ∈ Si , the symmetric group, can be decomposed
into disjoint cycles C(σ). In the standard representation each cycle is written with
its largest element first, and the cycles are listed in increasing order of their largest
element [17]. The length of the cycle c ∈ C(σ) is its cardinality, denoted by l(c).
The number of cycles of σ is denoted by |C(σ)|. Recall that a permutation σ with
r1 1-cycles, r2 2-cycles and so on is said to be of cycle class λ = (1r1,2r2, . . .) � i.
In particular we have l(λ) = |C(σ)|. The number of permutations σ ∈ Si of cycle
class λ = (1r1,2r2, . . .) � i is usually denoted by

sλ = i!
1r1r1!2r2r2! · · · .(5.2)

Each cycle class is a conjugacy class of the group of permutations: two elements
of Si are conjugate if and only if they have the same cycle class.

Consider the group algebra Ai = R[A](Si ). An element f ∈ Ai associates with
each permutation σ ∈ Si a polynomial f (σ) ∈ R[A], so Ai is the space of R[A]-
valued functions. Multiplication in Ai is the convolution

(f · g)(σ ) = ∑
ρω=σ

f (ρ)g(ω).(5.3)

The unitary element with respect to multiplication is the indicator function δ such
that δ(e) = 1, with e the identity [i] → [i], and zero otherwise. Indeed f · δ =
δ · f = f for f ∈ Ai . If it exists, the inverse function of f in Ai is denoted by
f (−1) and is such that f (−1) · f = f · f (−1) = δ.

Denote by μ(Y ) the function in Ai such that

μ(Y )(σ ) = ∏
c∈C(σ)

Tr
(
Y l(c)) ∈ R[A](5.4)
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for a matrix Y of order m and σ ∈ Si . Evidently μ(Y )(σ ) is a product of power
sums in the eigenvalues of Y , depending only on the cycle structure. In particular
we have

μ(Y )(e) = [
Tr(Y )

]i and μ(Im)(σ ) = m|C(σ)|.(5.5)

THEOREM 5.2. Define the function κ̃(y) ∈ Ai by

κ̃(y) = μ(Im)(−1) · μ(Y )(5.6)

with μ(Y ) and μ(Im) given in (5.4) and (5.5), respectively. Then

Kλ(y) 
 [
(1!)r2(2!)r3 · · ·]κ̃(y)(σ )(5.7)

is a matricial polykay of class λ = (1r1,2r2, . . .) � i, the cycle structure of σ .

PROOF. Observe that by taking the expectation of both sides in (5.6), we have

E
[
κ̃(y)

] = μ(Im)−1 � E
[
μ(Y )

]
,(5.8)

where � is the classical convolution on the space of R-functions on Si

(a � b)(σ ) = ∑
ρω=σ

a(ρ)b(ω)

with E[μ(Y )] :σ ∈ Si �→ E[μ(Y )(σ )] ∈ R and E[κ̃(y)] :σ ∈ Si �→ E[κ̃(y)(σ )] ∈
R. Then the symmetric polynomial Kλ(y) in (5.7) satisfies Definition 5.1 if also
the function

E[Cy] :σ ∈ Si �→ ∏
σ∈C(σ)

1

(l(σ ) − 1)!E
[
(c1,y + · · · + cm,y)

l(σ )]

is such that E[Cy] = μ(Im)−1 � E[μ(Y )]. From (4.14), we have

E
[(

Tr(Y )
)i] = ∑

λ�i

dλm
l(λ)

l(λ)∏
j=1

E
[
(c1,y + · · · + cm,y)

λi
]
.(5.9)

From (5.9), by observing that

dλ = sλ

(1!)r2(2!)r3 · · ·(5.10)

with sλ the number of permutations σ ∈ Si of cycle class λ = (1r1,2r2, . . .) � i ≤
m given in (5.2), we have

E
[
μ(Y )

