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Treatment of CMV Infection after  

Allogeneic Hematopoietic Stem Cell Transplantation 

 

Abstract: Despite a remarkable reduction in the past decades, cytomegalovirus (CMV) disease in allogeneic 

hematopoietic stem cell transplant (HSCT) recipients remains a feared complication, still associated with 

significant morbidity and mortality. Today first line treatment of CMV infection/reactivation is still based 

on dated antiviral compounds Ganciclovir (GCV), Foscarnet (FOS) and Cidofovir (CDF) with their 

burdensome weight of side effects. Maribavir (MBV), Letermovir (LMV) and Brincidofovir (BDF) are three 

new promising anti-CMV drugs without myelosuppressive properties or renal toxic effects that are under 

investigation in randomized phase II and III trials. Adoptive T-cell therapy (ATCT) in CMV infection 

possesses a strong rationale, demonstrated by several proof of concept studies; its feasibility is currently 

under investigation by clinical trials. ATCT from third-party and naïve donors could meet the needs of 

HSCT recipients of seronegative donors and cord blood grafts. In selected patients such as recipients of T-

cell depleted grafts, ATCT, based on CMV-specific host T-cells reconstitution kinetics, would be of value in 

the prophylactic and/or preemptive CMV treatment. Vaccine-immunotherapy has the difficult task to 

reduce the incidence of CMV reactivation/infection in highly immunocompromised HSCT patients. Newer 

notions on CMV biology may represent the base to flush out the Troll of transplantation. 

 

Key words: cytomegalovirus (CMV), immune response, CMV-vaccine, hematopoietic stem cell 

transplantation (HSCT), adoptive T-cell therapy (ATCT). 

 

1.Introduction 



Over thirty years ago, Henry Balfour [1] nicknamed cytomegalovirus (CMV) the troll of transplantation and 

since then it has remained a problem for clinicians and patients in the setting of solid organ transplantation 

(SOT) and hematopoietic stem cell transplantation (HSCT) [2]. Indeed, CMV specific viral load detecting 

methods and pre-emptive therapy with current antiviral drugs remarkably reduced the incidence of CMV 

disease in allogeneic HSCT recipients over the past twenty years. Estimated incidences of early CMV disease 

(before day 100 post-transplant) and late CMV disease (after day 100) in CMV-seropositive allogeneic 

recipients are currently around 5% and 15% [3]. Major risk factors for CMV infection in HSCT recipients, 

particularly refractory CMV reactivation, include a transplant from a CMV seronegative donor into a 

seropositive recipient [4]; the intensity of the immunosuppression; the degree of T-cell depletion including 

the use of T-cell depleting agents such as alemtuzumab, antithymocyte globulin [5], and mycophenolate 

mofetil [6]; a transplant from unrelated or human leucocyte antigen (HLA)-mismatched donors including 

haploidentical donors [7]; umbilical cord blood transplantation; acute and chronic graft versus host disease 

(GvHD) and its treatment [8]; low CD3+ content in the graft [9]. Both myeloablative and non-myeloablative 

conditionings are associated with relative risk of CMV infection [10, 11]. Conflicting results have been 

reported regarding the relative risk of CMV infection in bone marrow recipient as compared with peripheral 

blood stem cells (PBSC) recipients [12]. Interestingly, recipient hepatitis B virus serostatus has been 

associated with the development of CMV-DNAemia in a recent retrospective study on haploidentical HSCT 

[13]. The switch from prophylactic to pre-emptive therapy has substantially spared organ toxicities and 

costs [14]. Myelosuppression and nephrotoxicity are the most important side effects of the anti-CMV 

agents readily available today – ganciclovir (GCV), valganciclovir (VGC), foscarnet (FOS) and cidofovir (CDF). 

Antiviral resistance could be a difficult phenomenon to overcome and management options still have 

important limitations [15]. The need for newer agents with better toxicity profiles have led to develop 

several promising antiviral compounds [16, 17]. Most interesting agents are maribavir (MBV), letermovir 

(LMV) and brincidofovir (BDF). Phase II/III studies are in progress to evaluate their safety and efficacy in the 

clinical setting. As newer and deeper insights into immune reconstitution of transplant recipients and CMV 

biology are obtained, immunological strategies are drawing much more attention. Optimal reconstitution 

of CMV-specific cytotoxic T lymphocytes (CMV-CTL) after allogeneic HSCT is essential for immune control of 



CMV infection. Its deficiency is a major factor for the development of CMV infection and disease and 

represents the major concept to set the base of adoptive T-cell therapy (ATCT) [18]. Moreover, vaccine 

immunotherapy appears to play a new role in CMV-prophylaxis [19].  

 

 

2.1 The old drugs: Ganciclovir (GCV), Valganciclovir (VGC), Foscarnet (FOS), Cidofovir (CDF). 

The drugs currently approved by the Food and Drug Administration (FDA) for the prophylaxis or treatment 

of systemic CMV infections are GCV and its oral prodrug VGC; FOS, and CDF. All of them target viral 

DNA polymerase. 

