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Calibration of 57Fe Mössbauer constants by first
principles†

Silvia Casassa* and Anna Maria Ferrari

Electron density and eigenvalues of the 3 � 3 matrix of the electric field gradients at the 57Fe nuclei

positions have been evaluated with the periodic ab initio CRYSTAL code for a wide range of crystalline

compounds, adopting different computational approaches (Hartree–Fock, gradient corrected and

hybrids functionals). The robust calibration procedure, involving experimental isomer shifts and quadru-

polar splittings, yields reliable Mössbauer parameters, i.e. the isomer shift constant (a) and the nuclear

quadrupolar moment (Q). Dependence of the results on the Hamiltonian is explored and well suited

localized basis sets for periodic calculations are provided.

1 Introduction

When a g ray, emitted from a nuclear source, interacts with an
identical nucleus in a different environment, resulting in the
corresponding absorption between the nuclear spin states, three
phenomena are responsible for the observed frequency shift and
splitting: (i) the isotropic effect (ii) the quadrupolar interaction and
(iii) the magnetic splitting. Experimentally, the shifts and splittings
are measured by means of Mössbauer spectroscopy.

The first two effects originate from the interaction between the
nuclear charge distribution and the electric field due to the
surrounding electrons. Their determination can provide important
information on the chemical environment surrounding the absorb-
ing nucleus. 57Fe, with its ability to form compounds that exhibit a
wide range of bonding situations, ranging from pure ionic to pure
covalent, is the most studied isotope by the Mössbauer technique.

First-principle approaches, especially on cluster models, have
demonstrated that a rather accurate calibration of a1–9 and Q4,10–12

can be achieved. The fitting procedure for iron has shown a
remarkable robustness5,6 in the sense that both parameters are
well determined provided a broad sample of oxidation states,
electronic spin states, and compounds with different coordination
number are included.

There are still a few issues that remain under consideration:
(i) the electron density at the nucleus strongly depends on the
adopted functional and is, thus, not universal. One issue is to
what extent the difference in this property between different
environments, which is ultimately what matters, depends upon
the computational method. (ii) Another issue is the choice of

basis set, particularly with regard to describing the small, but
important, aspherical distortions of the 3p shell. In this con-
nection a basis set with enhanced flexibility in the core region
has been proposed.2 (iii) In addition, the effect of electron
correlation on the key parameters has yet to be fully elucidated.
(iv) Finally, the uncertainty in the experimental value of the
quadrupole moment of 57Fe makes the theoretical analysis
more complicated, although still feasible, and interesting.

In the present research we use the CRYSTAL14 program13,14

to estimate a and Q for a variety of crystalline inorganic 57Fe
compounds, exploiting the additional information provided by
a generalization of the Fermi contact calculation performed by
the authors. A large range of crystalline materials have been
included in this calibration set. For the first time in periodic
DFT calculations, in addition to generalized gradient approximate
functionals (GGA) hybrid schemes are also tested. In the latter case
the percentage of exact Hartree–Fock (HF) exchange is varied from
20% up to 60% and pure HF calculations are done as well.
Relativistic effects are neglected, which leads to unrealistic absolute
values of r(r), although changes in electron density among a series
of compounds are accurately predicted. As expected, EFGs were
found to be a much more sensitive property15–17 and a fairly good
linear correlation was obtained only at the GGA level.

This paper is organized as follows. First, the main equations of
the linear response approach18,19 are presented; then, computa-
tional parameters are specified followed by the results and their
discussion. Finally, general conclusions are drawn and tentative
solutions for some of the issues previously raised are proposed.

2 Theory

The Mössbauer effect consists of the recoilless, resonant emis-
sion and absorption of a g ray in a nuclear spin transition.
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In the case of the most common Mössbauer nucleus, 57Fe, the
energy difference between the two spin states, corresponding to
I = 1/2 - I = 3/2, occurs at 14.4 keV.

The overall electrostatic energy, E, due to the interaction
between the nuclear charge density and the electronic Coulomb
potential V(r) may be factorized into the isotropic (i.e. spherical)
and anisotropic parts of the electronic charge distribution.

