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Abstract. We consider the first-crossing-time problem through a constant boundary
for a Wiener process perturbed by random jumps driven by a counting process. On the
base of a sample-path analysis of the jump-diffusion process we obtain explicit lower
bounds for the first-crossing-time density and for the first-crossing-time distribution
function. In the case of the distribution function, the bound is improved by use of
processes comparison based on the usual stochastic order. The special case of constant
jumps driven by a Poisson process is thoroughly discussed.

1 Introduction In a variety of applied contexts a relevant role is played by jump-diffusion
processes, i.e. by diffusion processes to which jumps occurring at random times are super-
imposed. Indeed, such processes are for example invoked for the description of stochastic
neuronal activity (see Giraudo and Sacerdote [13] and Giraudo et al. [15]), of complex
queueing systems (see Perry and Stadje [17]), of random assets in mathematical finance
(see Ball and Roma [4]), of surplus of insurance companies in ruin theory (see Gerber and
Landry [11]), of acto-myosin interaction in biomathematics (see Buonocore et al. [6]). De-
spite the relevance of the first-crossing-time (FCT) problem for jump-diffusion processes in
such contexts, only few analytical results are available on their probability density func-
tion (pdf), even in the case of very simple boundaries. The available results are mainly
focused on equations involving the FCT moments (see, for instance, Abundo [2], Giraudo
and Sacerdote [12], and Tuckwell [21]), which however seem to be hardly manageable for
practical purposes. Other results concerning bounds, obtained by use of Laplace transform,
are limited to upper and lower bounds for the ruin probability in a jump-diffusion process
involved in a risk model perturbed by Brownian motion (see Yin and Chiu [22]), and for
the mean and the variance of the hitting time in certain jump-diffusion processes (see Schäl
[19]). Analytical results on FCT pdf’s are also very rare (see Kou and Wang [16], where
explicit solutions of the Laplace transform of the distributions of the first-crossing times
are disclosed for a Brownian motion perturbed by double exponentially distributed jumps).
Hence, as a viable alternative, efficient algorithms have been devised in order to evaluate
FCT densities (cf. the recent contributions by Atiya and Metwally [3], and by Di Crescenzo
et al. [7]).

In order to evaluate the performance of simulation algorithms, one needs to come up with
some sample cases in which FCT densities and distribution functions obtained by simulation
can be compared with the corresponding bounds analytically determined. Hence, in the
present paper lower bounds for FCT densities and distribution functions will be determined
for jump-diffusion processes based on the Wiener process in the presence of a constant
boundary. Our results are based on a sample-path analysis of the jump-diffusion process
and on some specific features of the underlying Wiener process, such as the space and time
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homogeneity and the availability of a closed form of the FCT density through a constant
boundary. It must be pointed out that our approach is at all different from that of Bischoff
and Hashorva [5], where the Cameron-Martin-Girsanov formula is exploited to obtain a
lower bound for the boundary crossing probability of Brownian bridge with trend.

In Section 2 we formally describe the jump-Wiener model, that consists of the superpo-
sition of a Wiener process and of a jump process with generally distributed jumps occurring
at the occurrences of a counting process. The FCT problem for such process through a
constant boundary is then addressed and a lower bound for the FCT pdf is then deter-
mined in Section 3. Use of such a bound is then made for the special case when upward
and downward jumps have constant amplitudes and occur according to a Poisson process.
Section 4 presents a lower bound for the FCT cumulative distribution function (cdf). The
special case when only upward constant jumps are allowed, and are separed by random
times having exponential distribution is thoroughly investigated. In this case the bound is
improved by making use of a technique based on the comparison of FCT’s by the “usual
stochastic order”. Finally, in Section 5 some remarks on the computational aspects are
given.

2 FCT problem for a jump-diffusion process Let {X(t)}t≥0 be a jump-diffusion
process defined by

X(t) = W (t) + Y (t)(1)

where {W (t)}t≥0 and {Y (t)}t≥0 are independent stochastic processes and

(i) {W (t)}t≥0 is a Wiener process with drift µ ∈ R, and variance σ2 ∈ (0,+∞) per unit
time, starting at W (0) = x0;

(ii) {Y (t)}t≥0 is a jump process such that Y (0) = 0 and Y (t) =
∑N(t)

i=1 Ji, t > 0, with
Y (t) = 0 whenN(t) = 0 and J1, J2, . . . real-valued i.i.d. r.v.’s such that P{Ji = 0} < 1
for all i. The cdf of Ji will be denoted by FJ(x) and the survival function by F J(x) =
1 − FJ (x). By {N (t)}t≥0 we denote a counting process independent of {J1, J2, . . . }
and characterized by i.i.d. absolutely continuous positive renewals R1, R2, . . . having
pdf fR(x), cdf FR(x) and survival function FR(x) = 1 − FR(x).