 

2.1.1 Ganciclovir – the first choice is a myelosuppressive one. 

It is still the first choice in CMV reactivation/infection and disease treatment [20]. GCV is  phosphorylated 

intracellularly to ganciclovir monophosphate by a viral kinase encoded by the CMV gene UL97. It inhibits 

viral DNA polymerase. The most relevant side effect of GCV is bone marrow depression, particularly 

neutropenia with an absolute neutrophil count of less than 750/mL occurring in 30% of GCV recipients. The 

development of neutropenia has been associated with risk factors such as impaired renal function, high 

baseline viral load and low-level neutrophil counts prior to CMV-therapy [21]. As prophylaxis and pre-

emptive therapy, GCV is usually infused at an induction dose of 5 mg/kg twice daily intravenously for two 

weeks, followed by 5 mg/kg/day for 7-14 days as maintenance. As mentioned above, a not negligible 

portion of transplanted patients cannot receive GCV because of persistent neutropenia after HSCT. A 

randomized study conducted on 68 HSCT recipients with documented CMV infection between standard 

dose (10 mg/kg/day) (n=32) versus low-dose (5 mg/kg/day) GCV (n=36) as pre-emptive therapy did not 

show any significant difference in CMV disease incidence [22]. Park et al. explored pre-emptive low-dose (5 

mg/kg/day) versus conventional dose GCV in a prospective observational study on 97 allogeneic HSCT 

patients. By using a logistic regression model to reduce selection bias in the treatment assignment, the 



Authors reported no significant differences in viral clearance, secondary episodes of CMV infection, CMV 

disease and overall mortality between the two groups [23]. In the setting of CMV disease, the addition of 

intravenous immunoglobulins, either CMV-specific or not, is not supported by clear efficacy in treatment 

outcomes. A recent retrospective study on over four hundred allogeneic HSCT patients with CMV-

pneumonia clearly showed improved overall survival with both GCV and FOS, whereas the addition of 

intravenous pooled or CMV-specific immunoglobulins did not appear to improve overall or CMV-

attributable mortality [24]. In case of progressive CMV disease despite first line therapy with GCV, it is 

mandatory to consider the presence of GCV-resistant CMV strains and look for alternative therapies 

including the increase of GCV dosage [25] or the use of other antiviral agents [26].  

 

2.1.2 Valganciclovir – oral versus intravenous. 

It is the valine ester of GCV and it is hydrolyzed to GCV after oral absorption. Since 85% of GCV delivered 

orally is excreted by the kidneys, VGC dosage should be recommended in the light of patient creatinine 

clearance (CrCl). Some Authors however suggest that the currently recommended renal adjustments based 

on their CrCl calculated using the ideal body weight may not be sufficient to prevent viral replication in 

overweight patients given the possible underestimation of the renal function in such patients [27, 28]. Large 

prospective randomized trials comparing VGC and GCV in HSCT patients are lacking. Though small, some 

interesting studies compared the efficacy of VGC therapy versus non-VGC therapy - primarily GCV - in the 

pre-emptive setting on allogeneic HSCT patients. In a pilot prospective randomized clinical trial conducted 

on 37 HSCT patients, VGC (n=19) was not inferior to intravenous GCV (n=18) as pre-emptive therapy with 

rates of viral clearance at 28 days after the start of therapy of 89.5% and 83% respectively. Similar toxicities 

were reported between the two arms [29]. A retrospective single center German study conducted on 118 

allogeneic HSCT recipients demonstrated superiority of VGC (n=48) versus non-VGC (n=70) pre-emptive 

therapy in terms of viraemia clearance and mean duration of hospitalization, without neutropenia episodes 

during twice weekly neutrophil count monitoring [30]. Similar results emerged from a two-year prospective, 

comparative cohort study of CMV infection on 166 allogeneic HSCT recipients in which intravenous GCV, 



FOS or oral VGC were given as first-line pre-emptive CMV treatment. VGC was as efficacious and safe as 

non-VGC treatment without requiring hospitalization [31]. To reduce myelotoxicity, a small retrospective 

study on 68 allogeneic HSCT recipients, comparing efficacy and safety of standard intravenous GCV (n=24) 

versus low-dose oral VGC (n=44) in pre-emptive treatment of CMV infection, demonstrated lower incidence 

of low-grade neutropenia and high-grade thrombocytopenia without any significant differences in viral titers 

between the two groups [32]. Conversely, Takahata et al. in a recent non-inferiority study on 38 HSCT 

patients, observed that by reducing the standard dosage of VGC from 900 mg twice daily (n=18) to 900 mg 

once a day (n=20) there was no statistically significant difference in myelotoxicity [33]. 

 

2.1.3 Foscarnet (FOS) – neutropenia-free but nephrotoxic. 

Neutropenic patients prior engraftment or during GCV/VGC therapy or infected with UL-97- resistant CMV 

strains are commonly treated with FOS [20, 34]. A virustatic agent that inhibits viral DNA polymerase, FOS 

does not cause myelotoxicity [35] but primarily causes renal side effects with renal impairment and 

electrolytes imbalance. Seizures and local genital irritation/ulceration [36] are also occasionally seen. FOS 

has been compared to GCV for pre-emptive treatment of CMV infections in a randomized trial with 

satisfactory results in terms of control of antigenaemia and survival rates with remarkably less neutropenia 

episodes though renal toxicities were relevant [37]. Though rare, FOS resistance is mediated by mutation of 

the UL54 gene and it might also develop after a short drug exposure [38]. 

 

2.1.4 Cidofovir (CDF) – the last resort. 

CDF is a nucleotide analogue that does not require viral phosphorylation for its activation with a favorable 

pharmacokinetic profile. It is considered a third line drug, because of its important nephrotoxicity, 

gastrointestinal and ocular morbidities such as uveitis, retinal detachment and chronic ocular hypotension. 

