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Let S be a normal base scheme. The aim of this paper is to study the line bundles on

1-motives defined over S. We first compute a dévissage of the Picard group of a 1-motive

M according to the weight filtration of M. This dévissage allows us to associate, to

each line bundle L on M, a linear morphism ϕL : M → M∗ from M to its Cartier dual.

This yields a group homomorphism � : Pic(M)/Pic(S) → Hom(M, M∗). We also prove

the Theorem of the Cube for 1-motives, which furnishes another construction of the

group homomorphism � : Pic(M)/Pic(S) → Hom(M, M∗). Finally, we prove that these

two independent constructions of linear morphisms M → M∗ using line bundles on

M coincide. However, the 1st construction, involving the dévissage of Pic(M), is more

explicit and geometric and it furnishes the motivic origin of some linear morphisms

between 1-motives. The 2nd construction, involving the Theorem of the Cube, is more

abstract but also more enlightening.

1 Introduction

Let A be an abelian variety over a field k and let A∗ = Pic0
A/k be its dual. It is

a classical fact that if L is a line bundle on A, then the morphism ϕL : A → A∗,

defined by ϕL(a) = μ∗
aL ⊗ L−1, where μa : A → A is the translation by a, is a group
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2 C. Bertolin and S. Brochard

homomorphism. This is an easy consequence of the Theorem of the Square, which itself

is a consequence of the Theorem of the Cube. We have then a functorial homomorphism

� : Pic(A) → Hom(A, A∗), which is a key result in the basic foundations of the theory of

abelian varieties. In [8, Section 10] Deligne introduced the notion of 1-motives, which

can be seen as a generalization of abelian schemes. Let S be a scheme. A 1-motive

M = (X, A, T, G, u) defined over S is a complex [u : X → G] of commutative S-group

schemes concentrated in degree 0 and -1, where

• X is an S-group scheme that is locally for the étale topology a constant group

scheme defined by a finitely generated free Z -module,

• G is an extension of an abelian S-scheme A by an S-torus T,

• u : X → G is a morphism of S-group schemes.

A linear morphism of 1-motives is a morphism of complexes of S-group schemes. We

will denote by

Hom(M1, M2)

the group of linear morphisms from M1 to M2. In this paper we study line bundles on a

1-motive M and their relation to linear morphisms from M to its Cartier dual M∗.

Our aim is to answer the following natural questions:

(1) If M is a 1-motive over S, is it possible to construct a functorial homomor-

phism � : Pic(M) → Hom(M, M∗) that extends the known one for abelian

schemes?

(2) Is there an analog of the Theorem of the Cube for 1-motives?

We give a positive answer to both questions if the base scheme S is normal (for

comments on what happens if the base scheme S is not normal, see Remark 7.4).

The notion of line bundle on a 1-motive M over S already implicitly exists in the

literature. Actually, in [15, p. 64] Mumford introduced a natural notion of line bundles

on an arbitrary S-stack X (see Definition 3.1). Since to any 1-motive M over S we can

associate by [7, Section 1.4] a commutative group stack st(M), we can define the category

PIC(M) of line bundles on M as the category of line bundles on st(M). The Picard group

of M, denoted by Pic(M), is the group of isomorphism classes of line bundles on st(M)

(see Definition 3.2).

The stack st(M) associated to a 1-motive M = [X
u→ G] is isomorphic to the

quotient stack [G/X], where X acts on G by translations via u. Under this identification,

the inclusion of 1-motives ι : G → M corresponds to the projection map G → [G/X],
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Morphisms of 1-motives 3

which is étale and surjective. We can then describe line bundles on M as couples

(L, δ),

where L is a line bundle on G and δ is a descent datum for L with respect to the covering

ι : G → [G/X] (see Section 3, after Lemma 3.3). Throughout this paper, we will use this

description of line bundles on M, which amounts to say that a line bundle on a 1-

motive M is a line bundle on G endowed with an action of X that is compatible with

the translation action of X on G.

The main result of our paper is the following theorem, which generalizes to 1-

motives the classical homomorphism � : Pic(A) → Hom(A, A∗) for abelian varieties.

Theorem 1.1. Let M be a 1-motive defined over scheme S. Assume that the toric part of

M is trivial or that S is normal. Then there is a functorial homomorphism

� : Pic(M)/Pic(S) −→ Hom(M, M∗). (1.1)

We actually provide two independent constructions of �:

(1) The 1st construction, given in Section 5, is the most explicit and geometric

one. It is based on the “dévissage” of the Picard group of M, computed in

Section 4, and on the explicit functorial description of the Cartier dual M∗ of

M in terms of extensions given in [8, (10.2.11)].

(2) The 2nd construction, given in Sections 6 and 7, is more abstract but also

more enlightening. It works for a category that is a bit larger than 1-motives

(see 7.1) and it also provides the fact that � is a group homomorphism. This

construction relies on the “Theorem of the Cube for 1-motives” (Theorem 7.1),

a result that we think is of independent interest, and on the description of

the Cartier dual of a 1-motive in terms of commutative group stacks.

In Proposition 7.3 we prove that these two constructions coincide.

Dévissage of the Picard group of M: 1-motives are endowed with a weight fil-

tration W∗ defined by W0(M) = M, W−1(M) = G, W−2(M) = T, Wj(M) = 0 for each j ≤ −3.

This weight filtration allows us to “dévisser” the Picard group of M, which is our 2nd

main result. We will first describe the Picard group of G in terms of Pic(A) and Pic(T)

using the 1st short exact sequence 0 → T
i→ G

π→ A → 0 given by W∗. Consider the

morphism

ξ : Hom(T,Gm) → Pic(A)
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4 C. Bertolin and S. Brochard

defined as follows: for any morphism of S-group schemes α : T → Gm, ξ(α) is the

image of the class [α∗G] of the pushdown of G via α under the inclusion Ext1(A,Gm) ↪→
H1(A,Gm) = Pic(A). At the beginning of Section 4 we will show the following:

Proposition 1.2. Assume the base scheme S to be normal. The following sequence of

groups is exact:

0 −→ Hom(G,Gm)
i∗−→ Hom(T,Gm)

ξ−→ Pic(A)

Pic(S)

π∗
−→ Pic(G)

Pic(S)

i∗−→ Pic(T)

Pic(S)
.

The 2nd short exact sequence 0 → G
ι→ M

β→ X[1] → 0 given by the weight

filtration W∗ of M induces by pullback the sequence Pic(X[1])
β∗
→ Pic(M)

ι∗→ Pic(G), which

is not exact as we will see in Example 4.3, but which is nevertheless interesting since

the kernel of the homomorphism ι∗ : Pic(M) → Pic(G) fits in a long exact sequence. In

fact, at the end of Section 4 we will prove the following:

Proposition 1.3. Assume the base scheme S to be reduced. Then the kernel K of the

homomorphism ι∗ : Pic(M) → Pic(G) fits in an exact sequence

Hom(G,Gm)
◦u−→ Hom(X,Gm)

β∗
−→ K

�−→ �
−→ �.

Note that the group Hom(X,Gm) in the above sequence identifies in a natural way with

Pic(X[1])/Pic(S).

Here the group � is the subgroup of Hom(X, GD), where GD = Hom(G,Gm), con-

sisting of those morphisms of S-group schemes that satisfy the equivalent conditions of

Lemma 4.4, and � is a quotient of the group of symmetric bilinear morphisms X ×S X →
Gm (see Definition 4.5 and (4.6) for the definitions of �, �, , and �). Remark that there

is a natural identification of K with the kernel of Pic(M)/Pic(S) → Pic(G)/Pic(S) and so

the map β∗ in the above sequence is really the pullback along β : M → X[1].

Theorem of the Cube for 1-motives: In its classical form, the Theorem of the

Cube asserts that for any line bundle L on an abelian variety, the associated line bundle

θ(L) is trivial (see Section 6 for the definitions of θ(L) and θ2(L)). In [3] Breen proposed

the following reinforcement of the Theorem of the Cube. A cubical structure on L is a

section of θ(L) that satisfies some additional conditions so that θ2(L) is endowed with

a structure of symmetric biextension. A cubical line bundle is a line bundle endowed
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Morphisms of 1-motives 5

with a cubical structure. Then a commutative S-group scheme G is said to satisfy the

(strengthened form of the) Theorem of the Cube if the forgetful functor

CUB(G) −→ RLB(G)

from the category CUB(G) of cubical line bundles on G to the category RLB(G) of

rigidified line bundles on G is an equivalence of categories.

The notion of cubical structure introduced by Breen generalizes seamlessly to

commutative group stacks (see Definition 6.1). In a very general context, in Theorem 6.2,

we explain how a cubical line bundle (L, τ) on a commutative group stack G defines an

additive functor from G to its dual D(G) = Hom(G, BGm):

ϕ(L,τ) : G −→ D(G)

a �−→ (
b �→ Lab ⊗ L−1

a ⊗ L−1
b

)
.

In Theorem 7.1 we show that over a normal base scheme, 1-motives satisfy

the Theorem of the Cube in the above sense, which is our 3rd main result. Then

Theorem 1.1 is an immediate corollary of Theorems 6.2 and 7.1. Remark that the

quotient Pic(M)/Pic(S) is isomorphic to the group of isomorphism classes of rigidified

line bundles on M.