Let
f(x, t |x0) =

∂

∂x
P {X(t) ≤ x |X(0) = x0} , t > 0,

be the conditional pdf of {X(t)}. Since

P

{
W (t) +

k∑
i=1

Ji ∈ dx

∣∣∣∣∣W (0) = x0

}
=

∫
R

fW (x− u, t |x0) dF [k](u) dx,

where F [k](u) denotes the cdf of
∑k

i=1 Ji and

fW (x, t |x0) =
1√

2πσ2t
exp

{
− (x− x0 − µt)2

2σ2t

}
is the pdf of W (t), from the assumptions on {X(t)} we have:

f(x, t |x0) =
∞∑

k=0

P [N(t) = k]
∫

R

fW (x− u, t |x0) dF [k](u).(2)
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Denoting by φN (u, t) the probability generating function of N(t) and by ψJ (s) the moment
generating function (m.g.f.) of Ji, the m.g.f. of {X(t)} is given by

E
[
esX(t)

∣∣∣X(0) = x0

]
= φN [ψJ(s), t] exp

{
(x0 + µt)s+

σ2t

2
s2

}
,(3)

and

E[X(t) |X(0) = x0] = x0 + µt+ E(J1)E[N(t)],(4)
Var[X(t) |X(0) = x0] = σ2t+ Var(J1)E[N(t)] +E2(J1) Var[N (t)].(5)

Assuming x0 < S, hereafter we shall discuss the FCT problem through a constant
boundary S for the jump-diffusion process defined in (1). We denote by

TX = inf{t ≥ 0 : X(t) ≥ S}, P{X(0) = x0} = 1,(6)

the FCT of {X(t)} through S from below, and by

gX(S, t |x0) =
∂

∂t
P {TX ≤ t |X(0) = x0} , t > 0(7)

its pdf. The corresponding cdf will be denoted by

GX(S, t |x0) = P(TX ≤ t |X(0) = x0), t ≥ 0.(8)

To determine the ultimate FCT probability and the FCT moments one is usually asked to
solve appropriate integro-differential equations (see Abundo [2] and Tuckwell [21]). The de-
termination of closed-form expressions for the FCT pdf and cdf is instead a harder problem,
because so far no analytical method appear to be available thus for. Hence, in the following
sections we shall confine our investigation to determining useful lower bounds for density
(7) and cdf (8).

Let TW denote the FCT from below of Wiener process {W (t)} from x0 < S to the
constant boundary S. Some well-known results on TW that will be used later are recalled
hereafter:
• FCT cdf of {W (t)} through S:

GW (S, t |x0) = P{TW ≤ t |W (0) = x0}(9)

= Φ
(
−S − x0 − µt√

σ2t

)
+ exp

(
2µ
S − x0

σ2

)
Φ

(
−S − x0 + µt√

σ2t

)
,

where

Φ(z) =
1√
2π

∫ z

−∞
e−x2/2dx, z ∈ R;(10)

• FCT pdf of {W (t)} through S:

gW (S, t |x0) =
∂

∂t
P{TW ≤ t |W (0) = x0} =

S − x0√
2πσ2t3

exp
{
− (S − x0 − µt)2

2σ2t

}
;(11)

• S-avoiding transition pdf of {W (t)}:

αW (x, t |x0) =
∂

∂x
P{W (t) ≤ x, TW > t |W (0) = x0}(12)

=
1√

2πσ2t
exp

{
− (x− x0 − µt)2

2σ2t

}[
1−exp

{
−2(S − x)(S − x0)

σ2t

}]
.
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3 Lower bound for FCT pdf In order to obtain the preannounced lower bound for
pdf (7) let us note that, for all t > 0, event {TX ∈ (t, t + dt)} can be decomposed into the
following three mutually exclusive events:
(i) the first jump occurs after t and the first crossing through S occurs in (t, t+ dt) due to
the diffusive component of {X(t)};
(ii) in (0, t) the diffusive component of {X(t)} does not cross the boundary, the first jump
occurs in (t, t+ dt) and it causes the first crossing;
(iii) the first jump occurs at time θ ∈ (0, t) and it does not cause the first crossing, the
diffusive component of {X(t)} having not crossed the boundary in (0, θ); the first crossing
finally occurs in (t, t+ dt).