To decrease nephrotoxicity, CDF is usually infused with Probenecid (PBC), an inhibitor of organic anion 

transport. Administered orally with each dose of CDF, PBC blocks active renal tubular secretion of CDF. Side 

effects like nausea and vomiting are generally mild; Hypersensitivity reactions can also occur. The Infectious 



Disease Working Party of the European Society for Bone and Marrow Transplantation reported the largest 

recipient series of allogeneic HSCT treated with CDF. Mostly given at 5 mg/kg/week in both primary or 

secondary pre-emptive therapy for CMV infection with response rates of 50% for CMV disease and 62% to 

66% for CMV infection, significant renal toxicities were reported [39]. Several applications of CDF against 

different viral pathogens in pediatric patients [40] have been reported in recent years, in particular against 

adenovirus [41], BK virus-associated hemorrhagic cystitis [42, 43] and poxvirus [44]. 

 

2.2 Antiviral drug resistance 

CMV antiviral drug resistance among allogeneic HSCT recipients is an uncommon but feared complication 

because it is associated with poor clinical outcomes and potential graft-loss. Its incidence is estimated 

around 2-8% of allograft recipients [45] and it is generally associated with prior prolonged exposure, at 

least six weeks, to the antiviral drug and persistent reactivation episodes which usually lead to the 

identification of resistant strains [46]. Antiviral drug resistance should be suspected in the presence of poor 

clinical response and progressive rise in viral load for more than fourteen days or with stable serum CMV-

DNA levels despite antiviral therapy. In this case, genotypic testing for sequence analysis of UL97 – 

phosphotransferase - and UL54 - polymerase - genes and switch to an alternative antiviral drug should be 

recommended. UL97 kinase mutations, that alter the phosphorylation process, are the most represented 

cause of CMV-antiviral resistance, Seven most common UL97 mutations account for over 80% of GCV-

resistant CMV strains whereas UL54 mutations are generally associated with FOS and CDF- resistance 

though cross-resistance to GCV may be also observed [47]. Newer technologies such as next-generation 

sequencing are being explored for the detection of genotypic resistance [48]. CMV multidrug-resistance 

with mutations in both UL97 and UL54 genes usually results from UL54 cross-resistance [49, 50]. At 

present, there are no standardized therapeutic approaches and new antiviral drugs targeting alternative 

CMV key structures are needed [51]. 

 



2.3 The others: Artesunate and Leflunomide 

 

2.3.1 Leflunomide (LFN) – not only for rheumatic arthritis. 

An FDA-approved drug for rheumatoid arthritis, LFN is an oral compound with good bioavailability 

immunosuppressive properties (its active metabolite, teriflunomide, is a strong lymphocyte proliferation 

inhibitor) and antiviral activity against a number of viruses [52]. Its mechanism of action resides in the 

ability to interfere with the assembly of the virionic capside without cross-resistance activity with current 

anti-CMV compounds. Its side effects includes gastrointestinal toxicity with diarrhea, liver toxicity and 

polyneuropathy. Given the relatively slow onset of complete antiviral action, the drug is not however ideal 

for infections with rapidly increasing viral loads [53]. Its proper dosage, timing and duration of treatment 

for CMV need further investigations in future randomized studies [54]. 

 

2.3.2 Artesunate – the antimalarial. 

It is an artemisinin-derived monomer able to inhibit in vitro CMV replication in human foreskin fibroblasts 

at micromolar concentrations through cell cycle modulation with an early arrest in G1 phase [55]. Cell cycle 

modulation via cyclin-dependent kinases and retinoblastoma protein appears to play an important role in 

artemisinins activities [56]. Unfortunately, there is not yet a thorough evaluation of its efficacy but only 

sporadic reports of its in vivo anti CMV activity with contrasting results [57]. Interesting insights come from 

artemisinin-derived dimers, novel compounds with more potent in vitro anti-CMV effects [58, 59] the 

efficacy of which remains to be addressed. 

 

2.4 The new drugs: Maribavir (MBV) , Letermovir (LMV) and Brincidofovir (BDF). 

Three multicenter, randomized, placebo-controlled phase II, proof of concept studies [60, 61, 62] led to the 

identification of three new compounds with anti-CMV activity (Table I).  



 

2.4.1 Maribavir – a false start. 

A benzimidazole riboside compound that, unlike GCV, is a direct inhibitor of the UL97 protein kinase. It is 

active against GCV- and CDF-resistant CMV strains. Its bioavailability is greater than that of oral GCV, but 

less than that of VGC. It is not associated with hematological or renal toxicities. Its most relevant side 

effects are dysgeusia and nausea. Strengthened by encouraging results from a phase II study [60] and 

granted fast track status drug, MBV was tested in a subsequent multicenter, randomized, double blind, 

phase III study, conducted on 681 HSCT patients. Rather surprisingly, it failed to demonstrate superior 

efficacy to prevent CMV disease as compared with to placebo [63]. Explanations may partly be due to the 

choice to adopt CMV end organ disease as the primary study endpoint and the exclusions of parameters 

such as viral load or start of pre-emptive therapy, the exclusion of high risk patients, the possibly too low 

dose of MBV (100 mg twice daily) employed [64, 65]. Not conclusive results were reported in a randomized, 

multicenter, double-blind study on a cohort of 303 CMV-seropositive liver transplant recipients with CMV-

seropositive donors where prophylaxis with MBV at 100 mg twice daily was compared to oral GCV. The 

non-inferiority endpoint of MBV in preventing CMV disease was not reached. Moreover, significantly fewer 