The isotropic contribution, after truncating at the second
order in the Taylor series expansion of the Coulomb potential,
can be calculated by exploiting Poisson’s equation (r2V(r) =
�r(r)/e0):

Eiso ¼
2pZe2

5e0
rn
2r rnð Þ (1)

Here rn is the nuclear radius and e0 is the dielectric constant,
with Ze and e equal, respectively, to the magnitude of the
nuclear and electronic charges. Because the average value of
rn depends on the spin state, the energy difference between the
states I and I0 can be written as:18,20

DEiso ¼
2pZe2

5e0
rn
02 � rn

2
h i

r rnð Þ (2)

under the assumption that the electron density is unaffected by
the nuclear transition,2 i.e. r(rn) � r(rn

0). The effective radius of
the iron ground state, which is E4.9 fm,4,21 is much larger than
that of its excited state20 and then eqn (2) can be recast in a
different form by defining drn = rn

0 � rn and rn
0 + rn E 2rn:

DEiso ¼
4pZe2

5e0
rn
2 drn

rn

� �
r rnð Þ (3)

The approximation made here is justified by the general
observation that drn/rn is usually on the order of 0.00118

(1.8 � 10�3 for iron20).
What is observed experimentally is the shift, d, of the

Doppler velocity necessary to achieve the resonant absorption
between the source, S, and the probe nucleus, A, usually
expressed in mm s�1 and referred to as the isomer shift:

d ¼ c

Eg
DEA

iso � DES
iso

� �
(4)

In eqn (4) c is the speed of light and Eg is the energy of the
incident g photon. If we assume that the fractional variation of
the nuclear charge radius is the same for both S and A, then:

d ¼ c

Eg

4pZe2

5e0
rn
2 drn

rn

� �
rA rnð Þ � rS rnð Þ
� �

(5)

This expression shows that the isomer shift is directly propor-
tional to the difference in electron density at the nucleus
depending upon the chemical environment.

It is worth noting that relativistic corrections have an
important effect on d. In order to obtain a realistic estimate
of the electron density at the nucleus, a dimensionless multi-
plicative correction factor (S(Z)), independent of spin state, has
been proposed. For iron it is estimated to be given by r(rn)rel =
1.32r(rn).18 Since all the terms in eqn (5) are constant for a

given isotope except for the electron density, it is sufficient to
consider the following simplified equation:

d = a[rA(r) � b] (6)

where a and b are determined by a calibration procedure.18–20,22

In this procedure the calculated electron density at a given
nucleus, considered as a point charge of zero radius is plotted
versus the experimentally measured d, for a set of compounds
containing that nucleus.1,2,4,23

The anisotropic contribution is due to the interaction
between the electric field gradients (EFG), i.e. the second

derivatives of the electrostatic potential, Vxy ¼
@2V

@x@y
, and the

nuclear quadrupole moment, Q, which represents the deviation
of the nuclear charge from the ideal spherical shape:

Eaniso ¼ e2
X

i;j¼x;y;z
VijQij ¼ VQ (7)

Diagonalization of V yields the three components in the
principal axis system and, given the convention |VXX| o |VYY|
o |VZZ|, an asymmetry parameter, Z, can be defined as:

Z ¼ VYY � VXX

VZZ
(8)

The anisotropic term is responsible for splitting the I = 3/2
excited nuclear spin state into two doubly degenerate compo-
nents characterized by the magnetic quantum numbers MI=3/2 =
�1/2, �3/2, which leads to the quadrupolar splitting:

DEQ ¼
1

2
eQVZZ 1þ Z2

3

� �1=2

(9)

Similar to the case of a, the calculation of the nuclear quadru-
pole moment is obtained by plotting the experimental DEQ as a
function of the EFG parameters VZZ and Z.24,25

3 Computational details

Electron contact densities and the components of the EFG tensor
at the 57Fe nucleus were calculated with the latest version of the
ab initio CRYSTAL suite of programs.13,14 CRYSTAL solves the
Schrödinger equation for periodic systems in a basis set consisting
of contracted Gaussian-type atomic orbitals. With regard to the
Hamiltonian, several different types of approximation were
tested including (i) three pure GGA functionals: Perdew–
Burke–Ernzerhof26 (PBE) Perdew–Wang27,28 (PWGGA) and one
of the Minnesota set proposed by Truhlar and co-workers29

(M06L); (ii) four hybrid functionals: B3LYP,30,31 PBE0,32 and the
new global hybrids meta-GGA M0633 and M062X,33 containing
20%, 25%, 27% and 50% of Hartree–Fock (HF) exact exchange,
respectively; and (iii) the HF method.