Hence, for all t > 0 the following equation holds:

gX(S, t |x0) = FR(t) gW (S, t |x0) + fR(t)
∫ S

−∞
αW (x, t |x0)F J(S − x) dx(13)

+
∫ t

0

dFR(θ)
∫ S

−∞
αW (x, θ |x0)

∫ S−x

−∞
gX(S, t− θ |x+ u) dFJ(u) dx.

The formal proof of Eq. (13) has been given by Giraudo and Sacerdote [14] in the special case
of jumps of constant size at the occurrence of a Poisson process, aiming to find out conditions
under which the FCT density becomes multimodal (see also Sacerdote and Sirovich [18] on
this topic). As an immediate consequence of (13) a lower bound for the FCT pdf of {X(t)}
can be obtained. Indeed, for all t > 0 the following inequality holds:

gX(S, t |x0) ≥ FR(t) gW (S, t |x0) + fR(t)
∫ S

−∞
αW (x, t |x0)F J(S − x) dx(14)

+
∫ t

0

FR(t− θ) dFR(θ)
∫ S

−∞
αW (x, θ |x0)

∫ S−x

−∞
gW (S, t− θ |x+ u) dFJ(u) dx.

Note that a tighter lower bound can be obtained by repeated substitutions of gX in the
last term of the right-hand-side of (13). However, this would include many terms involving
progressively high-order integrals, unsuitable for computational purposes.

3.1 A special case Let us now study a special case of model (1). First of all, we assume
that the jumps are separated by i.i.d. exponential random timesRi, i.e. restrict our attention
to the case when {N (t)} is a Poisson process whose parameter will be denoted by λ. In this
case pdf f(x, t |x0) is solution of the following integro-differential equation (see Buonocore
et al. [6] or Di Crescenzo et al. [9]):

∂ f

∂t
= −λf − µ

∂ f

∂x
+
σ2

2
∂2 f

∂x2
+ λ

∫
R

f(x− y, t |x0) dFJ (y),

which clearly reduces to the Fokker-Plank equation of a Wiener process if λ = 0. Moreover,
let us assume that the jumps have positive or negative constant amplitude. In other words,
the random jumps Ji are distributed as

Ji =
{
a w.p. η
−b w.p. 1 − η,(15)

with 0 < η < 1, a > 0 and b > 0. Hence, Y (t) can be expressed as

Y (t) = aN1(t) − bN2(t), t > 0
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where {N1(t)}t≥0 and {N2(t)}t≥0 are independent Poisson processes with rate ηλ and (1−
η)λ, respectively. ¿From (2), for x ∈ R and t ≥ 0 we obtain

f(x, t |x0) =
e−λt

√
2πσ2t

∞∑
k=0

∞∑
j=0

(ηλt)j

j!
((1 − η)λt)k

k!
exp

{
− (x+ aj − bk − x0 − µt)2

2σ2t

}
.

(16)

Since under the present assumptions ψJ(s) = η eas + (1− η) e−bs and φN (u, t) = e−λt(1−u),
from (3) the m.g.f. of {X(t)} for s ∈ R becomes

E
[
esX(t)

∣∣∣X(0) = x0

]
= exp

{
−λt [1 − η eas − (1 − η) e−bs

]
+ (x0 + µt)s+

σ2t

2
s2

}
.

As already pointed out in Di Crescenzo et al. [7], from (4) and (5) we have

E[X(t) |X(0) = x0] = x0 + µt+ [ηa− (1 − η)b]λt,
Var[X(t) |X(0) = x0] = σ2t+ [ηa2 + (1 − η)b2]λt.