We finish observing that the construction of the morphism �(L, δ) : M → M∗,

with (L, δ) a line bundle on M, which we give in Section 5, is completely geometric and

so it allows the computation of the Hodge, the De Rham, and the �-adic realizations of

�(L, δ) : M → M∗, with their comparison isomorphisms. This furnishes the motivic

origin of some linear morphisms between 1-motives and their Cartier duals (here

motivic means coming from geometry—see [9]). In this setting, an ancestor of this paper

is [1] where the 1st author defines the notion of biextensions of 1-motives and shows

that such biextensions furnish bilinear morphisms between 1-motives in the Hodge,

the De Rham, and the �-adic realizations. Just as biextensions of 1-motives are the

motivic origin of bilinear morphisms between 1-motives, line bundles on a 1-motive

M are the motivic origin of some linear morphisms between M and its Cartier dual M∗.

As observed in Remark 5.5 not all morphisms from M to M∗ are defined by line bundles.

2 Notation

Let S be a site. For the definitions of S-stacks and the related vocabulary we refer

to [11]. By a stack we always mean a stack in groupoids. If X and Y are two

S-stacks, HomS−stacks(X ,Y) will be the S-stack such that for any object U of S,

HomS−stacks(X ,Y)(U) is the category of morphisms of S-stacks from X|U to Y|U . If S

is a scheme, an S-stack will be a stack for the fppf topology.
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6 C. Bertolin and S. Brochard

A commutative group S-stack is an S-stack G endowed with a functor + :

G ×S G → G, (a, b) �→ a + b, and two natural isomorphisms of associativity σ and of

commutativity τ , such that for any object U of S, (G(U), +, σ , τ) is a strictly commutative

Picard category. An additive functor (F,
∑

) : G1 → G2 between two commutative group

S-stacks is a morphism of S-stacks F : G1 → G2 endowed with a natural isomorphism
∑

:

F(a+b) ∼= F(a)+F(b) (for all a, b ∈ G1) that is compatible with the natural isomorphisms

σ and τ underlying G1 and G2. A morphism of additive functors u : (F,
∑

) → (F ′,
∑′

) is

an S-morphism of Cartesian S-functors (see [11, Chp. I 1.1]) that is compatible with the

natural isomorphisms
∑

and
∑′ of F and F ′, respectively. For more information about

commutative group stacks we refer to [7, Section 1.4] or [5].

Let D[−1,0](S) be the subcategory of the derived category of abelian sheaves

on S consisting of complexes K such that Hi(K) = 0 for i �= −1 or 0. Denote by

Picard(S) the category whose objects are commutative group stacks and whose arrows

are isomorphism classes of additive functors. In [7, Section 1.4] Deligne constructs an

equivalence of category

st : D[−1,0](S) −→ Picard(S). (2.1)

We denote by [ ] the inverse equivalence of st. Via this equivalence of categories to

each 1-motive M is associated a commutative group S-stack st(M) and morphisms of 1-

motives correspond to additive functors between the corresponding commutative group

stacks.
We will denote by BGm the classifying S-stack of Gm, that is, the commutative

group S-stack such that for any object U of S, BGm(U) is the category of Gm-torsors

over U. Remark that [BGm] = Gm[1], where Gm[1] is the complex with the multiplicative

sheaf Gm in degree -1. If G and Q are two commutative group stacks, Hom(G,Q) will

be the commutative group S-stack such that for any object U of S, Hom(G,Q)(U) is the

category whose objects are additive functors from G|U to Q|U and whose arrows are

morphisms of additive functors. We have that [Hom(G,Q)] = τ≤0RHom
(
[G], [Q]

)
, where

τ≤0 is the good truncation in degree 0. The dual D(G) of a commutative group stack G is

the commutative group stack Hom(G, BGm). In particular [D(G)] = τ≤0RHom
(
[G],Gm[1]

)
.

Note that the Cartier duality of 1-motives coincides with the duality for commutative

group stacks via the equivalence st, that is, D(st(M)) � st(M∗), where M∗ is the Cartier

dual of the 1-motive M (see [8, (10.2.11)]).

Let S be an arbitrary scheme. An abelian S-scheme A is an S-group scheme that

is smooth, proper over S, and with connected fibers. An S-torus T is an S-group scheme

that is locally isomorphic for the fpqc topology (equivalently for the étale topology) to

an S-group scheme of type G
r
m (with r a nonnegative integer and G

0
m the trivial torus).
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Morphisms of 1-motives 7

If G is an S-group scheme, we denote by GD the S-group scheme Hom(G,Gm) of group

homomorphisms from G to Gm. If T is an S-torus, then TD is an S-group scheme that

is locally for the étale topology a constant group scheme defined by a finitely generated

free Z-module.

3 Line Bundles on 1-motives

Let S be a scheme. The following definition is directly inspired from [15, p. 64].

Definition 3.1. Let p : X → S be an S-stack.

1. A line bundle L on X consists of

• for any S-scheme U and any object x of X (U), a line bundle L(x)

on U;

• for any arrow f : y → x in X , an isomorphism L( f ) : L(y) →
p( f )∗L(x) of line bundles on U verifying the following compat-

ibility: if f : y → x and g : z → y are two arrows of X , then

L( f ◦ g) = p(g)∗L( f ) ◦ L(g).

2. A morphism F : L1 → L2 of line bundles over X consists of a morphism of

line bundles F(x) : L1(x) → L2(x) for any S-scheme U and for any object x of

X (U), such that p( f )∗F(x) ◦L1( f ) = L2( f ) ◦ F(y) for any arrow f : y → x in X .

The usual tensor product of line bundles over schemes extends to stacks and allows

us to define the tensor product L1 ⊗ L2 of two line bundles L1 and L2 on the stack X .

This tensor product equips the set of isomorphism classes of line bundles on X with an

abelian group law. Using the equivalence of categories [7, Section 1.4] between 1-motives

and commutative group stacks, we can then define line bundles on 1-motives as follows:

Definition 3.2. Let M be a 1-motive defined over S.

1. The category PIC(M) of line bundles on M is the category of line bundles on

st(M).

2. The Picard group of M, denoted by Pic(M), is the group of isomorphism

classes of line bundles on st(M).

The following lemma will allow us to describe line bundles on a 1-motive M =
[X

u→ G] as line bundles on G endowed with an action of X that is compatible with the

translation action of X on G.
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8 C. Bertolin and S. Brochard

Lemma 3.3. Let ι : X0 → X be a representable morphism of stacks over S. Assume that

ι is faithfully flat and quasi-compact or locally of finite presentation. Then the category

of line bundles on X is equivalent to the category of line bundles on X0 with descent

data, that is, to the category whose objects are pairs (L, δ), where L is a line bundle

on X0 and δ : q∗
1L → q∗

2L is an isomorphism such that, up to canonical isomorphisms,

p∗
13δ = p∗

23δ ◦ p∗
12δ (with the obvious notations for the projections qi : X0 ×X X0 → X0 and

pij : X0 ×X X0 ×X X0 → X0 ×X X0).

Proof. We have to prove that the pullback functor ι∗ from the category of line bundles

on X to the category of line bundles on X0 with descent data is an equivalence. The

result is well known if X is algebraic, see [12, (13.5)]. Hence, for any S-scheme U and

any morphism x : U → X , the statement is known for the morphism ιU : X0 ×X U → U

obtained by base change. Since a line bundle on X is by definition a collection of line

bundles on the various schemes U, the general case follows. �

Let M = [X
u→ G] be a 1-motive over scheme S. By [12, (3.4.3)] the associated

commutative group stack st(M) is isomorphic to the quotient stack [G/X] (where X acts

on G via the given morphism u : X → G). Note that in general it is not algebraic in the

sense of [12] because it is not quasi-separated. However, the quotient map ι : G → [G/X]

is representable, étale, and surjective, and the above lemma applies. The fiber product

G ×[G/X] G is isomorphic to X ×S G. Via this identification, the projections qi : G ×[G/X]

G → G (for i = 1, 2) correspond to the 2nd projection p2 : X ×S G → G and to the

map μ : X ×S G → G given by the action (x, g) �→ u(x)g, respectively. We can further

identify the fiber product G ×[G/X] G ×[G/X] G with X ×S X ×S G and the partial projections

p13, p23, p12 : G×[G/X] G×[G/X] G → G×[G/X] G with the map mX ×idG : X×S X×S G → X×S G

where mX denotes the group law of X, the map idX × μ : X ×S X ×S G → X ×S G, and

the partial projection p′
23 : X ×S X ×S G → X ×S G, respectively. Hence, by Lemma 3.3 the

category of line bundles on M is equivalent to the category of couples

(L, δ),

where L is a line bundle on G and δ is a descent datum for L with respect to ι : G → [G/X].

More explicitly, the descent datum δ is an isomorphism δ : p∗
2L → μ∗L of line bundles on

X ×S G satisfying the cocycle condition

(mX × idG)∗δ = (
(idX × μ)∗δ

) ◦ (
(p′

23)∗δ
)
.
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Morphisms of 1-motives 9

It is often convenient to describe line bundles in terms of “points”. If g is a point of G,

that is, a morphism g : U → G for some S-scheme U, we denote by Lg the line bundle g∗L

on U. Then δ is given by a collection of isomorphisms

δx,g : Lg → Lu(x)g

for all points x of X and g of G, such that for all points x, y of X and g of G,

δx+y,g = δx,u(y)g ◦ δy,g . (3.1)

With this description, the pullback functor ι∗ maps a line bundle (L, δ) on M to L, that

is, ι∗ just forgets the descent datum. Note for further use that ι∗ is faithful.