In the numerical integration of the DFT exchange–correlation
term an extra-large pruned grid, consisting of 99 radial and 1454
angular points, selected according to a Lebedev scheme, was
adopted.14 The level of accuracy in evaluating the Coulomb
and exchange integrals is controlled by five parameters, Ti

1–Ti
5,

that were set to 8 8 8 15 and 30 in present calculations.14
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Reciprocal space is sampled regularly, according to a sub-lattice
with shrinking factor set equal to 12, corresponding to a
number of independent k-points in the irreducible part of the
first Brillouin zone (1BZ) ranging from a minimum of 72, in the
case of a-Fe, to 189 in FeF3, depending on the reciprocal lattice
symmetry. It should be noted that, when 72 points are included
in the 1BZ, the total number of k-points for, say, a cubic lattice
is 868.

Iron was described using the Wachters basis set,34 from
which the most diffuse p and d functions were removed to
avoid problems of linear dependence during the self-consistent
field procedure. The resulting [6211111-33121-311]/(7s/5p/3d)
basis provides a satisfactory description of the total electron
density at the Fe nucleus: our PBE result is 11 616 a.u.�3, in
good agreement with the non-relativistic DFT value of
11 607 a.u.�3 by Wdowik and Ruebenbauer. Some test calcula-
tions were also performed with the basis set CP(PPP) developed
by Neese for cluster calculations.2 In this case, the most diffuse s
and p functions were removed, leading to a [1111111111111111-
331111-311-1]/(16s/6p/3d/1f) basis. The electron density at the
iron nucleus calculated at the CP(PPP)/HF level is 11 822, which
may be compared with 11 873 obtained by Walker et al.20 and
11 860 due to Moruzzi and Janak.35

In the following the Wachters basis set for iron is always
utilized unless otherwise specified. The triple-zeta valence basis
set with Polarization functions (TZVP) optimized for solid state
applications,36,37 were used for all the other atoms.

Mössbauer constants have been obtained adopting the
linear response approach2,11,22,23 on the non-relativistic point-
like nucleus of 57Fe, for crystals in their experimental geometry.

The TOPOND program, developed by C. Gatti38 and recently
embedded in CRYSTAL14,39 has been used in the determination
of 57Fe topological properties (charge, spin, Laplacian) according
to a Bader analysis of the electron density in molecules40 and
crystals.41

4 Results
4.1 The calibration set

The confidence with which a and Q can be generally used in the
prediction of unknown isomer and quadrupolar shifts, strongly
depends on the variety of systems included in the reference set.
Both, d and DEQ are sensitive reporters of the spin and valence
state of a nucleus, as well as the degree of covalency/ionicity of
its bonding network, we have considered iron compounds with
a variety of oxidation states and coordination. The high spin
Fe2+ state is represented by four anti-ferromagnetic (AF) crystals:
FeF2,42 FeCl2,43 FeBr2,44 and FeI2.45 All of them have axially
symmetric EFG tensors, namely zero value of Z, except FeF2.46

The stoichiometric AF insulators FeF3
47 and FeCl3

48 have been
included to model the high spin Fe3+ configuration. Then, two
oxides were considered, Fe2O3

49 and FeO,50 and the non-
magnetic TiFe51 and AlFe52 phases were selected as represen-
tative of metal states. The reference system, experimentally an
iron foil, labeled with S in previous equations, was simulated

modeling the a-Fe, which is the ordered ferro-magnetic low
spin body-centered phase of iron. Structural data for each
compound in its experimental geometry and information on
the iron net charge and spin density, as evaluated at the PBE0
level, are collected in Table 1. Data for the other Hamiltonians
are reported in Table S1 of the ESI.†

4.2 Mössbauer parameters

Calculated values of isomer shift constants are collected in
Table 2. For sake of clarity, all the computed data for each
Hamiltonian, together with the experimental values used in the
regression procedure, are reported in Table S2 of the ESI.†

The importance of including relativistic and electron corre-
lation effects for a correct estimate of the absolute value of the
Fermi contact term has already been discussed and demon-
strated elsewhere.5,6 However, as already stated, because both
isomer and quadrupolar shifts are relative quantities that depend
only on the contact density difference it can be assumed, without
lost of generality, that they are independent of electron correla-
tion and relativistic effects.9 In fact, this procedure shows a fairly
good linear relation between the shifts and the difference in
contact density (correlation coefficients R = 0.97 � 0.1) and the
results are also in the range of experimental measurements. Our
data confirm the sensitive dependence of a on the adopted
functional; its value goes from �0.420 (PBE) to �0.254 (HF) with