We stress that the lower bound given in (14) can now be explicitly evaluated. Indeed,
under the present assumptions for all t > 0 we have:

gX(S, t |x0) ≥ g�(S, t |x0),

with

g�(S, t |x0) := e−λt

{
gW (S, t |x0) + ηλ

∫ S

S−a

αW (x, t |x0) dx(17)

+ ηλ

∫ t

0

dθ
∫ S−a

−∞
αW (x, θ |x0) gW (S, t− θ |x+ a) dx

+ (1 − η)λ
∫ t

0

dθ
∫ S

−∞
αW (x, θ |x0) gW (S, t− θ |x− b) dx

}
,

where gW (S, t |x0) is given in (11) and∫ S

S−a

αW (x, t |x0) dx = Φ
(
S − x0 − µt

σ
√
t

)
− Φ

(
S − a− x0 − µt

σ
√
t

)
− exp

{
2µ
σ2

(S − x0)
} [

Φ
(
−S − x0 + µt

σ
√
t

)
− Φ

(
−S + a− x0 + µt

σ
√
t

)]
,

with Φ(z) defined in (10). The right-hand-side of (17) can be numerically evaluated. Indeed,
making use of identity∫ ∞

0

(z − δ)e−(az2+bz+γ)dz =
e−γ

2a

{
1 − 2

√
aπ

(
b

2a
+ δ

)
e

b2
4a

[
1 − Φ

(
b√
2a

)]}
, a > 0,

following from Eq. 7.4.2 of Abramowitz and Stegun [1], one obtains:∫ S−m

−∞
αW (x, θ |x0) gW (S, t− θ |x+ u) dx =

1
2πt

√
θ

t− θ
exp

{
− (S − u− x0 − µt)2

2σ2t

}
×

{
A−(θ, u) − exp

[
−2(S − x0)u

σ2t

]
A+(θ, u)

}
,
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Figure 1: Estimated FCT density ĝX(S, t |x0) for the Wiener process with constant Poisson-
paced jumps for a = b = 3.75, and lower bound g�(S, t |x0), with x0 = 0, S = 5, λ = 0.2,
η = 1, σ2 = 0.2 and (a) µ = 1.0, (b) µ = 1.5, (c) µ = 2.0, (d) µ = 2.5.

where m = max{u, 0} and

A±(θ, u) = exp
{
− [(m− u)θ ± (S − x0 ±m)(t− θ)]2

2σ2θt(t− θ)

}
∓

√
2π(t− θ)
σ2tθ

(S − x0 ± u)

{
1 − Φ

[
(m− u)θ ± (S − x0 ±m)(t− θ)√

σ2θt(t− θ)

]}
.

Figures 1 and 2 show certain multimodal estimates of gX(S, t |x0) obtained by means
of the simulation procedure described in Di Crescenzo et al. [7], together with the lower
bound given in (17). The latter appears to be very close to the estimated pdf in various
cases; the goodness of the approximation is discussed in Section 5.

4 Lower bound for FCT cdf In this section we obtain a lower bound for the FCT
distribution function (8). Similarly to the case of the FCT density we note that event
{TX ≤ t}, t > 0, can be decomposed into three mutually exclusive events:
(i) the first jump occurs after t and the first crossing through S occurs in (0, t] due to the
diffusive component of {X(t)};
(ii) the first jump occurs at time θ ∈ (0, t) and it causes the first crossing through S;
(iii) the first jump occurs at time θ ∈ (0, t) and it does not cause the first crossing, the
diffusive component of {X(t)} having not crossed the boundary in (0, θ); the first crossing
finally occurs in (θ, t].



BOUNDS FOR FIRST-CROSSING-TIME PROBABILITIES 989

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

(b)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

(c)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

(d)

Figure 2: Estimated FCT density ĝX(S, t |x0) for the Wiener process with constant Poisson-
paced jumps, and lower bound g�(S, t |x0), for µ = 2.0 and (a) η = 0.8, (b) η = 0.5, (c)
η = 0.2, (d) η = 0. All other parameters are chosen as in Figure 1.

The following equation thus holds for all t > 0:

GX(S, t |x0) = FR(t)GW (S, t |x0) +
∫ t

0

dFR(ϑ)
∫ S

−∞
αW (x, ϑ |x0)F J(S − x) dx(18)

+
∫ t

0

dFR(ϑ)
∫ S

−∞
αW (x, ϑ |x0) dx

∫ S−x

−∞
GX(S, t− ϑ |x+ u) dFJ(u).