CMV events – both as overt disease or increased viral load – were registered in the GCV arm both at day 

+100 and at six months post transplant [66]. Opposite results came from a recent French report on a cohort 

of 12 transplant recipients – including three HSCT – with resistant CMV strains. Treatment with MBV at a 

minimum daily dose of 800 mg was successful in seven patients without significant toxicities [67]. To 

address the issue as whether there is still a role today for MBV in CMV disease prevention and treatment in 

HSC and SOT patients, a phase II (NCT01611974), double blind, randomized, dose-ranging study (with high 

dose MBV at 400 mg BID, 800 mg BID and 1200 mg BID) was recently completed and final results are 

eagerly awaited. Furthermore, warnings on a rapid rise of CMV strains resistant to high MBV doses have 

recently been published [68]. Different isoforms of kinase pUL97 greatly affect susceptibility of CMV to 

MBV efficacy [69]. There is generally no overlap between the kinase ATP binding site mutations and the 

UL97 mutations, that respectively confer MBV and GCV resistance, with the exception of a single p-loop 



mutation (F342S) involved in dual resistance to both drugs, even though it has not yet been observed in 

vivo [70, 71]. 

 

2.4.2 Letermovir  - the terminaSEtor. 

Member of the new antiviral class of quinazolines, it acts after viral DNA synthesis by inhibiting the subunit 

protein pUL56 that, together with pUL89, is a key element of the enzyme complex named terminase,[72, 

73] directly involved in the cleavage and package of viral DNA chains in the virionic capside [74, 

75]. Because of its distinct mechanism of action, it does not show cross-resistance with other antiviral drugs 

and there are reports of clinically relevant activity against GCV-, FOS- and CDF-resistant CMV strains [76, 

77]. Given its virus-specific, human-cell sparing mechanism of action, it has not been associated with any 

clinical significant side effects. LMV was studied as CMV prophylaxis in a randomized, placebo-controlled 

phase II study on 131 CMV-seropositive allogeneic HSCT recipients, across various US and German 

transplant centers, at three different dosages - 60, 120 or 240 mg once a day. It showed higher efficacy in 

reducing plasma CMV-DNA levels as compared with placebo, with the greatest anti-CMV effect at the 240 

mg dose. Failures were recorded only in 21%, 19% and 6% of patients, at the 60, the 120 and the 240 mg 

dose, respectively, as compared with 36% in the placebo arm. Of note, the tolerability profile of the drug 

was reported to be excellent, with no hematological or renal toxicity [61]. Efficacy and safety of this 

compound were similarly investigated in a recent phase II study performed on 27 kidney transplant 

recipients, with LMV at 40 mg BID or 80 mg once daily in comparison with the current standard of care 

(SOC). Viral clearance was reached in 50% of treated patients as compared with 29% in those receiving SOC 

[78]. A phase III randomized, placebo-controlled, multicenter study conducted by Merck (that acquired the 

rights to develop and market the drug in 2012) on the prevention of CMV infection and CMV disease in 

allogeneic HSCT recipients, is currently recruiting patients. Primary endpoint of this study is to compare the 

CMV infection rate between the two arms through week 24 after transplant. The study is expected to 



complete the accrual in January 2017 for primary outcome (NCT02137772). Overall, in vitro LMV resistant 

CMV strains have been reported [79, 80, 81]. 

 

2.4.3 Brincidofovir (CMX001) – the fatty one. 

Originally developed as an agent against the hypothetical biological warfare with smallpox virus, this drug 

has potent in vitro activity against a wide range of double-stranded viruses, including CMV. This is a lipid 

pro-drug of CDF, which is intracellularly converted into CDF diphosphate and  inhibits DNA polymerase of 

adenoviruses, polyomaviruses, orthopoxviruses and herpesviruses. Given its high oral bioavailability and 

long half-life, it can be administered twice weekly by oral route. Its lipophilic nature, obtained with the 

addition of a lipidic side chain to the parent compound, allows the absorption through plasma membranes, 

reducing the amount of circulating drug and avoiding damage to renal tubules [82]. In a multicenter double 

blind, placebo-controlled, phase II dose-escalation study on a cohort of 230 allogeneic HSCT patients, BDF 

reduced incidence of CMV infection and CMV disease in those patients who received BDF at doses of 100 

mg weekly or higher as compared with those who received placebo [62]. Of 15 patients in the study cohort 

who developed GvHD and required systemic steroid treatment, only one developed CMV reactivation. 

Overall, at 100 mg twice weekly, the drug was well tolerated and efficacious, without increasing 

myelosuppression or nephrotoxicity. Its principal side effect was significant diarrhea in over 50% of the 

patients treated with 100 mg twice weekly which became dose-limiting at 200 mg twice weekly. This 

toxicity was likely determined by an excessive concentration of CDF in enterocytes as reported in animal 

models [83]. The SUPPRESS trial, a phase III randomized multicenter, placebo-controlled (ratio 2:1), on 450 

CMV seropositive allogeneic HSCT recipients treated with BDF at a dose of 100 mg twice weekly has 

recently stopped recruiting patients. Results are expected in 2016 (NCT01769170). BDF is also being 

evaluated in two randomized, double-blind, multicenter, phase III registered clinical trials for the 

prevention of CMV-disease in CMV seropositive (SURPASS trial - NCT02439957) and seronegative (SUSTAIN 

trial - NCT02439970) kidney transplant recipients. Furthermore, BDF is under investigation for its potential 

http://clinicaltrials.gov/show/NCT02137772


antiviral activity against other types of viral pathogens such as adenovirus and herpes simplex virus [84], BK 

polyomavirus in immunocompromised, mostly transplant, patients [85]. Preliminary data from transplant 

patients who received BDF for adenovirus infections in an ongoing multicenter open-label phase III trial are 

encouraging in terms of efficacy and safety (NCT02087306).  