]
(e) = ∑

σ∈Si

m|C(σ)|E[Cy](σ ) = ∑
σ∈Si

m|C(σ)|E[Cy](σ−1)
,(5.11)

where σ−1 is the inverse of σ . By using the action of Si on the group algebra
R(Si ) we have E[μ(Y )] = μ(Im) � E[Cy]. For i ≤ m the function σ �→ m|C(σ)|
has an inverse [10], so that E[Cy] = μ(Im)−1 � E[μ(Y )]. �
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Note that equation (5.8) is given in [1] as the definition of the cumulants of
a random matrix. By Theorem 5.2, we have shown that κ̃(y) in (5.8) are rather
statistics, due also to the condition i ≤ m which parallels the analogous condition
for Fisher’s k-statistics.

The statistics Kλ(y) are unbiased estimators of product of cumulants, due
to Definition 5.1. The inheritance on the average is indeed strictly connected
to the spectral sampling, that is, to the special structure of the matrix Y =
(HXH †)[m×m]. When Kλ(y) refers to spectral sampling, we call them spectral
polykays.

DEFINITION 5.3 (Natural spectral statistics). A statistic is said to be natu-
ral relative to spectral sampling if, for each m ≤ n, the average value of Tm over
spectral sub-samples y of x is equal to Tn(x),

E
(
Tm(y)|x) = Tn(x).(5.12)

Theorem 5.5 states that the spectral k-statistics Kλ(y) are natural.
We first give a proposition which moves from Lemma 7.2 in [3]. In this propo-

sition, the evaluation operator E[·|γ ] deals the elements of the n-tuple γ as they
were constants. A formal definition of E[·|γ ] may be found in [6].

PROPOSITION 5.4. If {γ1, γ2, . . . , γn} are uncorrelated umbrae similar to the
umbra γ , then

E
[
(γ1z1 + γ2z2 + · · · + γnzn)

j |γ ] = ∑
λ�j

dλκλ(γ )E[σ̃λ],(5.13)

where γ = (γ1, γ2, . . . , γn) and σ̃ is the polynomial umbra whose moments are the
power sums in the indeterminates {z1, z2, . . . , zn}, that is, E[σ̃ i] = zi

1 + zi
2 + · · ·+

zi
n.

PROOF. The starting point is the result of Lemma 7.2 in [3],

χ .(γ1z1 + · · · + γnzn) ≡ (χ .γ )σ̃ ,(5.14)

where {γ1, γ2, . . . , γn} are uncorrelated umbrae similar to γ . Equivalence (5.14)
may be rewritten as

χ .(γ1z1 + · · · + γnzn) ≡
(
χ .

1

n
.(γ1 + γ2 + · · · + γn)

)
σ̃(5.15)

as γ ≡ 1
n
.n.γ . Taking the dot-product with β on both sides of (5.15) gives

(γ1z1 + · · · + γnzn) ≡ β.

[(
χ .

1

n
.(γ1 + γ2 + · · · + γn)

)
σ̃

]
.(5.16)

The result follows by using (3.7) with γ replaced by the unity umbra u and by
using Proposition 4.2 and Definition 5.1. In equation (3.7), the evaluation operator
is intended to be replaced by E[·|γ ]. �



NATURAL STATISTICS FOR SPECTRAL SAMPLES 997

THEOREM 5.5 (Inheritance on the average). The statistics Kλ(y) in (5.7) are
inherited on the average, that is,

E
[
Kλ(y)|x] = Kλ(x),

where y is a spectral random sample.

PROOF. Since the trace is invariant under cyclic permutations, for a nonnega-
tive integer i, we have

Tr
(
Y i) = Tr

[(
HXH †)i

[m×m]
] = Tr

[(
XH

†
[m×n]H[m×n]

)i]
with Y given in Definition 2.1. Therefore μ(Y ) = μ(XB), with B = H

†
[m×n]

H[m×n] a square matrix of dimension n independent of X. The random matrix
B is an orthogonal projection on a m-dimensional subspace such that

μ(B)(σ ) = ∏
c∈C(σ)

Tr
[(

H
†
[m×n]H[m×n]

)l(c)]
(5.17)

= ∏
c∈C(σ)

Tr
[(

H[m×n]H †
[m×n]

)l(c)] = μ(Im)(σ ).