4 Dévissage of the Picard Group of a 1-motive

Let us first recall the following global version of Rosenlicht’s Lemma from [17, Corollaire

VII 1.2].

Lemma 4.1 (Rosenlicht). Let S be a reduced base scheme and let P be a flat S-group

scheme locally of finite presentation. Assume that the maximal fibers of P are smooth

and connected. Let λ : P → Gm be a morphism of S-schemes. If λ(1) = 1, then λ is a

group homomorphism.

(I) 1st dévissage coming from the short exact sequence 0 → T
i→ G

π→ A → 0.

Proof of Proposition 1.2. By [13, Chp. I, Prop. 7.2.2], the category CUB(A) is equivalent

to the category of pairs (L, s), where L is a cubical line bundle on G and s is a

trivialization of i∗L in the category CUB(T). With this identification, the pullback functor

π∗ : CUB(A) → CUB(G) is the forgetful functor that maps a pair (L, s) to L. But since

the base scheme is assumed to be normal, all these categories of cubical line bundles

are equivalent to the categories of line bundles rigidified along the unit section [13,

Chp. I, Prop. 2.6]. The group of isomorphism classes of rigidified line bundles on G

is isomorphic to Pic(G)/Pic(S), and similarly for A and T. Hence, the equivalence of

categories [13, Chp. I, Prop. 7.2.2] induces the following exact sequence when we take

the groups of isomorphism classes:

Aut(OG)
i∗−→ Aut(i∗OG) −→ Pic(A)/Pic(S)

π∗
−→ Pic(G)/Pic(S)

i∗−→ Pic(T)/Pic(S) , (4.1)
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10 C. Bertolin and S. Brochard

where the automorphism groups on the left are the automorphism groups in the

categories of rigidified line bundles on G and on T. An automorphism of OG (rigidified)

is an automorphism λ : OG → OG such that e∗λ = id, where e is the unit section of G.

Hence, the above group Aut(OG) identifies with the kernel of e∗ : �(G,O∗
G) → �(S,O∗

S),

that is, with the group of morphisms of schemes λ : G → Gm such that λ(1) = 1. Since S

is reduced, this kernel is isomorphic to Hom(G,Gm) by Lemma 4.1. Similarly, the group

Aut(i∗OG) of automorphisms in the category of rigidified line bundles is isomorphic to

Hom(T,Gm). Moreover, since Hom(A,Gm) = 0 the 1st map i∗ is injective. �

Remark 4.2. (1) Over any base scheme S, by [13, Chp. I, Prop. 7.2.1] the category CUB(T)

is isomorphic to the category of extensions of T by Gm. Moreover, by [13, Chp. I, Remark

7.2.4], if we assume the base scheme S to be normal, or geometrically unibranched, or

local Henselien, then the group Ext1(T,Gm) vanishes if the torus T is split.

(2) If L is a rigidified line bundle on G, the class of the line bundle i∗L in

Pic(T)/Pic(S) represents the obstruction to the fact that L comes from a rigidified line

bundle over A. Since Pic(T)/Pic(S) � Ext1(T,Gm) and since the tori underlying 1-motives

are split locally for the étale topology, as a consequence of (1) of this Remark we have

that if S is normal, there exists an étale and surjective morphism S′ → S such that

(i∗L)|S′ = 0, that is, after a base change to S′, the rigidified line bundle L on G comes

from A.

(II) 2nd dévissage coming from the exact sequence 0 → G
ι→ M

β→ X[1] → 0.

Let us describe more explicitly the maps ι∗ : Pic(M) → Pic(G) and β∗ :

Pic(X[1]) → Pic(M) in terms of line bundles with descent data. As explained in Section 3,

we identify the category of line bundles on M with the category of couples

(L, δ),

where L is a line bundle on G and δ is a descent datum for L with respect to the covering

ι : G → [G/X]. Then the pullback functor ι∗ maps a line bundle (L, δ) on M to L: ι∗(L, δ) = L.

If L is the trivial bundle OG, via the canonical isomorphism p∗
2L � μ∗L, a descent

datum δ on L can be seen as a morphism of S-schemes δ : X ×S G → Gm, and the cocycle

condition (3.1) on δ can be rewritten as follows: for any points x, y of X and g of G, we

have the equation

δ(x + y, g) = δ(x, u(y)g).δ(y, g) . (4.2)
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Morphisms of 1-motives 11

The category of line bundles on X[1] is equivalent to the category of line bundles

on S together with a descent datum with respect to the presentation S → [S/X]. By

[4, Example 5.3.7] we have that

Pic(X[1])

Pic(S)
� Hom(X,Gm).

Let us now describe the pullback morphism β∗ in these terms. Unwinding

the various definitions, it can be seen that given a character α : X → Gm, the

associated element β∗α ∈ Pic(M) is the class of the line bundle (OG, δα), where δα is

the automorphism of OX×SG corresponding to the morphism of S-schemes δα : X ×S G →
Gm, (x, g) �→ α(x):

β∗α = [(OG, δα)].

Even if the composition ι∗β∗ is trivial, the sequence Pic(X[1]) → Pic(M) → Pic(G)

is not exact in general as shown in the following example. However, in the special case

of 1-motives without toric part, this sequence is always exact (see Remark 4.9).

Example 4.3. Let S be any base scheme with Pic(S) = 0. Let T be an S-torus, let X = Z,

and let M = [u : X → T] be a 1-motive with u the trivial morphism. Let (OT , δ) be a

line bundle on M (using the above description) that is mapped to the neutral element

of Pic(T). Note that since u is trivial the cocycle condition (4.2) here means that for any

g ∈ T(U), δ(., g) is a group homomorphism in the variable x.

The class of (OT , δ) is in the image of Pic(X[1]) if and only if there is an

α ∈ Hom(X,Gm) such that (OT , δ) � (OT , δα). An isomorphism (OT , δ) � (OT , δα) is an

automorphism λ of OT such that δα ◦ p∗
2λ = μ∗λ ◦ δ. But here μ = p2 (since u is trivial)

and the group of automorphisms of OX×ST is commutative. So (OT , δ) and (OT , δα) are

isomorphic if and only if δ = δα. This proves that (OT , δ) is in the image of Pic(X[1]) if and

only if δ, seen as a morphism of S-schemes δ : X ×S T → Gm, is constant in the variable

g ∈ T (for the “if” part, we define α by α(x) = δ(x, 1) and the cocycle condition on δ ensures

that α is a group homomorphism). We will now construct a descent datum δ on OT that

is not constant in g and this will prove that the sequence Pic(X[1]) → Pic(M) → Pic(T) is

not exact. Let λ ∈ Hom(T,Gm) be a nontrivial homomorphism and define δ functorially

by δ(n, g) = λ(g)n. This δ is a homomorphism in the variable n for any g and so it is

indeed a descent datum, but it is nonconstant in g since λ is nonconstant. Hence, the

corresponding line bundle (OT , δ) is not in the image of Pic(X[1]).
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12 C. Bertolin and S. Brochard

Now we compute the kernel of ι∗ : Pic(M) → Pic(G). Let GD = Hom(G,Gm) and

XD = Hom(X,Gm) be the Cartier duals of G and X, respectively.

Lemma 4.4. For a morphism of S-group schemes λ : X → GD, the following conditions

are equivalent:

1. For any S-scheme U and any two points x, y ∈ X(U), λ(x)(u(y)) = λ(y)(u(x)).

2. The diagram

where we have identified the term G in the bottom left-hand corner with its

double dual (GD)D, and where uD, λD are the morphisms of group schemes

induced by u, λ by “taking the Cartier dual”, commutes.

Proof. We just give the proof of (2). Put f = uD ◦ λ : X → XD. Identifying X with its

double dual (XD)D, we have that f D = X → XD coincides with f and so λD◦u = (uD◦λ)D =
uD ◦ λ.

�

We say that a morphism of S-schemes σ : X×SX → Gm is symmetric if it satisfies

the equation σ(x, y) = σ(y, x). If α : X → Gm is a morphism of S-schemes, we denote by

σα : X ×S X → Gm the symmetric morphism given by σα(x, y) = α(x+y)
α(x)α(y)

. Hence, α is a

morphism of S-group schemes if and only if σα is trivial.

Definition 4.5.

1. We denote by � the subgroup of Hom(X, GD) consisting of those morphisms

of S-group schemes that satisfy the equivalent conditions of Lemma 4.4.

2. We denote by � the quotient of the group of symmetric bilinear morphisms

X ×S X → Gm by the subgroup of morphisms of the form σα for some

morphism of S-schemes α : X → Gm.

3. We denote by  : � → � the natural homomorphism that maps λ ∈ � to the

class of the function (x, y) �→ λ(x)(u(y)).

Remark 4.6. Note that, following [6, XIV, Sections 2–4] we can view � as a subgroup

of the kernel of the natural morphism Ext1(X,Gm) → H1(X,Gm). Since the framework
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Morphisms of 1-motives 13

and statements of [6] are not exactly the same as ours, we briefly recall the construction

here. If σ : X ×S X → Gm is a symmetric bilinear morphism, let Eσ be the group scheme

Gm ×S X, where the group law is given by (γ1, x).(γ2, y) := (γ1γ2σ(x, y), x + y). With the

2nd projection π : Eσ → X and the inclusion i : Gm → Eσ given by i(γ ) = (γ , 0), the group

scheme Eσ is a commutative extension of X by Gm. Then a direct computation shows

that σ �→ Eσ induces an injective group homomorphism from � to Ext1(X,Gm). Since the

projection π : Eσ → X has a section x �→ (1, x), the Gm-torsor over X induced by Eσ is

trivial, which proves that the image of � lies in the kernel of Ext1(X,Gm) → H1(X,Gm).