Table 1 Experimental crystallographic data of the systems included in the
calibration set. Lattice constants and distances are given in Å. X stands for
F, Cl, Br, I, O, Al, Ti. The Bader net charge, Qnet, and spin density, m, of 57Fe,
in a.u., was evaluated at the PBE0 level

System a c d(Fe–X) Qnet m

FeF2
42 (P42/mnm) 4.697 3.308 2.00 1.63 3.76

FeCl2
43 (P%3m1) 3.585 5.735 2.49 1.34 3.71

FeBr2
44 (P%3m1) 3.772 6.223 2.68 1.22 3.73

FeI2
45 (P%3m1) 4.050 6.750 2.84 0.96 3.73

FeO50 (Fm3m) 4.363 — 2.18 1.44 3.72
FeF3

47 (R%3c) 5.362 13.329 1.92 2.23 4.42
FeCl3

48 (R%3c) 6.065 17.440 2.38 1.65 4.17
Fe2O3

49 (R%3c) 5.038 13.772 1.94 1.96 4.30
AlFe52 (Pm%3m) 2.910 — 2.52 �1.45 0.0
Fe (Im%3m) 2.831 — 2.45 0.01 2.78
TiFe51 (Pm%3m) 2.976 — 2.58 �1.04 0.0

Table 2 Linear fit data for 57Fe using eqn (6). Correlation coefficient, R,
and standard deviation, s, measure the quality of the linear fit. Electron
density on 57Fe in a-Fe phase is the reference. Computed a values from the
literature, which are referred to in the text, are added in parentheses.
Fitting data can be found in Table S2 of the ESI

Func. (% HFexch) a (mm s�1) re(r) (bohr�3) R s (mm s�1)

PBE (0) �0.420 (�0.2914) 11 616 �0.97 0.14
PWGGA (0) �0.420 11 616 �0.97 0.14
M06L (0) �0.411 11 629 �0.98 0.11
B3LYP (20) �0.393 (�0.3663) 11 614 �0.98 0.11
PBE0 (25) �0.364 11 618 �0.98 0.10
M06 (27) �0.455 11 628 �0.98 0.10
M062X (54) �0.327 11 595 �0.98 0.15
HF (100) �0.254 (�0.2656) 11 624 �0.97 0.13

Exp. �0.31 � 0.0455
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a monotonic decrease as the percentage of HF exchange in the
functional increases. A comparison between the three approaches –
namely pure GGA, hybrid and HF – is shown in Fig. 1 where the
experimental isomer shift, d, is plotted versus the difference in
electron density on 57Fe. This behavior is not unexpected and has
already been observed by Neese5 who was the first to propose that a
separate correlation should be established for each combination of
functional and basis set.

A comparison of our value of a with the PBE value of Wdowik
and Ruebenbauer,4 reported in Table 2 shows an unpleasant
discrepancy that can be ascribed to their extension of the
simplified point-like model for the contact interaction. Our
results are in better agreement with the B3LYP cluster calcula-
tions performed by Neese and coworkers,3,53 and the HF data of
Filatov et al.6,54

A possible explanation for the lowering of the regression
coefficient in the HF case can be found in the different
description of electron density and related properties. At the
HF level bonds are slightly more ionic and charge tends to
flow to the more electronegative atoms. As a consequence, the
difference in electron density with respect to the reference
metallic system is more pronounced and for a given set of
experimental data, the slope of the linear fit is reduced.
Topological data can be used to support this interpretation.
On the basis of the value of the potential vs. kinetic energy
ration at the bond critical point38 the Fe–X2 interactions, with
X = F, Cl, Br, are classified as ionic only at the HF level. The
other Hamiltonians describe the bonding as neither covalent
nor ionic.41

The same set of compounds has been used for the estimate
of Q, apart from metals and FeO whose EFG components are
zero due to symmetry reasons. As regards FeO, the observed
quadrupolar splitting (0.3 mm s�1) was an unexpected result
that has been ascribed to a local distortion from cubic symmetry
at the Fe site due to the significant presence of cation vacancies
in the sample.25

As in the case of a, the calculated data and experimental
quadrupolar splittings are reported in the ESI,† in Table S3.