For a diagonal matrix X independent of B , and by using Proposition 5.4, we have

E
[
μ(XB)|x] = μ(Im) · κ̃(x).(5.18)

Indeed, if in Proposition 5.4 the umbrae {γ1, . . . , γn} are replaced by the elements
of the diagonal matrix X, and the indeterminates {z1, . . . , zn} by the diagonal en-
tries of the matrix B , equation (5.13) may be updated as

E
[
Tr(XB)i |x] = ∑

λ�i

dλκλ(x)E[σ̃λ].(5.19)

Due to (5.17), we have E[σ̃λ] = ml(λ). So again equation (5.18) follows by using
the action of Si on the group algebra R(Si ). The result follows from Theorem 5.2
by observing that

E
[
κ̃(y)|x] = E

[
μ(Im)−1 · μ(XB)|x]

= E
[
μ(Im)−1 · μ(Im) · κ̃(x)|x] = κ̃(x). �

REMARK 5.6. The computation of μ(Im)−1 requires the solution of a system
of m equations in m indeterminates μ(Im) · μ(Im)−1 = μ(Im)−1 · μ(Im) = δ with
coefficients given by μ(Im). This task may be performed with standard procedures
in any symbolic package. A different way consists of resorting to the so-called
Weingarten function on Si . See [2] for the definition and the properties of the
Weingarten function, which involves the characters of Si and Schur symmetric
polynomials indexed by λ � i.
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The spectral k-statistics can be expressed on terms of power sums Sr = ∑n
j=1 xr

j

as follows:

K(1) = S1

n
= k(1),

K(2) = nS2 − S2
1

n(n2 − 1)
= k(2)

(n + 1)
,

K(12) = nS2
1 − S2

n(n2 − 1)
= k(12)

(n + 1)
,

K(3) = 2
2S3

1 − 3nS1S2 + n2S3

n(n2 − 1)(n2 − 4)
= 2k(3)

(n + 1)(n + 2)
,

K(1,2) = −2nS3 + (n2 + 2)S1S2 − nS3
1

n(n2 − 1)(n2 − 4)
= 2k(1,2) − nk(1)k(2)

(n + 1)(n + 2)
,

K(13) = S3
1(n2 − 2) − 3nS1S2 + 4S3

n(n2 − 1)(n2 − 4)
= 2k(13) − 3k(1)k(2) + n(n + 3)(k(1))

3

(n + 1)(n + 2)
.

The functions of degree 4 are a little more complicated,

K(4) = 6
S4(n

3 + n) − 4S1S3(n
2 + 1) + S2

2(3 − 2n2) + 10nS2
1S2 − 5S4

1

n2(n2 − 1)(n2 − 4)(n2 − 9)
,

K(1,3) = 2
−3nS4(n

2 + 1) + S1S3(12 + 3n2 + n4) + S2
2(6n2 − 9)

n2(n2 − 1)(n2 − 4)(n2 − 9)

+ −3nS2
1S2(n

2 + 1) + 2(2n2 − 3)S4
1

n2(n2 − 1)(n2 − 4)(n2 − 9)
,

K(22) = 2S4(3n − 2n3) + 4S1S3(4n2 − 6) + S2
2(18 + n4 − 6n2)

n2(n2 − 1)(n2 − 4)(n2 − 9)

+ −2nS2
1S2(n

2 + 6) + (n2 + 6)S4
1

n2(n2 − 1)(n2 − 4)(n2 − 9)
,

K(12,2) = 10nS4 − 4S1S3(n
2 + 1) + S2

2(n2 + 6) + nS2
1S2(n

2 + 1)

n(n2 − 1)(n2 − 4)(n2 − 9)