Hence, after setting

BX(S, t |x0) := FR(t)GW (S, t |x0) +
∫ t

0

dFR(ϑ)
∫ S

−∞
αW (x, ϑ |x0)F J (S − x) dx(19)

+
∫ t

0

FR(t− ϑ) dFR(ϑ)
∫ S

−∞
αW (x, ϑ |x0) dx

∫ S−x

−∞
GW (S, t− ϑ |x+ u) dFJ (u)

it is not hard to see that from (18) the following lower bound for the FCT distribution
function is obtained:

GX(S, t |x0) ≥ BX(S, t |x0), t > 0.(20)

4.1 An improved bound Bound (20) holds in the case of generally distributed jumps
Ji and renewals Ri. By making use of a method already adopted in the proof of Theorem
3.3 of Di Crescenzo and Pellerey [10], hereafter we see how such bound can be improved by
specifying the distributions FJ and FR. Let us assume that
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(i) the random times separating consecutive jumps are exponentially distributed, with
FR(t) = e−λt, t ≥ 0, and λ > 0, and that

(ii) the jumps have fixed amplitude a.s., with FJ (x) = 1{x≥a} and a > 0, which
corresponds to assumption (15) with b = 0 and η = 1.

In the following we shall stochastically compare {X(t)} with another Wiener process
with jumps {X̃n(t)}t≥0, which is driven by the same diffusive component of {X(t)}. We
formally have

X̃n(t) = W (t) + Ỹn(t), t ≥ 0,(21)

where {W (t)} and {Ỹn(t)} are independent stochastic processes, {W (t)} is the same pro-
cess appearing in the right-hand-side of (1), {Ỹn(t)} is a jump process such that Ỹn(0) = 0

and Ỹn(t) =
∑

�N(t)
i=1 J̃i, t > 0, with Ỹn(t) = 0 when Ñ(t) = 0. Moreover, J̃1, J̃2, . . . are

real-valued i.i.d. r.v.’s degenerating at na, with a > 0 and n a fixed positive integer, i.e.
possessing cdf F

�J (x) = 1{x≥na}. Furthermore, {Ñ(t)}t≥0 is a counting process independent
of {J̃1, J̃2, . . . } and characterized by i.i.d. Erlang-distributed renewal times R̃1, R̃2, . . . hav-
ing survival function F

�R(t) = e−λt
∑n−1

j=0
(λt)j

j! , t ≥ 0, with λ > 0. We stress that processes

{X(t)} and {X̃n(t)} share the two parameters λ and a.
Making use of a customary tecnique based on the constructions of “clone” processes

(see, for instance, Theorem 3.3 of Di Crescenzo et al. [8]) and recalling (1) and (21), it is
not hard to prove that

X̃n(t) ≤st X(t) for all n ≥ 1,(22)

where ≤st denotes the usual stochastic order (see Section 1.A of Shaked and Shanthiku-
mar [20]). An immediate consequence of (22) is that the FCT’s of those processes are
stochastically ordered too, i.e.

TX ≤st T �Xn
for all n ≥ 1.(23)

In other terms,

GX(S, t |x0) ≥ G
�Xn

(S, t |x0) for all n ≥ 1 and t ≥ 0,(24)

where G
�Xn

(S, t |x0) is the FCT cdf of {X̃n(t)}. Similarly to (20) the following bound holds
for all n ≥ 1:

G
�Xn

(S, t |x0) ≥ B
�Xn

(S, t |x0), t > 0,(25)

where

B
�Xn

(S, t |x0) := e−λt
n−1∑
j=0

(λt)j

j!
GW (S, t |x0)(26)

+
∫ t

0

λe−λϑ (λϑ)n−1

(n− 1)!
dϑ

∫ S

S−na

αW (x, ϑ |x0) dx

+
∫ t

0

e−λ(t−ϑ)
n−1∑
j=0

[λ(t− ϑ)]j

j!
λe−λϑ (λϑ)n−1

(n− 1)!
dϑ

×
∫ S−na

−∞
αW (x, ϑ |x0)GW (S, t− ϑ |x+ na) dx,
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Figure 3: Estimated FCT distribution function ĜX(S, t |x0) and lower bound G�(S, t |x0)
for the same cases treated in Figure 1.

with GW and αW defined in (9) and (12), respectively. In conclusion, by (24) and (25) we
obtain

GX(S, t |x0) ≥ sup
n≥1

B
�Xn

(S, t |x0), t ≥ 0.(27)

Since (20) provides a bound of type GX(S, t |x0) ≥ B
�X1

(S, t |x0), Eq. (27) yields a better
bound. Furthermore, the right-hand-side of (27) is not necessarily a distribution function,
so that we can improve the bound as follows:

GX(S, t |x0) ≥ G�(S, t |x0) ≡ max
0≤τ≤t

sup
n≥1

B
�Xn

(S, τ |x0), t ≥ 0.(28)

Figure 3 shows estimates of FCT distribution function ĜX(S, t |x0) obtained from sim-
ulations perfomed by means of the procedure given in Di Crescenzo et al. [7], together with
the respective lower bound (28). We stress that the lower bounds given in Figure 3 shows
a case in which, for all τ ≥ 0

sup
n≥1

B
�Xn

(S, τ |x0) = B
�X1

(S, τ |x0).(29)

Note that (29) holds because relation S − na > 0 is satisfied only if n = 1. Instead, the
angular points appearing in the lower bound on the right of Figure 4 show a case in which

sup
n≥1

B
�Xn

(S, τ |x0) = B
�Xk

(S, τ |x0),

for different values of k as τ varies.
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Figure 4: On the left: Estimated FCT density ĝX(S, t |x0) and lower bound g�(S, t |x0) for
a = 2, b = 0, x0 = 0, S = 6, λ = 0.2, η = 1, µ = 1.5 and σ2 = 0.2. On the right: The
corresponding estimated distribution function ĜX(S, t |x0) and lower bound G�(S, t |x0).

5 Remarks on computational aspects Let us now point out some computational
features related to the evaluation of bound (28). The last integral in (26), i.e.∫ S−na

−∞
αW (x, ϑ |x0)GW (S, t− ϑ |x+ na) dx,

can be expressed in terms of integrals of the form

I =
∫ +∞

0

e−a(x−b)2 Φ(cx+ d) dx,(30)

with a > 0, with b, c, d ∈ R and Φ given in (10). Unfortunately no closed forms are available
for (30), so that we have been forced to numerically evaluate it by splitting the integration
domain as follows:

I =
∫ b

0

e−a(x−b)2 Φ(cx+ d) dx +
∫ +∞

b

e−a(x−b)2 Φ(cx+ d) dx.

Then, transforming the second integral we obtain:

I =
∫ b

0

e−a(x−b)2 Φ(cx+ d) dx +
1

2
√
a

∫ +∞

0

x1/2e−x Φ
(
c

√
x

a
+ c b+ d

)
dx.(31)

A Gauss-Legendre quadrature rule has been applied to the first integral by choosing 16
abscissas, after an ad hoc transformation of the integration domain in [−1, 1], whereas a
generalized Gauss-Laguerre quadrature rule has been applied to the second integral by
choosing 16 abscissas. Note that the latter quadrature formula is exact for weighting func-
tions as w(x) = xβe−x, with β ∈ R, which includes the case of the second integral in (31).

In order to evaluate the goodness of lower bound (17) we shall now adopt the following
“measure of closeness”:

E = h

n∑
j=1

[ĝX(S, jh |x0) − g�(S, jh |x0)] ,(32)



BOUNDS FOR FIRST-CROSSING-TIME PROBABILITIES 993

µ \ η 1 0.8 0.5 0.2 0.0
1.0 3.9358e-02 1.1393e-01 2.4054e-01 3.6791e-01 4.5211e-01
1.5 2.1059e-02 6.5103e-02 1.4572e-01 2.2688e-01 2.8409e-01
2.0 1.7266e-02 4.4515e-02 9.6393e-02 1.5005e-01 1.9656e-01
2.5 1.7283e-02 3.4975e-02 7.0264e-02 1.1009e-01 1.4486e-01

Table 1: Values of E for various choices of µ and η.

where h is a discretization step and n is the minimum integer such that

h

n∑
j=1

ĝX(S, jh |x0) ≥ 0.99.

Differently stated, (32) measures how the bound g� is close to ĝX by the multiples of h up
to the 0.99-percentile. For h = 0.01, Table 1 shows values of E , where ĝX is an estimate of
gX , whereas g� is the lower bound given in (17). It is evident that E increases if µ decreases
or if η decreases.

We finally point out that throughout the paper the estimated functions ĝX and ĜX

have been obtained by use of 106 simulated FCT’s. The estimated pdf ĝX has been built
by adopting an Epanechnikov kernel estimator, while ĜX derives by use of a Kaplan-Meier
estimator.
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