Actually, if E is an extension of X by Gm, its class [E] ∈ Ext1(X,Gm) lies in � if and only

if the projection E → X has a section s : X → E (only as a morphism of schemes, not

of group schemes), which is of degree 2 in the language of [3] or [13], that is, such that

θ3(s) = 1.

Remark 4.7. In particular, if X is split (i.e., X � Z
r for some r) then � = 0 since the

morphism Ext1(X,Gm) → H1(X,Gm) is injective.

For the rest of this Section, we assume that the base scheme S is reduced. Denote

by K the kernel of the forgetful functor ι∗ : Pic(M) → Pic(G). This kernel is the group

of classes of pairs (OG, δ), where δ is a descent datum on OG. Such a descent datum

can be seen as a morphism of schemes δ : X ×S G → Gm that satisfies the cocycle

condition (4.2). Two pairs (OG, δ1), (OG, δ2) are in the same class if and only if they are

isomorphic in the category of line bundles on G equipped with a descent datum relative

to ι : G → M, which means that there is a morphism of S-schemes ν : G → Gm such

that (μ∗ν).δ1 = δ2.p∗
2ν, where μ, p2 : X ×S G → G are the action of X on G and the 2nd

projection. The latter equation can be rewritten as ν(u(x)g)δ1(x, g) = δ2(x, g)ν(g) for any

(x, g) ∈ X(U) × G(U). Replacing ν with g �→ ν(g)/ν(1), we may assume that ν(1) = 1 so

that ν is a group homomorphism by Rosenlicht’s Lemma 4.1. The equation then becomes

ν(u(x))δ1(x, g) = δ2(x, g). (4.4)

The group law on K is given by [(OG, δ1)].[(OG, δ2)] = [(OG, δ1.δ2)].

We will now construct a homomorphism � : K → �, where � was defined in

Definition 4.5. Let [(OG, δ)] be a class in K where δ is a solution of (4.2). For any point x

of X, consider the morphism of S-schemes

λδ(x) : G → Gm, g �→ δ(x, g)

δ(x, 1)
. (4.5)
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14 C. Bertolin and S. Brochard

Since λδ(x)(1) = 1, the morphism λδ(x) is actually a homomorphism by Lemma 4.1, hence

a section of GD. This construction is functorial and defines a morphism of S-schemes

λδ : X → GD. By (4.2), for any x, y ∈ X and any g ∈ G we have

λδ(x + y)(g) = δ(x + y, g)

δ(x + y, 1)

= δ(x, u(y)g)δ(y, g)

δ(x, u(y))δ(y, 1)

= δ(x, u(y)g)

δ(x, 1)
.

δ(x, 1)

δ(x, u(y))
.
δ(y, g)

δ(y, 1)

= λδ(x)(u(y)g)

λδ(x)(u(y))
.λδ(y)(g)

= λδ(x)(g).λδ(y)(g),

where the last equality follows from the fact that λδ(x) is a homomorphism. Hence, λδ is

a morphism of S-group schemes. Moreover, by (4.2) for any x, y ∈ X we have

δ(x, u(y))δ(y, 1) = δ(x + y, 1) = δ(y + x, 1) = δ(y, u(x))δ(x, 1).

Hence, λδ(x)(u(y)) = λδ(y)(u(x)) and so λδ belongs to �. Since λδ only depends on the

class [(OG, δ)], this construction induces a well-defined homomorphism

� : K → �, [(OG, δ)] �→ λδ. (4.6)

It is a homomorphism because λδ1δ2 = λδ1λδ2 .

Proof of Proposition 1.3. The morphism β∗ : Hom(X,Gm) → K maps an α ∈
Hom(X,Gm) to the class [(OG, δα)], where δα is defined by δα(x, g) = α(x). By the equality

(4.4), [(OG, δα)] is trivial if and only if there is a morphism of S-group schemes ν : G → Gm

such that α = ν ◦ u, which means that the sequence is exact in Hom(X,Gm).

Now we check the exactness in K. Let [(OG, δ)] be a class in K. By (4.5) its image λδ

under � is trivial if and only if δ satisfies the equation δ(x, 1) = δ(x, g) for any x ∈ X and

g ∈ G. If so, let α : X → Gm be the morphism of S-schemes defined by α(x) = δ(x, 1). Then

by (4.2) α is a homomorphism, and we have δ = δα = β∗(α), which proves the exactness

in K.

It remains to prove the exactness in �. Let λ ∈ �. Assume that λ is in the image

of K, that is, there is some solution δ of (4.2) such that λ = λδ. Let α : X → Gm be the
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Morphisms of 1-motives 15

morphism of S-schemes defined by α(x) = δ(x, 1). Then for any (x, g) ∈ X × G we have

δ(x, g) = λ(x)(g)α(x). The bilinearity of λ and (4.2) yield λ(x)(u(y)) = α(x+y)
α(x)α(y)

. Hence, the

image of λ in � is trivial. Conversely, assume that the image (λ) is trivial in �, in other

words there is a morphism of S-schemes α : X → Gm such that λ(x)(u(y)) = α(x+y)
α(x)α(y)

.

Then we define δ by δ(x, g) = λ(x)(g)α(x) and the same computations as above show that

δ satisfies (4.2) and that λ = λδ, which concludes the proof. �

If the lattice X underlying the 1-motive M = [u : X → G] is split then by

Remark 4.7 the morphism K → � is surjective. Actually we can give an explicit section

that depends on the choice of a Z-basis for X as follows. Let e1, . . . , en be a Z-basis of X.

For λ ∈ �, let λ1, . . . , λl : G → Gm be the images of e1, . . . , el under λ. We denote by δλ the

morphism from X ×S G to Gm defined by

δλ(x, g) = λ(x)(g)
∏

i

(
λi ◦ u

(
ni(ni − 1)

2
ei

)) ∏

1≤i<j≤l

λi(u(ej))
ninj . (4.7)

for any S-scheme U, any x = ∑
niei ∈ X(U), and any g ∈ G(U).

Proposition 4.8. Let M = [u : X → G] be a 1-motive defined over a reduced base

scheme S. Assume that the lattice X is split. With the above notations, the application

λ �→ [(OG, δλ)] defines a section s : � → K of the homomorphism � defined in (4.6). In

particular the group Pic(M) fits in the following exact sequence:

Hom(G,Gm) −→ Hom(X,Gm) × � −→ Pic(M)
ι∗−→ Pic(G) . (4.8)

Proof. A direct computation shows that δλ satisfies the Equation (4.2), hence it is a

descent datum and s is well defined. From the definition of δλ, we see that δλ.λ′ = δλ.δλ′

hence s is a group homomorphism. Moreover, the quotient δλ(x, g)/δλ(x, 1) is equal to

λ(x)(g), which proves that �([(OG, δλ)]) = λ. The exact sequence (4.8) now follows from

Proposition 1.3. �

Remark 4.9. Let M = [v : X → A] be a 1-motive without toric part. Since Hom(A,Gm) =
0, the group � is trivial and so from Proposition 1.3, we obtain that β∗ : Hom(X,Gm) →
K is an isomorphism, that is, the short sequence defined by β∗ and ι∗, Pic(X[1])/Pic(S) →
Pic(M)/Pic(S) → Pic(A)/Pic(S), is exact.
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16 C. Bertolin and S. Brochard

5 Construction of � : Pic(M)/Pic(S) → Hom(M, M∗) (1.1)

Using the dévissage of the Picard group of a 1-motive M, in this Section we construct

the morphism � : Pic(M)/Pic(S) → Hom(M, M∗) of Theorem 1.1 in an explicit way.

We start proving the following lemma, which might be well known, but for which

we were unable to find a convenient reference.

Lemma 5.1. Let S be a reduced base scheme. Consider the following commutative

diagram of commutative S-group schemes:

,

where T, T ′ are tori, A, A′ are abelian schemes, all the solid arrows are group homomor-

phisms, the rows are exact, and u is only assumed to be a morphism of schemes over S.

Then,

1. u is a group homomorphism;

2. u is uniquely determined by h and v, that is, if u1 and u2 are two morphisms

that make the whole diagram commutative, then u1 = u2; and

3. If h = v = 0, then u = 0.

Proof. Let us prove (3). Since π ′ ◦u = 0 the morphism u factorizes through a morphism

of schemes u′ : G → T ′. The question is local on S, and T ′ is locally isomorphic to G
r
m for

some integer r, hence we may assume that T ′ = Gm. Since u′ ◦ i is trivial, in particular

u′(1) = 1 and so by Rosenlicht’s Lemma 4.1 u′ is a group homomorphism. Now the result

follows since Hom(A,Gm) = 0.

Applying (3) with u = u1 − u2 we get (2). Now let us prove (1). It suffices to apply

(2) with the exact sequence 0 → T ×S T → G ×S G → A ×S A → 0 and the morphisms

u1, u2 : G ×S G → G′ defined by u1(x, y) = u(x + y) and u2(x, y) = u(x) + u(y). �

Let S be a normal base scheme and let M = [u : X → G] be a 1-motive over S,

where G fits in an extension 0 → T
i→ G

π→ A → 0. We start recalling from [8, (10.2.11)]

the description of the Cartier dual M∗ = [u′ : TD → G′] of M. Denote by M the 1-motive

M/W−2M = [v : X → A], where v = π ◦ u. An extension of M by Gm is a pair (E, ṽ), where

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny139/5038428
by guest
on 15 June 2018



Morphisms of 1-motives 17

E is an extension of A by Gm and ṽ is a trivialization of v∗E:

.