+ (4 − n2)S4
1

n(n2 − 1)(n2 − 4)(n2 − 9)
,

K(14) = −30nS4 + 4S1S3(4n2 − 6) + S2
2(3n2 + 18) + 6nS2

1S2(4 − n2)

n2(n2 − 1)(n2 − 4)(n2 − 9)

+ (6 − 8n2 + n4)S4
1

n2(n2 − 1)(n2 − 4)(n2 − 9)
.
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For comparison purposes, all of the single-index functions K(r)(x) and the k-
statistics k(r)(x) for r ≥ 2 are invariant under translation: K(r)(x − x̄) = K(r)(x).
If the mean is zero, the fourth-order statistics are

(n)4k(4) = n2(n + 1)S4 − 3n(n − 1)S2
2 ,

K(4) ∝ n
(
n2 + 1

)
S4 − (

2n2 − 3
)
S2

2 ,

showing that K(4) is not a simple multiple of k(4).
For a spectral sample, the first few conditional variances and covariances are

var
(
K(1)(y) | x

) = K(2)(x)

(
1

m
− 1

n

)
,

cov
(
K(1)(y),K(2)(y) | x

) = 2K(3)(x)

(
1

m
− 1

n

)
,

var
(
K(2)(y) | x

) = 2K(22)(x)

(
1

m2 − 1
− 1

n2 − 1

)

+ 2K(4)(x)
(n − m)(2m2n2 − 3n2 − 3m2 − mn + 3)

nm(m2 − 1)(n2 − 1)
,

which are similar to the covariances of the corresponding k-statistics.
We now characterize the limiting behavior of spectral polykays. To this end, we

recall the notion of free cumulant occurring within noncommutative probability
theory [13]. A noncommutative probability space is a pair (A,�), where A is a
unital noncommutative algebra, and � : A → C is a unital linear functional. This
gives rise to a sequence of multilinear functional {�i} on A via �i(a1, . . . , ai) =
�(a1 · · ·ai).

Let N C denote the lattice of all noncrossing partitions of [i]. A noncrossing
partition π = {B1,B2, . . . ,Bk} of the set [i] is a partition such that if 1 ≤ h < l <

s < k ≤ i, with h, s ∈ Bn and l, k ∈ Bn′ , then n = n′. For any noncrossing partition
π and a1, . . . , ai ∈ A we set

�π(a1, . . . , ai) = ∏
B∈π

�(aj1 · · ·ajs )

for B = (j1 < · · · < js). Free cumulants are defined as multilinear functionals such
that

cπ(a1, . . . , ai) = ∏
B∈π

c|B|(aj1 · · ·ajs )

and

ci(a1, . . . , ai) = ∑
π∈N C

m(π,1i)�π(a1, . . . , ai),

where m(π,1i) is the Moebius function on the lattice of noncrossing parti-
tions [13]. The ith cumulants of a is ci = ci(a, . . . , a).
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By using Proposition 6.1 in [1], when m goes to infinity, the mean of the nor-
malized spectral k-statistics κ̃

(N)
λ corresponding to λ = (1r1,2r2, . . .) � i

κ̃
(N)
λ (y) := mi−l(λ)κ̃λ(y)

tends toward the product of free cumulants c
r1
1 c

r2
2 · · · with κ̃λ(y) := κ̃(y)(σ ), given

in (5.6), and σ a permutation of class λ.

6. Generalized spectral polykays. The notion of generalized cumulant has
been discussed by McCullagh [11] and involves set partitions. In umbral terms, if
π is a partition of {μ1,μ2, . . . ,μi}, then the generalized cumulant κπ is defined
as [3]

E
[
(χ .μ)π

] = κπ with (χ .μ)π = ∏
B∈�i

(χ .μB) and μB = ∏
j∈B

μj .