 

3. Adoptive T-cell therapy 

In the HSCT setting, several factors weaken the host immunologic defense. The intensity of the conditioning 

regimens, prevention/treatment of GvHD, often with high dose steroids, and the long process of immune-

reconstitution are all associated with the risk of viral infections. In vivo expansion and persistence of CMV-

CTL is crucial for an appropriate immune response both in the early and late post-transplant phases until 

the establishment of stem cell-derived immunity. Soon after transplant, most CMV-CTLs are of donor 

origin, while newly “educated” endogenous T cells from thymic output appear only later [86]. In 

haploidentical HSCT, early T-cell recovery is primarily based on peripheral expansion of naïve T cells and it 

appears delayed when compared with that of HSCT from HLA-identical siblings [87-90] Long-term immune 

reconstitution, however, mostly thymus-dependent, appears appropriate to maintain an adequate naïve T 

cell pool [91-94]. Adoptively transferred CMV-CTL can be detected long after HSCT and up to 2 years after 

infusion [95]. There are two main ways to obtain virus-specific T cells (VSTCs): a) in vitro expansion and b) 

ex vivo separation and in vivo expansion (Fig.1). 

 

3.1  Ex vivo culture 

The first is a culture-based technique with many amplification procedures to increase the specificity of T 

cells after repeated in vitro expansions. It is a time-consuming and costly procedure but with the advantage 

of generating a large number of T cells (> 10^7/kg) with the desired antiviral specificity regardless of the 



host immunity. Given the long in vitro process, the expansion should be carried out prior to the transplant 

in selected all high-risk patients as only a few of these patients will eventually need this treatment.   

One of the most significative experience on HSCT patients who received donor CMV-VSTCs and compared 

with a control group was reported in 2013 [96]. The endpoint was to evaluate if prophylaxis with CMV-

specific T cells could provide short- and long-term protection against CMV infection. VSTCs were generated 

through dendritic cells genetically modified with an adenoviral vector encoding the full pp65 antigen or 

pulsed with a HLA2-restricted immunodominant peptide from the CMV pp65 antigen. One major limitation 

was however the risk of escape mutants among the VSTCs. Overall, there was a reduction in the percentage 

of patients who required CMV antiviral therapy and in a number the duration was shorter. Importantly, 

there was not an increased rate of acute or chronic GvHD attributable to VSTCs as compared to the control 

arm - two cases of acute grade III-IV GvHD , and an overall incidence of chronic GvHD of 42%.  

 

3.2 Direct ex vivo selection techniques. 

Techniques for direct selection of VSTCs include the use of peptide pools derived from viral antigens to 

expand T cells with multiple antigen specificities [97], the selection of VSTCs based upon the secretion of 

interferon-gamma (IFN-gamma) [98, 99] or the binding to class I HLA-multimers [100] or immunomagnetic 

beads [101]. The multimer selection method requires HLA-specific elements for every viral epitope and is 

actually restricted to CD8+ T-cells, while the IFN-gamma secretion technique is based upon a HLA-

unrestricted selection of CD4+ and CD8+. Both techniques require a considerable volume of donor blood 

and imply the fact that only viruses with a high frequency of circulating T-cell precursors can be targeted. 

The number of recovered cells is usually small. Multimer selection technique was first exploited by Cobbold 

[102] with a direct selection technique by using a panel of CMV IE1 and pp65 tetramers to select specific T 

cells from HSCT donors. Later, Uhlin and colleagues [101] described a separation technique based upon 

positive selection with HLA-pentamers and magnetic beads that bind to CD8+T-cells reactive to CMV, EBV 

and adenovirus from donor lymphocyte infusion and peripheral blood of haploidentical donors. A total of 8 



patients with infections caused by different viruses were treated. Six out of 8 showed a decrease in viral 

titers within two weeks post-VSTCs infusion. Overall, the study emphasized the need for preemptive rather 

than therapeutic use of immune therapy after allogeneic HSCT. Concerns have been raised about the 

potential clonal exhaustion of the multimer-bound T cells after a prolonged HLA-peptide/T-cell receptor 

interaction. In an attempt to overcome this problem, Schmitt and colleagues [103] utilized streptamers that 

could be dissociated from T cells by the addition of a competitor molecule and injected CD8+T-cells isolated 

with this technique into two allogeneic HSCT patients with CMV refractory disease. In both cases there was 

an increase in reactive cells and CMV viral load clearance, without GvHD. Another method to select VSTCs is 

based upon the ability of memory T cells to secrete IFN-gamma in an antigen-dependent manner. 