Extensions of M by Gm do not admit nontrivial automorphisms. The functor of

isomorphism classes of such extensions is representable by a group scheme G′, which

is an extension of A∗ by XD:

The 1-motive M is an extension of M by T. If τ : T → Gm is a point of TD, the pushdown

τ∗M is an extension of M by Gm, that is, it is a point of G′. This defines a morphism

u′ : TD → G′ by u′(τ ) = τ∗M and by definition the Cartier dual of M is the 1-motive

M∗ = [TD u′
→ G′].

Now, we start the construction of � : Pic(M)/Pic(S) → Hom(M, M∗). Let (L, δ) be

a line bundle on M, where L is a line bundle on G and δ is a descent datum on L, that is,

an isomorphism

δ : p∗
2L → μ∗L

satisfying the cocycle condition (3.1) (see the end of Section 3). We have to construct a

morphism �(L, δ) : M → M∗. The 1st dévissage of Pic(M) (see Proposition 1.2) furnishes

the following exact sequence of groups:

Hom(T,Gm)
ξ−→ Pic(A)/Pic(S)

π∗
−→ Pic(G)/Pic(S)

i∗−→ Pic(T)/Pic(S).

By Remark 4.2 (2), since the tori underlying 1-motives are split locally for the étale

topology, there exists an étale and surjective morphism S′ → S such that (i∗L)|S′ is trivial,

which means that

L|S′ = π∗L

for some line bundle L ∈ Pic(A|S′ )/Pic(S′). Below we will construct locally defined linear

morphisms �((L, δ)|S′ ) : M|S′ → M∗
|S′ from M|S′ to its Cartier dual M∗

|S′ . Since these are

induced by a global line bundle (L, δ), they glue together and yield a linear morphism

�(L, δ) : M → M∗ over S. Hence, it is not restrictive if we assume S′ = S and L = π∗L in

order to simplify notation.
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18 C. Bertolin and S. Brochard

Via the classical homomorphism �A : Pic(A) → Hom(A, A∗), the line bundle L

furnishes a morphism of S-group schemes

ϕL : A −→ A∗, a �→ (
μ∗

aL
) ⊗ L−1,

where μa : A → A is the translation by a. Let us check that ϕL : A → A∗ does not depend

on the choice of the line bundle L but only on its pullback L = π∗L, in other words

�A ◦ ξ = 0. Let α ∈ Hom(T,Gm). By definition of ξ , ξ(α) is the image of the class [α∗G]

under the inclusion Ext1(A,Gm) ↪→ Pic(A), that is, ξ(α) comes from Ext1(A,Gm). Hence,

by [16, Prop. 1.8] �A(ξ(α)) = 0.

Our next aim is to define a morphism ϕ̃L : G → G′ that lifts ϕL. Before we recall

briefly the isomorphism between Ext1(A,Gm) and A∗: any extension of A by Gm is in

particular a Gm-torsor over A and therefore a line bundle over A, that is, a point of A∗;

on the other hand, to any line bundle N over A we associate the sheaf E such that for

any S-scheme T

E(T) =
{
(a, τ) | a ∈ A(T), τ : NT

∼=→ μ∗
aNT

}
,

where NT is the pullback of N to AT = A×ST, which is in fact an extension of A by Gm (see

[10, Section 2] for more details). Now let g ∈ G(S). The line bundle ϕL(π(g)) = μ∗
π(g)L ⊗ L−1

is a point of A∗(S). We denote by EϕL(π(g)) the corresponding extension of A by Gm.

As observed before, the extension EϕL(π(g)) has the following functorial description:

EϕL(π(g))(S) is the set of pairs (a, β), where a ∈ A(S) and β : ϕL(π(g)) → μ∗
aϕL(π(g)) is

an isomorphism of line bundles over A. We define functorially

ϕ̃L : G −→ G′

g �−→ ϕ̃L(g) = (
EϕL(π(g)), ṽg

)
,

(5.1)

where the trivialization ṽg : X → EϕL(π(g)) is defined by

ṽg(x) = (v(x), ϕg,x) (5.2)

with ϕg,x : ϕL(π(g)) → μ∗
v(x)ϕL(π(g)) the isomorphism of line bundles on A given by the

following lemma.

Lemma 5.2. With the above notation, there is a unique isomorphism ϕg,x : ϕL(π(g)) →
μ∗

v(x)ϕL(π(g)) of line bundles on A such that π∗ϕg,x : μ∗
gL⊗L−1 → μ∗

g(μ∗
u(x)L)⊗ (μ∗

u(x)L)−1
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Morphisms of 1-motives 19

is equal to μ∗
gδx ⊗ δ−1

x , where δx : L → μ∗
u(x)L denotes the isomorphism (x, idG)∗δ of line

bundles on G induced by the descent datum δ.

Proof. For any x ∈ X(S) and b ∈ G(S), let us denote by δx,b the isomorphism OS →
Lu(x)b ⊗ L−1

b induced by δx,b and by δx : OG → μ∗
u(x)L ⊗ L−1 the isomorphism induced by

δx. Consider the line bundle N = μ∗
π(g)(μ

∗
v(x)L ⊗ L−1) ⊗ (μ∗

v(x)L ⊗ L−1)−1 on A. In order to

prove our Lemma it is enough to show that there is a unique isomorphism ϕ : OA → N

such that π∗ϕ = μ∗
gδx ⊗ δ

−1
x .

By [13, Chp. I, Prop. 2.6, and 7.2.2] the pullback functor π∗ induces an equiva-

lence between the category of rigidified (at the origin) line bundles on A and the category

of pairs (N , α), where N is a rigidified line bundle on G and α is a trivialization of i∗N in

the category of rigidified line bundles on T. The line bundle OA is canonically rigidified

at 1 and the line bundle N on A has a rigidification at 1 given by δx,g ⊗ δ
−1
x,1. Hence, by the

above equivalence of categories to prove the Lemma it suffices to prove that μ∗
gδx ⊗ δ

−1
x

is compatible with the trivializations of i∗π∗OA and i∗π∗N. In other words, we have to

prove that for any point t of T, the following diagram commutes:

.

This diagram defines an automorphism of OS, hence an element of Gm(S), and the

diagram commutes if and only if this element is equal to 1 ∈ Gm(S). As g and t vary,

these diagrams induce a morphism of schemes ζ : G ×S T → Gm. If t = 1, the diagram

obviously commutes, hence ζ(g, 1) = 1 and by Rosenlicht’s Lemma 4.1 ζ(g, .) is a group

homomorphism T → Gm. Then ζ corresponds to a morphism of schemes G → TD. Since

G has connected fibers and TD is a lattice, the latter morphism must be constant. But the

diagram obviously commutes if g = 1, hence ζ is constant equal to 1 and the diagram

commutes for all points g of G and t of T, as required. �

Now ṽg is well defined and the formula (5.1) defines a morphism of schemes

ϕ̃L : G → G′. If g ∈ G(S), the image π ′(ϕ̃L(g)) is the class in A∗(S) of the extension

EϕL(π(g)), that is, π ′(ϕ̃L(g)) = ϕL(π(g)), and so the right square in the following diagram is

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny139/5038428
by guest
on 15 June 2018



20 C. Bertolin and S. Brochard

commutative. We denote by h : T → XD the unique morphism that makes the left square

commutative:

Remark 5.3. We can give an explicit description of h : T → XD in terms of (L, δ) as

follows. Let t ∈ T(S) be a point of T. Then by definition ϕ̃L(i(t)) = (EϕL(π(i(t))), ṽi(t)). Since

π(i(t)) = 1 the extension EϕL(π(i(t))) is trivial. The morphism h(t) : X → Gm is given by ṽi(t).

Let x ∈ X(S). By definition ṽi(t)(x) = (v(x), ϕi(t),x). Since the line bundle ϕL(1) is trivial,

the isomorphism ϕi(t),x : ϕL(1) → μ∗
v(x)ϕL(1) can be seen as a morphism of schemes

A → Gm, and h(t)(x) ∈ Gm(S) is the (necessarily constant) value of this morphism.

We may evaluate it at the origin of A and we see that h(t)(x) is the point of Gm that

corresponds to the isomorphism of (canonically trivial) line bundles δx,i(t) ⊗ δ−1
x,1 : Li(t) ⊗

L−1
1 → Lu(x)i(t) ⊗ L−1

u(x).

It is clear from the above Remark that h does not depend on the choice of L.

Moreover, since h(1) = 1, it follows from Rosenlicht’s Lemma 4.1 that h is a group

homomorphism. Then by Lemma 5.1 ϕ̃L is also a group homomorphism, and it does not

depend on the choice of the lifting L of L (since φL does not depend on this choice as we

have already proved).

The following proposition proves that the pair (hD, ϕ̃L) is a morphism of 1-

motives and so we can set

� : Pic(M)/Pic(S) −→ Hom(M, M∗)
(L, δ) �−→ �(L, δ) = (hD, ϕ̃L).