For example, if i = 5 and π = {{μ1,μ2}, {μ3}, {μ4,μ5}}, then

E
[
(χ .μ)π

] = E
[
(χ .μ1μ2)(χ .μ3)(χ .μ4μ5)

] = κ12,3,45

using McCullagh’s notation. Generalized k-statistics are the sample version of the
generalized cumulants. The importance of generalized k-statistics stems from the
following properties: the generalized k-statistics are linearly independent; every
polynomial symmetric function can be expressed uniquely as a linear combina-
tion of generalized k-statistics; any polynomial symmetric function whose expec-
tation is independent of n can be expressed as linear combination of generalized
k-statistics with coefficients independent of n [12]. Due to the last property, natural
statistics could be expressed as linear combinations of their generalized k-statistics
with coefficients independent of n.

THEOREM 6.1. If λ � i ≤ m and π is a set partition of class λ, then general-
ized k-statistics of spectral polykays are

l̃π (y) 
 ∑
τ≥π

(−1)|τ |−1(|τ | − 1
)!κ̃τ (y),(6.1)

where κ̃τ (y) denotes the function on �i such that κ̃(y)(τ ) := κ̃(y)(σ ), with σ ∈ Si

a permutation of the same class of τ and κ̃(y) given in (5.6).

The proof of Theorem 6.1 relies on Proposition 5.4 of [3]. We do not invert
equivalence (6.1) because the linear combination giving spectral polykays in terms
of their generalized k-statistics is quite cumbersome; see equation (3.18) in [12].
Instead, there are alternative systems of symmetric functions that are more suitable
from a computational point of view. All such systems are invertible linear functions
of generalized k-statistics with coefficients independent of the sample size, and the
properties given above are preserved under such transformations.
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To characterize such coefficients, we first recall the Moebius inversion formula
on the lattice of set partitions [15]. The set �i with the refinement order ≤ is a
lattice, where π ≤ τ if for any block in B ∈ π there exists a block B ′ ∈ τ such that
B ⊆ B ′. If G is a function on �i and

F(π) = ∑
τ≥π

G(τ),

then the Moebius inversion formula states that

G(π) = ∑
τ≥π

m(π, τ )F (τ),(6.2)

where m(π, τ ) is the so-called Moebius function. It is shown that

m(π, τ ) = (−1)s−t (2!)r3(3!)r4 · · · ,
where r1 + 2r2 + · · · = s = |π |, r1 + r2 + · · · = t = |τ | and (1r1,2r2, . . .) is the
partition, usually denoted by λ(π, τ ), of the integer s such that rj blocks of τ

contain exactly j blocks of π .

DEFINITION 6.2. If λ � i ≤ m and π is a set partition of class λ, the (trans-
formed) generalized k-statistics of spectral polykays are lτ (y) such that

κ̃π (y) = ∑
τ≥π

lτ (y),(6.3)

where κ̃τ (y) denotes the function on �i such that κ̃(y)(τ ) := κ̃(y)(σ ), with σ ∈ Si

a permutation of the same class of τ and κ̃(y) given in (5.6).

The linear combination in (6.3) is very simple involving coefficients all equal
to 1. By using the Moebius inversion formula (6.2), from (6.3) we have

lπ (y) = ∑
τ≥π

m(π, τ )κ̃τ (y).(6.4)

Since κ̃(y)(σ ) depends only on the cycle structure C(σ), then κ̃τ (y) depends
only on the block sizes in τ . So in the sum (6.4), there are dλ spectral k-statistics
equal to κ̃τ (y), all those having the same class λ. Therefore spectral polykays of
degree i can be indexed by partitions of i. As example, by Definition 6.1, the
spectral polykays up to order 4 are

l(1) = κ̃(1) (i = 1),

l(12) = κ̃(12) − κ̃(2) (i = 2),

l(1,2) = κ̃(1,2) − κ̃(3) (i = 3),

l(13) = κ̃(13) − 3κ̃(1,2) + 2κ̃(3),

l(1,3) = κ̃(1,3) − κ̃(4) (i = 4),
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l(22) = κ̃(22) − κ̃(4),

l(12,2) = κ̃(12,2) − 2κ̃(1,3) − κ̃(22) + 2κ̃(4),

l(14) = κ̃(14) − 6κ̃(12,2) + 8κ̃(1,3) + 3κ̃(22) − 6κ̃(4).