Feuchtinger first reported this method in severe adenovirus infections in pediatric patients and later in 

CMV refractory infection and disease which included two cases of CMV-encephalitis, in T-cell depleted 

allogeneic HSCT [98]. In 2011, in a phase I/II study, Peggs and colleagues described the use of IFN-gamma 

captured CMV pp65-specific T cells as prophylaxis and preemptive CMV-treatment with increase of both 

CD4+ and CD8+ T-cells. However, 8 cases of acute GvHD in the 18 patients treated and 3 cases of chronic 

extensive GvHD [99] that posed relevant safety issues were reported. IFN-gamma selection technique was 

also used in ATCT for clinically relevant adenovirus infection in allogeneic HSCT patients, with promising 

results [104]. Two randomized studies, recently completed, exploited direct selection of VSTCs through the 

streptamer and IFN-gamma CMV-CTL selection methods in T-cell depleted HSCT from CMV-seropositive 

donors: the IMPACT (NCT01077908) and the ASPECT trials (NCT01220895). The first is a multicenter, 

prospective, controlled, open-label phase III study of CMV-prophylaxis in T cell depleted HSCT from sibling 

donors with VSTCs selected by both multimer and IFN-gamma selection. T-cells were administered on day 

27 post transplant and primary objectives of the study were the number of CMV reactivation episodes and 

GvHD incidence. The ASPECT trial is a randomized, multicenter open label phase II study of pre-emptive 

adoptive CMV cellular therapy where T cells were collected by multimer selection technique in recipients of 

unrelated donor transplants. In this study, the VSTCs selection occurred during the stem cell collection 

procedures. Primary end point was to establish the efficacy of pre-emptive VSTCs with CMV-specific T cells 

and their post infusion in vivo expansion. Results of both studies are expected early in 2016. 



 

3.3 Recent developments: Third-party VSTCs and naïve donors T-cells. 

The ability to isolate and expand VSTCs from seronegative donors or cord blood units may represent a 

clinical issue. Potential solution in this scenario is the so called “third party bio-banks" of VSTCs where they 

can be selected by HLA haplotypes [105]. The first multicenter trial of ATCT with cells obtained from banked 

third-party VSTCs for the treatment of refractory viral infections after HSCT was reported by Leen et al. in 

2013 [106]. The Authors developed a bio-bank of 32 virus-specific lines from volunteers with common HLA 

polymorphisms against Epstein-Barr virus, CMV, or adenovirus. Eighteen  lines were administered to 50 

HSCT patients with refractory viral disease. Cumulative incidence of complete or partial responses was 

overall 74%: 73.9% for CMV (n = 23), 77.8% for adenovirus (n = 18) and 66.7% for EBV (n = 9). Only four 

responders had recurrence or progression. GvHD developed in eight patients (two of them showed de novo 

GvHD, and in only one of grade 3) confirming previous observations [107, 108]. Most interestingly, the 

VSTCs used in this study were "off-the-shelf" and only partially HLA-matched. If the low rate of GvHD is 

confirmed in further studies, this treatment option will have the potential to be widely employed given its 

rapid action and immediate efficacy. Nevertheless, it is important to point out that the results of this trial 

must be validated also in more compromised patients with active acute GvHD; or treated with T-cell–

depleting monoclonal agents such as anti-thymocyte globulin or alemtuzumab, or more than 0.5 mg/kg/day 

of prednisone. T-cells restricted by specific HLA alleles exhibited different clinical activity and certain HLA 

alleles were more capable of inducing clearance of CMV disease/infection as recently reported by O’Reilly 

et al. [109]. Notably, the same group also proposed the use of artificial antigen-presenting cells (AAPCs) to 

more easily generate VSTCs for the treatment of infections in HSCT recipients. AAPCs consist of genetically 

modified murine cells, expressing human molecules required for T-cell stimulation such as ICAM-1 and LFA-

3. VSTCs sensitized with AAPCs not only recognize well known immunogenic HLA epitopes but also 

subdominant epitopes, generally not recognized by autologous APCs [109]. There are two interesting phase 

II studies currently recruiting - one conducted by Prockop and colleagues at Memorial Sloan Kettering 

Cancer Center, the other by Betul and colleagues at MD Anderson Cancer Center (NCT02136797 and 



NCT02210078) - on the role of third party donor derived T-cells in CMV disease/infection in allogeneic HSCT 

recipients. These studies are expected to be completed in 2017- 2018. T-cell products able to recognize 

unusual epitopes of different pathogens would potentially be a valid tool to avoid immune escape when 

donor and recipient T-cells are not fully HLA matched. The naïve donor T-cell compartment may be of 

interest in this setting given its propensity to generate a broad spectrum of immune control over several 

pathogens [110]. In 2011, a study made by Jedema first described a method of in vitro generation of 

antigen-specific CD8+ T cells obtained from a naïve T-cell donor repertoire. This method implied the 

depletion of CD45R0+ T cells that resulted                                                                                                                         

in increased antigen-specific naïve T cells, but its poor reproducibility hampered its wide application [111]. 

In 2012 Hanley et al. demonstrated that multivirus-specific T-cells (against Adenovirus, EBV and CMV) from 

naïve T-cell populations, from both cord blood and peripheral blood of seronegative donors, are protective 

in vivo despite their unusual atypical epitope repertoire. VSTCs, mostly CD8+, were obtained with the use of 

a protocol based on both professional antigen presenting cells and activating Th1-polarizing cytokines [112, 

113]. A recently published phase I feasibility study demonstrated the feasibility of generating CMV pp65-

specific T-cells from CMV-negative individuals and cord blood units, and the ability of naïve-origin T-cells to 

recognize atypical epitopes of pp65. Given its phase I design, definitive conclusions cannot be drawn. The 

preliminary results are however encouraging and should be confirmed in larger studies  [114]. Preliminary 

results of the currently ongoing clinical trial MUSTAT (Multivirus-Specific Cytotoxic T-Lymphocytes for the 

Prophylaxis and Treatment of EBV, CMV, and Adenovirus Infections post Allogeneic Stem Cell Transplant; 

NCT01945814) that compares clinical efficacy of CTLs derived from CMV-seropositive versus CMV-naïve 

donors are eagerly awaited. 