Proposition 5.4. Let hD : X → TD be the Cartier dual of h. Then the diagram

is commutative. In other words, the pair (hD, ϕ̃L) is a morphism of 1-motives from

M to M∗.
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Proof. Let x ∈ X(S). We have to prove that u′(hD(x)) = ϕ̃L(u(x)). With the identification

X � XDD, the morphism hD(x) is equal to evx ◦ h : T → Gm, where evx : XD → Gm is

the evaluation at x. Hence, by definition, u′(hD(x)) is the extension of M by Gm obtained

from M by pushdown along the morphism evx ◦ h.

u′(hD(x)
) = evx∗h∗M. (5.3)

Let ML = [ϕ̃L ◦ u : X → G′] and ML = ML/W−2ML = [ϕL ◦ v : X → A∗]. Consider the two

morphisms of 1-motives ϕ′
L = (idX , ϕ̃L) : M → ML and ϕL = (idX , ϕL) : M → ML that fit in

the following diagram of extensions:

.

By [18, Chp. VII, (7), and (8)] the existence of ϕ′
L proves that h∗M and ϕL

∗ML are

isomorphic as extensions of M by XD. Combining this with (5.3) we get that

u′(hD(x)
) = evx∗ϕL

∗ML. (5.4)

We can describe extensions of ML by XD in terms of pairs (E, ξ), where E is an extension

of A∗ by XD and ξ is a trivialization of (ϕL ◦ v)∗E. In these terms, the extension ML

corresponds to G′ together with the morphism ϕ̃L ◦ u : X → G′. Hence, the extension

ϕL
∗ML of M by XD corresponds to the pair (ϕ∗

LG′, v), where the trivialization v is the

morphism X → ϕ∗
LG′ induced by ϕ̃L ◦ u, with ϕ̃L defined in (5.1):

.

Set theoretically ϕ∗
LG′(S) = G′ ×A∗ A(S) consists of pairs (a, (EϕL(a), ṽ)), where a ∈ A(S)

and (EϕL(a), ṽ) ∈ G′(S), with ṽ : X → EϕL(a) a trivialization of v∗EϕL(a). The morphism
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v : X → ϕ∗
LG′ is then defined by

v(y) = (
v(y),

(
EϕL(v(y)), ṽu(y)

))

for any point y ∈ X(S), where ṽu(y) is defined in Equation (5.2).

Now we will construct a morphism q : ϕ∗
LG′ → EϕL(v(x)) that fits in the following

commutative diagram:

This will allow us to identify the pushdown evx∗ϕ∗
LG′ with EϕL(v(x)) and the extension

evx∗ϕL
∗ML of M by Gm then corresponds to the pair (EϕL(v(x)), q◦v). The construction of q

is as follows. Let (a, (EϕL(a), ṽ)) be an element of ϕ∗
LG′(S), that is, a ∈ A(S) and (EϕL(a), ṽ) ∈

G′(S), with ṽ : X → EϕL(a) an A-morphism. In particular we have a point ṽ(x) ∈ EϕL(a)(S)

above v(x), hence an isomorphism of line bundles β : ϕL(a) → μ∗
v(x)ϕL(a). The latter

isomorphism corresponds to a trivialization OA � μ∗
v(x)+aL ⊗ μ∗

v(x)L
−1 ⊗ μ∗

aL−1 ⊗ L.

Via the symmetry isomorphism, this in turn induces a trivialization of μ∗
v(x)+aL ⊗

μ∗
aL−1 ⊗ μ∗

v(x)L
−1 ⊗ L, hence an isomorphism of line bundles β ′ : ϕL(v(x)) → μ∗

aϕL(v(x)).

We define q by

q(a,
(
EϕL(a), ṽ)

)
:= (a, β ′)

with the above notation. In the diagram (5.5), it is obvious that the right-hand

square commutes. To prove that the left square also commutes, we observe that both

morphisms from XD to EϕL(v(x)) map an element α : X → Gm to the pair (1, α(x)), where

1 ∈ A(S) is the unit of A and α(x) ∈ Gm(S) is seen as an automorphism of the line bundle

ϕL(v(x)). Now it follows from Lemma 5.1 that q is automatically a group homomorphism.

We have proved that u′(hD(x)) corresponds to the pair (EϕL(v(x)), q ◦ v). On

the other hand, by definition of ϕ̃L, the extension ϕ̃L(u(x)) corresponds to the pair

(EϕL(v(x)), ṽu(x)). Hence, to conclude the proof, it remains to prove that q ◦ v = ṽu(x).

Let y ∈ X(S) be a point of X and let us prove that q(v(y)) = ṽu(x)(y). Unwinding

the definitions of q, v, and ṽu(x), we have to prove that the isomorphism ϕu(x),y :

ϕL(v(x)) → μ∗
v(y)ϕL(v(x)) (see Lemma 5.2) is equal to the isomorphism β ′ induced by

ϕu(y),x : ϕL(v(y)) → μ∗
v(x)ϕL(v(y)) via the symmetry isomorphism as explained in the

previous paragraph (with a = v(y)). Since π∗ is faithful on the category of line bundles,
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it suffices to check the equality after applying π∗. In other words we have to prove that

the descent datum δ on L satisfies the following condition; μ∗
u(x)δy ⊗ δ−1

y should be equal

to the isomorphism induced by μ∗
u(y)δx ⊗ δ−1

x through the symmetry isomorphism. But

this is a consequence of the cocycle condition (3.1) on the descent datum δ (use it both

for δx+y and δy+x). �

This concludes the proof of Theorem 1.1. We do not prove here that � :

Pic(M)/Pic(S) → Hom(M, M∗) (1.1) is a group homomorphism; this will follow from

Corollary 7.2, where we give a 2nd construction of �, and from the comparison

Theorem 7.3.

We finish this section by giving another interesting construction of the mor-

phism � : Pic(M)/Pic(S) → Hom(M, M∗) in the special case of Kummer 1-motives, that is,

1-motives without abelian part. This construction, which is based on the 2nd dévissage

of the Picard group of M, involves only the group � introduced in Definition 4.5.

Let M = [u : X → T] be a Kummer 1-motive over a reduced scheme S. In this case

M∗ = [uD : TD → XD] and a morphism from M to M∗ is a commutative diagram

By Definition 4.5, � is a subgroup of Hom(M, M∗); an element λ ∈ � defines the

morphism M → M∗ given by λ : X → TD and λD : T → XD.

From Proposition 1.3, we know that the kernel K of ι∗ : Pic(M) → Pic(T) fits in

the exact sequence

Hom(T,Gm)
◦u−→ Hom(X,Gm)

β∗
−→ K

�−→ �
−→ �.

Then, locally on S, the morphism � : Pic(M) → Hom(M, M∗) coincides with � in the

following sense. Let L be a line bundle on M. By Remark 4.2 (2), since the tori underlying

1-motives are split locally for the étale topology, there exists an étale and surjective

morphism S′ → S such that (ι∗L)|S′ is trivial, which means that L|S′ ∈ K. Then �(L|S′ ) is

equal to �(L|S′ ) via the inclusion � ⊂ Hom(M, M∗).
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Remark 5.5. The homomorphism � : Pic(M)/Pic(S) → Hom(M, M∗) is far from being

surjective. For example, let M = [X
u→ T] with X = Z, T = Gm and u the trivial morphism.

Then Hom(M, M∗) identifies with Hom(X, X)2 � Z
2 and by Proposition 4.8, the group

Pic(M)/Pic(S) identifies with Hom(X,Gm)×� � Gm(S)×Z. The morphism � : Gm(S)×Z →
Z

2 is given by (γ , n) �→ (n, n).

6 Linear Morphisms Defined by Cubical Line Bundles

In this Section we first give the definition and basic properties of cubical structure on

a line bundle over a commutative group stack G. Then we explain how a cubical line

bundle on G, that is, a line bundle on G endowed with a cubical structure, defines an

additive functor G → D(G) from G to its dual.

Let G be a commutative group stack over S, whose group law (a, b) �→ ab will

be denoted multiplicatively. We denote by G3 the commutative group stack G ×S G ×S G.

Following [13, Chp. I, 2.4] we define a functor from the category of line bundles on G to

the category of line bundles on G3

θ : PIC(G) −→ PIC
(
G3)

with

θ(L) = m∗
123L ⊗ (

m∗
12L

)−1 ⊗ (
m∗

13L
)−1 ⊗ (

m∗
23L

)−1 ⊗ m∗
1L ⊗ m∗

2L ⊗ m∗
3L,

where for I = {i1, . . . , il} ⊂ {1, 2, 3}, mi1...il denotes the additive functor G3 → G given by

(a1, a2, a3) �→ ai1 . . . ail . (Our θ(L) is denoted by θ3(L) in [13].) In terms of points the above

definition becomes

θ(L)a1,a2,a3 = La1a2a3 ⊗ (
La1a2

)−1 ⊗ (
La1a3

)−1 ⊗ (
La2a3

)−1 ⊗ La1 ⊗ La2 ⊗ La3 (6.1)

for any (a1, a2, a3) ∈ G3. As in [13, Chp. I, (2.4.2)] the symmetric group S3 of permutations

acts on θ(L), that is, for (a1, a2, a3) ∈ G3 and for σ ∈ S3 there is a natural isomorphism

pσ
a1,a2,a3

: θ(L)a1,a2,a3

∼−→ θ(L)aσ(1),aσ(2),aσ(3)
. (6.2)

Moreover, as in [13, Chp. I, (2.4.4)], θ(L) is endowed with cocycle isomorphisms; for

a, b, c, d ∈ G one of these cocycle isomorphisms is

coca,b,c,d : θ(L)ab,c,d ⊗ θ(L)a,b,d
∼−→ θ(L)a,bc,d ⊗ θ(L)b,c,d , (6.3)

the others are obtained from this one by permutation.
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Definition 6.1. Let L be a line bundle on G. A cubical structure on L is an isomorphism

τ : OG3 → θ(L) of line bundles over G3 that is compatible with the isomorphisms (6.2)

and (6.3). In other words,

(i) For any σ ∈ S3 and any (a1, a2, a3) ∈ G3, τaσ(1),aσ(2),aσ(3)
= pσ

a1,a2,a3
◦ τa1,a2,a3 .