In addition, we have l(i) = κ̃(i). We take a moment to motivate this defini-
tion. Tukey [21] gives very similar equations connecting classical polykays and
k-statistics. We just recall those up to order 4.

k(1) = k(1) (i = 1),

k(12) = k(1)k(1) − 1

m
k(2) (i = 2),

k(1,2) = k(1)k(2) − 1

m
k(3) (i = 3),

k(13) = k(1)k(1)k(1) − 3

m
k(2)k(1) + 2

m2 k(3),

k(1,3) = k(1)k(3) − 1

m
k(4) (i = 4),

k(22) = m − 1

m + 1
k(2)k(2) − 1

m
k(4),

k(12,2) = k(2)k(1)k(1) − 2

m
k(3)k(1) − m − 1

m(m + 1)
k(2)k(2) + 2

m(m + 1)
k(4),

k(14) = k(1)k(1)k(1)k(1) − 6

m
k(2)k(1)k(1) + 8

m2 k(3)k(1)

+ 3(m − 1)

m2(m + 1)
k(2)k(2) − 6m

m + 1
k(4).

The two sets of equations are very similar in structure.
The refinement order in (6.3) is inverted with respect to those connecting mo-

ments and cumulants [11]. It is the same as that employed in the change of basis
between augmented symmetric functions and power sums [3] and employed by
Tukey in order to show the multiplicative structure of ãλ(x) for infinite popula-
tions.

In terms of power sums in the eigenvalues, the transformed generalized spectral
polykays up to order 4 are

l(1,2) = (m + 1)S1S2 − S3
1 − mS3

m(m − 1)(m + 1)(m − 2)
,

l(12,2) = 2mS4 + (m + 3)S2
1S2 − (2m + 2)S1S3 − mS2

2 − S4
1

m(m − 1)(m + 1)(m − 2)(m − 3)
,
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l(22) = 1

m2(m2 − 1)(m − 2)(m − 3)

× {
S1

4 + (−3m + 3 + m2)
S2

2

+ (4m − 4)S1S3 − 2S1
2S2m + (−m2 + m

)
S4

}
,

l(1,3) = 2

(m2 − 4)(m2 − 1)m2

× {−S4m
(
m2 + 1

) + S1S3
(
m3 + m2 + 4

)
+ S2

2
(
2m2 − 3

) − mS2
1S2(3m + 1) + S4

1(2m − 1)
}
.

The spectral statistics l(1r ) are the same as the corresponding polykays k(1r ).

THEOREM 6.3. When m goes to infinity the mean of the normalized (trans-
formed) generalized k-statistics

l(N)
π (y) := mi−|π |lπ (y)

tends to dλc
r1
1 c

r2
2 · · · , with λ = (1r1,2r2, . . .) � i, the class partition of π , and {cj }

free cumulants.

PROOF. After multiplying both sides of (6.4) by mi−|π |, we have

mi−|π |lπ (y) = ∑
τ≥π

m(π, τ )mi−|π |κ̃τ (y).

Since τ ≥ π , then |τ | ≤ |π | so that

l(N)
π (y) = ∑

τ≥π

m(π, τ )
1

m|π |−|τ | m
i−|τ |κ̃τ (x).

As m goes to infinity, for all τ > π having the same class partition, mi−|τ |κ̃τ (y)

tends toward the free cumulant cτ , whereas 1
m|π |−|τ | goes to zero. The result follows

since for τ = π we have m(π, τ ) = 1, and for all π having the same class partition
mi−|π |κ̃π (y) goes to cπ = c

r1
1 c

r2
2 · · · . �
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