 

4. CMV vaccines 

Vaccine-induced immunity with safe and immunogenic compounds represents a feasible way to reduce the 

rate of CMV reactivation/disease in high risk patients. However, the precarious state of immuno-



competence of HSCT recipients with altered lymphocyte repertoires and antigen-presenting cells remains a 

barrier that hampers the efficacy of this strategy [115]. It is clear that robust protection against CMV relies 

on both cellular and humoral immunity and the ideal vaccine should be able to elicit a strong stimulation of 

both the adaptive and the natural immunity compartments [116]. Interesting clinical experiences came 

from two studies. In a randomized, placebo-controlled phase II clinical trial on SOT - 140 kidney or liver 

transplant patients - a subunit vaccine made up of purified glycoprotein B protein coupled with MF59 

adjuvant led to a significantly shorter duration of viraemia, defined as viral loads higher than 200 

genome/mL of blood, and a shorter duration of anti-viral therapy as compared with the placebo group. A 

strong antibody activity was seen without, however, a T cell-immunity involvement that determined a short 

durability of the immune response [117]. A second study employed a vectored vaccine, also known as 

ASP0013 or TransVax, with plasmids encoding CMV glycoprotein B and phosphoprotein pp65. This vaccine 

is employed in the only approved phase III study of vaccine-immunotherapy against CMV in the setting of 

hematopoietic stem cell transplantation. This trial is currently in progress and its completion is expected in 

2017. A previous phase II, multicenter, randomized, placebo-controlled, double-blind study, was developed 

to test efficacy, safety and immunogenicity of ASP0113. Patients enrolled in the study were CMV-

seropositive recipients of a myeloablative or a reduced-intensity HSCT for hematological malignancies. They 

were randomly assigned with a 1:1 ratio to receive CMV therapeutic vaccine (n=48) or placebo (n=46) on a 

four times schedule injections – the first before, the other three after the transplant. The vaccine was safe 

and only one patient discontinued it because of a minor allergic reaction. Though the primary endpoint of 

the study, the reduction of CMV viraemia requiring CMV-specific antiviral therapy, was not reached, there 

was a reduction in CMV viraemia episodes, defined as CMV copies >500/mL in the blood, in the vaccine 

arm. The immunogenicity analysis showed a statistically not significant increased rate of pp65, IFN-gamma 

producing T-cells in the vaccine cohort without a clear involvement of the B-cell compartment [118, 119]. 

An interesting, currently on going, multicenter phase II randomized, double-blind, placebo-controlled study 

in HSCT recipients has been designed to evaluate efficacy of another vectored vaccine, PepVax, containing 

plasmids encoding for pp65 combined with a toll-like receptor 9-agonist (NCT02396134). Primary endpoint 

of the study is the incidence rate of CMV reactivation/infection or CMV disease up to day 100 after HSCT. 



The estimated completion date is 2019. Further progress in the scientific knowledge on CMV cell cycle and 

its biology currently offers potential novel approaches in vaccine-immunotherapy. CMV enters the host 

cells through two different pathways: CMV enters fibroblast by employing glycoproteins gB and gH/gL, 

whereas to enter epithelial and endothelial cells an additional five-member protein complex, composed of 

gH, gL, UL128, UL130, and UL131A, referred to as the gH/gL-pentamer complex, is required. Neutralizing 

antibodies that prevent gH/gL-pentamer complex mediated CMV entry into epithelial cells (AbNEIs) are 

putative candidates for an in vivo protective role against CMV infection [120, 121]. Recently, Gimenez et al. 

addressed the potential role of CMV-specific AbNEIs in CMV infection control in allogeneic HSCT patients by 

using a neutralization assay. The results did not confirm the protective role of AbNEIs both in prevention 

and clearance of CMV-DNAemia. AbNEIs levels did not correlate with CMV-DNAemia nor with viral load 

kinetics. The observation that patients with high baseline and peak AbNEIs levels were more likely to 

develop CMV-DNAemia was of interest. Possible explanations include a major role played by memory B 

cells of donor and recipient origins [122]. The gH/gL-pentamer complex represents the platform for 

prophylactic Pentamer-based vaccines of absolute interest [123, 124]. 

 

5. Expert commentary 

The development of new tools against CMV infection/disease in HSCT recipients has been very active in 

recent years. Clinical trials now in progress have been designed to define the role of new antiviral 

compounds and to replace the currently broadly employed antiviral drugs associated with important 

toxicities and growing inefficacy due to mechanisms of drug-resistance. New anti-viral drugs such as BDF 

and LMV showed promising results in phase II studies and are being evaluated in phase III clinical trials. 