Results of the regression procedure are collected in Table 3
and, although the accuracy of the fitting is lower (R = 0.86� 0.1)
PBE, PWGGA and M06L provide a value of Q = 0.12 barn, which
is in satisfactory agreement with the data of Blaha et al.11

and Wdowik and Ruebenbauer.4 In addition, the asymmetry
parameter, Z, for FeF2, is accurately reproduced by the GGA
methods.

As already pointed out by others3,17 hybrid exchange–corre-
lation functionals completely fail for the prediction of quad-
rupolar splitting. The inaccuracies of hybrid methods (R E 0.4
for PBE0 and B3LYP) can probably be ascribed to the difficulty
that HF has in reproducing the correct shape of the electronic
charge distribution at the nucleus. In order to support this
hypothesis we have performed an analysis of the Laplacian of
the charge density, L(r) = r2r(r), on FeF2 and FeCl2. Iron
fluoride is perfectly described at any level whereas the EFGs
of FeCl2 are wrongly predicted when HF or hybrid approaches
are adopted. L(r) exhibits a shell structure with negative and
positive values in regions of charge concentration or depletion
and, in contrast to charge density, it can often reveal non-
sphericality of the electronic charge distribution close to the
nucleus. In Fig. 2, we have reported differences between L(r)
as calculated by TOPOND with the three methods. Some com-
ments can be made: (i) it is possible to infer that the overall

Fig. 1 Experimental isomer shift versus difference in electron density at
the 57Fe nucleus for all the compounds in the calibration set.

Table 3 Linear fit results for the asymmetry parameter, Z, and the nuclear
quadrupole moment, Q, at 57Fe in FeF2 obtained using eqn (6). Data used in
the fitting procedure are collected in Table S3 of the ESI

Func. Q (barn) Z (e a0
�3) R

PBE 0.12 0.2 0.86
PWGGA 0.12 0.2 0.85
M06L 0.13 0.3 0.89
Others 0.16,11 0.174 0.3

Exp. 0.446

Fig. 2 Difference of the Laplacian of the electron density, r2r(rn) in the
plane containing Fe (left side of each panel) and Cl (right side) atoms, in
FeF2 (top) and FeCl2 (bottom) respectively. PBE0 values are subtracted
from PBE results (left column) and HF values are subtracted from PBE0
results (right column). A logarithmic scale is adopted between �8 and
8 a.u. Continuous red lines and dotted blue lines indicate positive and
negative contours, respectively.
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basin distribution of L(r) influences the value of EFGs at the
nucleus; (ii) HF exchange, even in small percentage, is domi-
nant in defining the symmetry of the distribution and (iii) in
FeF2, where HF does not fail, the cylindrical symmetry is
retained while in FeCl2 a certain degree of anisotropy is lost
at the hybrid/HF level.

Finally, to verify possible effects due to the basis set in
the calculation of EFGs, the CP(PPP) basis of Neese2 has been
used with PBE. Our results, detailed in Table S2 of the ESI,†
reproduce the previous findings, i.e. Q = 0.13 barn and R = 0.86.
This proves, once again, that EFGs are strictly related to how
the different Hamiltonians describe r(r) and its derivatives at
the nucleus.

5 Conclusions

In this work, Mössbauer parameters for a wide range of
inorganic crystalline compounds containing the 57Fe isotope
have been studied at the ab initio periodic level, with a basis set
of localized Gaussian-type atomic orbitals. HF, pure GGA and
hybrid Hamiltonians were utilized.

The isomer shift constant, a, was inferred with high accuracy
on the basis of a robust calibration procedure.2,18,23 It has been
shown that the best agreement with the experimental value is
achieved when 20–25% of HF exact-exchange is included in the
functionals (B3LYP, PBE0).

A good estimate of the nuclear quadrupolar moment was
achieved only at the GGA level, thereby endorsing the results of
others research groups.4,11

As already discussed by other authors in the case of finite
systems,5 the use of large set of s functions for the description
of the iron core density does not significantly improve the results
of non-relativistic calculations. Reliable values of Mössbauer
parameters can be achieved by employing a standard basis set
of triple zeta quality.

Our parameters can be confidently used to investigate
compounds containing 57Fe in different environments provided
that the same computational framework is adopted.
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