(ii) For any a, b, c, d ∈ G, τa,bc,d ⊗ τb,c,d = coca,b,c,d ◦ (τab,c,d ⊗ τa,b,d).

A cubical line bundle on G is a pair (L, τ), where L is a line bundle on G and τ is a cubical

structure on L. A morphism of cubical line bundles (L, τ) → (L′, τ ′) is a morphism f :

L → L′ of line bundles on G such that τ ′ = θ( f ) ◦ τ .

We denote by CUB(G) the category of cubical line bundles on G, and by CUB1(G)

the group of isomorphism classes of cubical line bundles on G.

Let Cub(G) be the stack of cubical line bundles on G, that is, for any S-scheme

U, Cub(G)(U) is the category of cubical line bundles on G ×S U. If (L, τ) and (L′, τ ′) are

two cubical line bundles on G, then τ and τ ′ induce a canonical cubical structure on the

line bundle L⊗L′ and we denote by (L, τ)⊗ (L′, τ ′) the resulting cubical line bundle. The

operation ⊗ endows Cub(G) with a structure of commutative group stack.

As in [13, Chp. I, 2.3] we also have a functor from the category of line bundles on

G to the category of line bundles on G2

θ2 : PIC(G) −→ PIC
(
G2)

defined by

θ2(L)a,b = Lab ⊗ L−1
a ⊗ L−1

b

for all L ∈ PIC(G) and all (a, b) ∈ G2. This line bundle θ2(L) furnishes a morphism of

stacks

ϕL : G −→ HomS−stacks(G, BGm)

a �−→ (
ϕL(a) : b �→ ϕL(a)(b) = θ2(L)a,b

)
.

It is possible to recover θ(L) from θ2(L) via the following two canonical isomorphisms:

θ2(L)ab,c ⊗ θ2(L)−1
a,c ⊗ θ2(L)−1

b,c � θ(L)a,b,c � θ2(L)a,bc ⊗ θ2(L)−1
a,b ⊗ θ2(L)−1

a,c .
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Now let τ be a cubical structure on L. Through the above two isomorphisms, τ induces

two isomorphisms of line bundles (thought of as partial composition laws on θ2(L)):

τ1
a,b,c : θ2(L)a,c ⊗ θ2(L)b,c → θ2(L)ab,c

τ2
a,b,c : θ2(L)a,b ⊗ θ2(L)a,c → θ2(L)a,bc .

Generalizing [13, Chp. I, 2.5] to line bundles on stacks, the conditions (i) and (ii) on τ

imply that the two composition laws τ1 and τ2 are structures of symmetric biextension

of (G,G) by Gm on the Gm-torsor θ2(L) (see [2, Definition 5.1] for the notion of biextension

of commutative group stacks). In particular, the isomorphism τ2 provides for all points

a, b, c of G a functorial isomorphism

(
τ2

a,b,c

)−1 : ϕL(a)(bc) → ϕL(a)(b).ϕL(a)(c).

The commutativity and associativity conditions that τ2 satisfies (see for instance the

diagrams (1.1.3) and (1.1.5) p.2 in [3]) imply that this isomorphism is compatible with the

commutativity and associativity isomorphisms of G and BGm. Hence, ϕL(a), equipped

with this isomorphism, is an additive functor from G to BGm, that is, ϕL(a) is a point of

D(G) = Hom(G, BGm). This defines a morphism of stacks

ϕL : G −→ D(G).

The isomorphism (τ1)−1 defines a functorial isomorphism from ϕL(ab) to ϕL(a).ϕL(b)

hence it endows ϕL with the structure of an additive functor. The required compatibility

conditions are given by the commutativity and associativity conditions on τ1 and by the

compatibility of τ1 and τ2 with each other (see [3], diagrams (1.1.4), (1.1.5), and (1.1.6)).

From now on we denote by ϕ(L,τ) the resulting additive functor from G to D(G).

If α : (L, τ) → (L′, τ ′) is an isomorphism of cubical line bundles, the isomorphism

θ2(α) : θ2(L) → θ2(L′) provides an isomorphism of functors from ϕ(L,τ) to ϕ(L′,τ ′). Since α

is compatible with the cubical structures τ and τ ′, it follows that the latter isomorphism

of functors is compatible with the additive structures of ϕ(L,τ) and ϕ(L′,τ ′), in other words

it is an isomorphism of additive functors, that is, it is an isomorphism in Hom(G, D(G)).

This way the construction (L, τ) �→ ϕ(L,τ) is functorial and we get a morphism of stacks

from Cub(G) to Hom(G, D(G)). Lastly, if (L, τ) and (L′, τ ′) are two cubical line bundles,

the canonical isomorphism θ2(L ⊗ L′) � θ2(L) ⊗ θ2(L′) ([13, Chp. I, 2.2.1]) induces an

isomorphism of functors from ϕ(L,τ)⊗(L′,τ ′) to ϕ(L,τ).ϕ(L′,τ ′), which is compatible with
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the commutativity and associativity isomorphisms. Summing up, we have proved the

following theorem.

Theorem 6.2. Let G be a commutative group S-stack.

1. Let (L, τ) be a cubical line bundle on G. Then there is a natural additive

functor ϕ(L,τ) : G → D(G), given by the formula

ϕ(L,τ) : G −→ D(G)

a �−→ (
b �→ θ2(L)a,b = Lab ⊗ L−1

a ⊗ L−1
b

)
.

2. The above construction induces an additive functor

ϕ : Cub(G) −→ Hom(G, D(G))

(L, τ) �−→ ϕ(L,τ) .

Remark 6.3. If a is a point of G, the morphism ϕ(L,τ)(a) : G → BGm corresponds to the

line bundle (μ∗
aL) ⊗ ( f ∗a∗L)−1 ⊗ L−1 on G, where μa : G → G is the translation by a and

f : G → S is the structural morphism. In particular, if G is an abelian S-scheme A, then

ϕ(L,τ) coincides with the classical morphism ϕL : A → A∗ defined by ϕL(a) = (μ∗
aL)⊗L−1.

By [16, VIII Prop. 1.8] ϕL = 0 if and only if L ∈ Pic0(A), hence ϕ factorizes through the

Néron–Severi group NS(A) and induces ϕ : NS(A) → Hom(A, A∗).

7 The Theorem of the Cube for 1-motives

If G is a commutative group stack with neutral object e, we denote by RLB(G) the

category of line bundles on G rigidified along e, that is, the category of pairs (L, ξ),

where L is a line bundle on G and ξ : OS → e∗L is an isomorphism of line bundles.

Theorem 7.1 (Theorem of the cube for 1-motives). Let S be a scheme. Let [X
u→ G] be

a complex of commutative S-group schemes. Assume that one of the following holds:

1. G is an abelian scheme.

2. S is normal, X ×S X is reduced, G is smooth with connected fibers, and the

maximal fibers of G are multiple extensions of abelian varieties, tori (not

necessarily split), and groups Ga.
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Let M = st([X
u→ G]) be the commutative group stack associated to the above complex

via the equivalence of categories (2.1). Then the forgetful functor

CUB(M) −→ RLB(M)

is an equivalence of categories.

Proof. In the sequel, the group laws of M and G are denoted multiplicatively while

the one of X is denoted additively. We denote by ι : G → M the canonical projection and

by 1 the unit section of G. Then ι ◦ 1 : S → M is a neutral section of M and will also be

denoted by 1.

By (6.1) for any line bundle L on M, there is a canonical isomorphism θ(L)1,1,1 �
L1, where L1 is the line bundle 1∗L on S. Hence, a cubical structure τ : OM3 → θ(L)

on L induces a natural rigidification of L along the unit section that we still denote by

τ1,1,1 : OS → L1 (by a slight abuse of notation). The operation (L, τ) �→ (L, τ1,1,1) defines

a functor CUB(M) → RLB(M), which is the abovementioned forgetful functor. By [13,

Chp. I, 2.6] we already know that G satisfies the theorem of the cube, that is, that the

forgetful functor CUB(G) → RLB(G) is an equivalence of categories.

Let us prove that CUB(M) → RLB(M) is fully faithful. Let (L, τ) and (L′, τ ′) be

two cubical line bundles on M and let f : L → L′ be a morphism in RLB(M), that is, a

morphism that is compatible with the rigidifications τ1,1,1 and τ ′
1,1,1. We have to prove

that f is compatible with τ and τ ′, that is, that τ ′ = θ( f ) ◦ τ . Since the functor ι∗ from

the category of line bundles on M to the category of line bundles on G is faithful, this is

equivalent to ι∗τ ′ = ι∗θ( f )◦ ι∗τ . But, up to canonical isomorphisms, ι∗θ( f ) identifies with

θ(ι∗f ). Moreover, by assumption on f , τ ′
1,1,1 = f1 ◦ τ1,1,1, hence (ι∗τ ′)1,1,1 = (ι∗f )1 ◦ (ι∗τ)1,1,1.