ATCT may play a role in the future because of its promising mechanism of action, able to sunder specific 

antiviral T-cell response from significant alloreactivity. Different techniques for isolation and expansion of 

CMV-specific T-cells are emerging as the knowledge on immune-reconstitution post allogeneic HSCT and 

CMV biology is expanding. The ability to determine and monitor CMV-CTL levels in the blood of HSCT 



recipients would be a useful tool to identify patients with poor CMV-specific immune reconstitution at 

higher risk of developing CMV infection/reactivation and overt disease [125, 126]. In selected patients such 

as recipients of T-cell depleted grafts, ATCT, based on CMV-CTL reconstitution kinetics, would be of value in 

the prophylactic and/or preemptive setting. Third party and pathogen-naïve donor CTLs could represent an 

alternative option for patients who undergo cord blood transplants or receive grafts from CMV-

seronegative donor [127]. Vaccine immunotherapy may soon become a clinical reality although concerns 

about its real efficacy in highly immuno-compromised patients such as HSCT recipients raise legitimate 

doubts. 

 

6. Five-year view 

A future paradigm may include first line antiviral therapy with one of the current investigated agents (LMV, 

BDF or MBV) and, in case of treatment failure and/or progressive CMV disease, ATCT may play a role as 

salvage strategy. ATCT may allow shorter courses of antiviral drug prophylaxis to stimulate cellular immune 

response. The creation of “bio-banks” with HLA-typed T-cells from peripheral blood of healthy donors 

specifically "armed" against different viruses that could readily be used in HSCT recipients without 

seropositive donors appear a promising approach. The use of VSTCs in HSCT patients with GvHD is currently 

under investigation with some promising reports. Menger recently elaborated a proof of concept study 

[128] based upon the genetic disruption of steroid cellular receptor in streptamer-selected CMV-specific 

CD8+ T cells, adopting the technique of transcription activator-like effectors nuclease (TALEN) messenger 

RNA, through electropermeabilization. The modified VSTCs showed resistance to steroid-induced apoptosis 

whereas they preserved their CMV-specific killing ability. However, there are concerns about the possibility 

of conferring steroid-resistance to CD8+ T-cells responsible of GvHD. The possibility of inserting suicide 

genes capable to interrupt VSTCs activity by inducing apoptosis has not been explored. In another recently 

published, phase I study in the setting of haploidentical HSCT, Zhou X et al. [129] employed haploidentical 

T-cells with inducible human caspase 9 (iC9) suicide gene to delete the alloreactive T-cells responsible of 



GvHD, sparing the virus-reactive T cells even during GvHD treatment. The authors demonstrated that 

alloreplete iC9-T cells provide protection against EBV, CMV, human herpesvirus-6, Varicella zoster virus and 

BKV infections, with a possible role played by the recovery of endogenous T cells. This hallmark study may 

highly contribute to the future management of viral infections/disease in HSCT patients with life-

threatening GvHD.  

 

7. Key Issues 

 The use of current antiviral drugs for CMV is hampered by potentially severe side effects and by the 

growing issue of drug-resistance.  

 New antiviral compounds, currently under investigation, appear promising for their efficacy against 

CMV-resistant strains and for their low toxicity profile both in the prophylactic/pre-emptive and 

therapeutic settings.  

 In the next future, ATCT, possibly combined with shorter courses of  new antiviral compounds in 

the prophylactic/pre-emptive setting will be likely to play an important role especially in high-risk 

patients.  

 Third-party virus-specific T-cells, possibly with the creation of VSTCs “bio-banks”, will be crucial for 

the treatment of overt CMV disease in critically ill patients.   

 CMV-vaccine strategies may become key factors to reduce incidence rate of CMV 

reactivation/infection in immuno-compromised patients such as HSCT recipients. 
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Appendix 

 

2. Table I. Principal characteristics of the newer anti-CMV compounds. 

 

 

Drug Route of 
administration 

Mechanism 
of action 

Side efffects Dosing Main publications 

Maribavir Per os Inhibition 
of CMV 
protein-
kinase 
UL97 

Gastrointestinal: 
dysgeusia and 

nausea, vomiting. 

From 400 mg to 
1200 mg twice 

daily 

.Winston et al. 

Blood. 2008 (60) 

.Marty et al. 

Lancet Infect Dis. 

2011 (63) 

.Winston et al. 

American Journal 

of transpl. (66) 

.clinicaltrialsgov: 

NCT01611974 

Letermovir Per os Inhibition 
of 

terminase 
complex 
subunit 

UL56 

Gastroenteritis, 

nasopharyngitis, 

dyspnea, and 

elevation in 

serum 

creatinine 

 

 
 

120 mg or 240 

mg once-daily 

 

. Chemaly et al. 

NEJM. 2014 (61) 

.clinicaltrialsgov 

NCT02137772) 

Brincidofovir Per os Inhibition 
of DNA 

polymerase 

Gastrointestinal: 
diarrhea (dose 

limiting at 200 mg 
twice weekly) 

100 mg twice 
weekly 

. Marty et al. 

NEJM. 2013 (62) 

.clinicaltrialsgov 

NCT02137772 

 

 

 



Figure 1.  

 

Notes: A) Ex-vivo expansion. In the classic process antigen presenting cells (APC) are transduced with viral 
vectors or plasmids encoding antigens of interest. APCs are then combined with T cells to stimulate them 
until a sufficient number have been expanded. B) Direct selection techniques: multimer selection. In this 
case T cells are incubated with HLA multimers (tetramers, pentamers or, more recently, streptamers) that 
resembles the peptide binding HLA-mediated. The complex multimer-T cells is then isolated with magnetic 
beads or cell sorting. C) T cells are stimulated utilizing virus-derived overlapping peptides. Activated T cells 
secrete interferon gamma (IFN-gamma). Virus-specific T-cells are then immune-magnetically selected. 

 

 

 