This means that ι∗f : ι∗L → ι∗L′ is compatible with the rigidifications induced by the

cubical structures ι∗τ and ι∗τ ′ on ι∗L and ι∗L′. By the theorem of the cube for G, this

implies the desired equality ι∗τ ′ = θ(ι∗f ) ◦ ι∗τ .

Now let us prove that CUB(M) → RLB(M) is essentially surjective. As observed

at the end of Section 3, a line bundle L on M is a pair (L, δ), where L = ι∗L is a line bundle

on G and δ : p∗
2L → μ∗L is a descent datum for L. Let ξ : OS → L1 be a rigidification

of L along the unit section of M. Via the canonical isomorphism L1 � L1, ξ is also a

rigidification of L along the unit section of G. By the theorem of the cube for G, there is

a cubical structure τ : OG3 → θ(L) that induces ξ , that is, such that τ1,1,1 = ξ . We want

to construct a cubical structure τ : OM3 → θ(L) that induces ξ . The group stack M3

is canonically isomorphic to the quotient stack [G3/X3] with the action of X3 on G3 by
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translations via u3 : X3 → G3. As for M, we identify the category of line bundles on M3

with the category of line bundles on G3 equipped with a descent datum. The line bundle

OM3 corresponds to OG3 equipped with the canonical isomorphism p∗
2OG3 → μ∗OG3

(where p2, μ : X3 ×S G3 → G3 denote the 2nd projection and the action by translation,

respectively). The line bundle θ(L) on M3 corresponds to the line bundle θ(L) on G3

equipped with the descent datum p∗
2θ(L) � θ(p∗

2L)
θ(δ)→ θ(μ∗L) � μ∗θ(L) that by a slight

abuse we denote by θ(δ). In terms of points, θ(δ) can be described as follows: for any

points x = (x1, x2, x3) of X3 and a = (a1, a2, a3) of G3,

θ(δ)x,a : θ(L)a → θ(L)u3(x)a (7.1)

is equal to δx1+x2+x3,a1a2a3 ⊗ δ−1
x1+x2,a1a2

⊗ δ−1
x1+x3,a1a3

⊗ δ−1
x2+x3,a2a3

⊗ δx1,a1 ⊗ δx2,a2 ⊗ δx3,a3 .

We claim that the following diagram of line bundles on X3 ×S G3 commutes:

The proof of this claim will be the main part of the proof. It is equivalent to saying that

for any points x of X3 and a of G3, we have θ(δ)x,a ◦ τa = τu3(x)a. For any S-scheme U, we

identify Aut(OU) with Gm(U) and this allows us to define a morphism of S-schemes

λ : X3 ×S G3 −→ Gm

(x, a) �−→ τ−1
u3(x)a

◦ θ(δ)x,a ◦ τa .

Now to prove the claim we have to prove that λ is constant equal to 1.

By (3.1), the following diagram commutes:
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It follows that for any x, x′ ∈ X3 and any a ∈ G3 we have the equation

λ(x + x′, a) = λ
(
x, u3(x′)a

)
.λ(x′, a). (7.3)

For any x ∈ X3, a ∈ G3, and any permutation σ ∈ S3, by the condition (i) of Definition 6.1,

the left and right triangles in the following diagram commute (where for a = (a1, a2, a3)

we write aσ = (aσ(1), aσ(2), aσ(3)))

The central square also commutes by construction of the canonical isomorphism pσ
a and

of θ(δ). Hence,

λ
(
xσ , aσ

) = λ(x, a). (7.4)

Now let us choose x ∈ X3 and a ∈ G3 such that x3 = 0 and a3 = 1. From the above

description (7.1) of θ(δ) we see that, via the canonical isomorphisms θ(L)a � θ(L)1,1,1 and

θ(L)u3(x)a � θ(L)1,1,1, the isomorphism θ(δ)x,a is just the identity of θ(L)1,1,1. Moreover, as

in [13, Chp. I, 2.5.3], from condition (ii) of Definition 6.1 it follows that τa = τu3(x)a = τ1,1,1.

Using (7.4), we get

λ(x, a) = 1 (7.5)

as soon as there is an index i such that xi = 0 and ai = 1. In particular, if xi = 0 for some

i, we have λ(x, 1) = 1. Hence, Lemma 4.1, applied to the S-group scheme G3, implies that

λ is a group homomorphism in the variable a, that is, for any x ∈ X3 such that some xi

is zero, and for any a, a′ ∈ G3 we have

λ(x, aa′) = λ(x, a).λ(x, a′). (7.6)

(Actually Rosenlicht only applies when the base scheme S is reduced. But we apply it

for the “universal” point (idX×SX , 0) ∈ X3(U), where the base scheme U = X ×S X is
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reduced, and the general case follows.) In particular for x = (x1, 0, 0) ∈ X3 and for any

a = (a1, a2, a3) ∈ G3, using (7.6) and (7.5) we get

λ(x, a) = λ(x, (a1, a2, 1))λ(x, (1, 1, a3)) = 1.

By (7.4) this proves that λ(x, a) = 1 as soon as two of the xi’s are zero and finally using

(7.3) this proves that λ is constant equal to 1. This finishes the proof of the claim.

Now, the commutativity of (7.2) means that τ is an isomorphism in the category

of line bundles on G3 equipped with descent data. Hence, it corresponds to an

isomorphism τ : OM3 → θ(L). Moreover, the condition (i) (resp. (ii)) of Definition 6.1

can be expressed by the commutativity of some diagrams of line bundles over M3 (resp.

M4). Since the functor ι∗ is faithful, the fact that τ satisfies the conditions (i) and (ii) of

Definition 6.1 implies that τ itself satisfies these two conditions. Hence, τ is a cubical

structure on L. From τ1,1,1 = ξ it follows that τ1,1,1 = ξ and this concludes the proof of

the theorem. �

Corollary 7.2. With the notation and assumptions of Theorem 7.1, there is a functorial

group homomorphism �′ : Pic(M)/Pic(S) → Hom(M, D(M)).

Proof. Since Pic(M)/Pic(S) is isomorphic to the group of isomorphism classes of

rigidified line bundles on M, this is an immediate consequence of Theorems 6.2 and

7.1. �

Theorem 7.3. Let M be a 1-motive defined over scheme S. Assume that the base

scheme S is normal. The morphism �′ defined above coincides with the morphism

� : Pic(M)/Pic(S) → Hom(M, M∗) constructed in Section 5.

Proof. Let (L, δ) be a line bundle on M. We want to prove that �(L, δ) = �′(L, δ). The

question is local on S hence as in Section 5 we may assume that the line bundle L on G

is induced by a line bundle L on A, that is, L = π∗L. To prove the theorem it suffices to

prove that the morphisms A → A∗, X → TD, and T → XD induced by �′(L, δ) are equal

to ϕL, hD and h of Section 5, respectively.

The Cartier dual of G as a 1-motive is G∗ = [TD v′
→ A∗] and Hom(G, G∗) =

Hom(A, A∗). By functoriality of �′, the morphisms ι : G → M and π : G → A induce
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a commutative diagram:

.

The morphism A → A∗ induced by �′(L, δ) is the image of �′(L, δ) under the bottom

horizontal map of this diagram. Hence, it is equal to �′
A(L), which is equal to ϕL by

Remark 6.3.

Now let us prove that the morphism ξ : T → XD induced by �′(L, δ) is equal to

h. To this end we consider the action of �′(L, δ) on the objects of st(M). Let t ∈ T(S) be a

point of T. Its image i(t) ∈ G(S) induces an object of the stack st(M) still denoted by i(t),

and by definition �′(L, δ)(i(t)) is the morphism from st(M) to BGm that maps an object b

to θ2(L)i(t),b. To get the induced morphism from X to Gm it suffices to consider the action

of �′(L, δ)(i(t)) on the arrows of the stack st(M). If b1, b2 ∈ G(S) and if x ∈ X(S) is an

arrow from b1 to b2 in st(M) (i.e., u(x) = b2 −b1) then �′(L, δ)(i(t)) maps this arrow to the

induced isomorphism from θ2(L)i(t),b1 to θ2(L)i(t),b2 . The induced element ξ(t)(x) ∈ Gm(S)

does not depend on the choice of the source b1 hence we may choose b1 = 1 and ξ(t)(x)

is the point of Gm(S) induced by the isomorphism θ2(L)i(t),1 → θ2(L)i(t),u(x) induced by δ.

The latter is δx,i(t) ⊗ δ−1
0,i(t) ⊗ δ−1

x,1. But, by the cocycle condition (3.1), δ0,i(t) is the identity,

hence this corresponds to the description of h given in Remark 5.3.

To prove that �′(L, δ) induces hD from X to TD we have to consider its action

on the arrows of st(M). The argument is very similar to the above one and left to the

reader. �

Remark 7.4. The hypothesis of normalness on S is essential in order to identify the

categories of cubical line bundles with the categories of line bundles rigidified along

the unit section, even on a torus. See [13, Chp. I, Example 2.6.1] for a counterexample.

Hence, if the base scheme S is not normal, we only have the functorial homomor-

phism CUB1(M) → Hom(M, M∗) given by Theorem 6.2. The morphism CUB1(M) →
Pic(M)/Pic(S) induced by the forgetful functor CUB(M) → RLB(M) is neither injective

nor surjective in general. If S is reduced, we can prove that the forgetful functor is fully

faithful, hence CUB1(M) → Pic(M)/Pic(S) is injective. This inclusion is an isomorphism

if the base scheme S is normal.
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