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Quantum chemistry methods exploiting density-functional approximations for short-range electron-
electron interactions and second-order Møller-Plesset (MP2) perturbation theory for long-range
electron-electron interactions have been implemented for periodic systems using Gaussian-type basis
functions and the local correlation framework. The performance of these range-separated double
hybrids has been benchmarked on a significant set of systems including rare-gas, molecular, ionic,
and covalent crystals. The use of spin-component-scaled MP2 for the long-range part has been tested
as well. The results show that the value of µ = 0.5 bohr−1 for the range-separation parameter usually
used for molecular systems is also a reasonable choice for solids. Overall, these range-separated
double hybrids provide a good accuracy for binding energies using basis sets of moderate sizes such
as cc-pVDZ and aug-cc-pVDZ. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922996]

I. INTRODUCTION

Among the wide variety of quantum chemistry methods
proposed in the last decade, a great fascination resides in
the possibility to combine density-functional theory (DFT)1,2

and explicit many-body correlation methods, such as second-
order Møller-Plesset (MP2) perturbation theory,3 random-
phase approximations (RPA),4 and coupled-cluster theory.5

The hope is to get the best out of both worlds, that is to combine
a proper description of long-range dispersion interactions
(without introduction of empirical corrections6) and a good
description of short-range electron correlations with a reduced
dependence on the basis set.

Different ways to combine DFT and wave-function tech-
niques have been proposed. These include global double-
hybrid approaches7,8 and range-separated approaches.9–16 In
this work, we focused on the latter type, which was initially
introduced by Stoll and Savin in the 1980s.17 It has been
shown that for molecular complexes (and especially for dimers
involving rare-gas atoms), it provides excellent performance
as regards bond lengths, dissociation energies, and harmonic
frequencies. In many cases, results have been found to be
“superior, with medium-size basis sets, to pure DFT and pure
coupled-cluster calculations.”14

Concerning the study of solids, we note that the intro-
duction of wave-function-based correlation treatment for peri-
odic systems is relatively recent.18–26 Martinez-Casado and

a)lorenzo.maschio@unito.it

coworkers proposed to estimate the correlation energy as a
MP2 contribution using a B3LYP reference state and applied
this scheme to the study of the adsorption of helium atoms on
a MgO surface.27 Del Ben and coworkers24 benchmarked the
performance of some global double hybrids on a set of molec-
ular crystals. In particular, these authors used the DSD-BLYP
functional28 that includes a spin-component-scaled (SCS)29

MP2 contribution. Recently, some of us applied one-parameter
double-hybrid methods to molecular crystals.30

In this work, we tested the performance of range-separated
double-hybrid methods,11 combining short-range density-
functional approximations with long-range MP2 correlation,
for evaluating the cohesive energy of crystalline periodic
systems. We implemented this approach in the C31 and
C18 programs that use a basis set of Gaussian-type
orbitals centred on atoms. The MP2 correlation part is treated
within a local approach, where the pair-specific virtual space is
spanned by projected atomic orbitals (PAOs), restricted to the
so-called domains, i.e., several atoms surrounding the consid-
ered localized occupied orbitals. This technique was initially
proposed by Pulay in the 1980s,32,33 and extended by Werner,
Schütz, and coworkers to high-level correlated methods for
molecules.34–45 The adaptation of the local MP2 method to
periodic systems has been done in the last decade,18,46,47 and
over the years has been successfully applied to quite a rich
variety of systems.48–60

The paper is structured as follows. In Sec. II, a review
of the formal aspects of the methods and their extension to
periodic systems is given. Section III contains the details on

0021-9606/2015/143(10)/102811/11/$30.00 143, 102811-1 © 2015 AIP Publishing LLC
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the model systems, basis sets, and computational parameters
used in the calculations. The tests of the range-separated dou-
ble hybrids on three representative systems with the aim of
studying the dependence on the range-separation parameter are
discussed in Sec. IV. Further, Sec. V presents the benchmarks
of several range-separated double-hybrid approximations on
a wider set of systems. Finally, conclusions and perspectives
on future work are provided in Sec. VI. In the Appendix, the
methods employed in this study have been additionally tested
on molecular dimers cut out from the bulk systems.

II. COMPUTATIONAL METHODS

A. Periodic range-separated hybrid (RSH) scheme

In the RSH scheme,11 the ground-state energy is approx-
imated with the following minimization over (normalized)
single-determinant wave-functions Φ:

ERSH = min
Φ

�⟨Φ|T̂ + V̂ext + Ŵ lr
ee|Φ⟩ + Esr

Hxc [nΦ]
	
, (1)

where T̂ is the kinetic energy operator, V̂ext is the external
potential (nuclei-electron + nuclei-nuclei interactions) oper-
ator, Ŵ lr

ee is a long-range electron-electron interaction oper-
ator made with the long-range interaction w lr

ee(r) = erf(µr)/r ,
and Esr

Hxc[nΦ] is the corresponding µ-dependent short-range
Hartree-exchange-correlation density functional evaluated at
the density of Φ. The parameter µ controls the range of the
separation. It is somewhat clearer to rewrite Eq. (1) as

ERSH = min
Φ

⟨Φ|T̂ + V̂ext|Φ⟩
+ EH[nΦ] + Elr

x,HF[Φ] + Esr
xc [nΦ]


, (2)

where EH[nΦ] is the usual Hartree energy (with the Coulomb
electron-electron interaction wee(r) = 1/r), Elr

x,HF[Φ] is the
long-range Hartree-Fock (HF) exchange energy, and Esr

xc[nΦ]
is the short-range exchange-correlation energy. The minimiza-
tion in Eq. (2) leads to familiar hybrid Kohn-Sham (KS)-type
self-consistent equations determining the RSH orbitals φi and
orbital energies εi,

F̂RSH|φi⟩ = εi |φi⟩, (3)

with the RSH Fock operator

F̂RSH = T̂ + V̂ext + V̂H + V̂ lr
x,HF + V̂ sr

xc, (4)

where V̂H is the usual Hartree potential operator, V̂ lr
x,HF is the

long-range HF exchange potential operator, and V̂ sr
xc is the

short-range exchange-correlation potential operator. For µ
= 0, the RSH scheme reduces to pure KS DFT, while for
µ → ∞ it reduces to pure HF theory.

The RSH scheme and other similar range-separated hybrid
DFT scheme are available in many molecular quantum chem-
istry programs. A very similar scheme to RSH, called RSHX,61

where the separation is done on the exchange energy only,
has been implemented for periodic systems using a plane-
wave/projector-augmented-wave (PAW) approach.62 Another
kind of range-separated hybrids, called screened-exchange
hybrids63 which use short-range HF exchange instead of long-
range HF exchange, has also been implemented for peri-

odic systems using Gaussian-type basis functions64 or a PAW
approach.65 Here, we give the main equations for a spin-
restricted closed-shell RSH scheme for periodic systems us-
ing local basis functions (see, e.g., Refs. 66–69 for more
details on periodic HF or KS implementations with local
basis functions). Due to translational symmetry, the crystalline
orbitals are labeled by a wave vector k and expanded as |φi(k)⟩
=


µ cµi(k)|ψµ(k)⟩ where |ψµ(k)⟩ = N−1/2
g eik·g| χg

µ⟩ are
Bloch functions, and N is the number of crystal cells and
⟨r| χg

µ⟩ = χµ(r − g) is an atomic-orbital basis function (a
contraction of Gaussian-type orbital functions) located in the
cell characterized by the direct lattice vector g. The orbital
coefficients and energies are found by solving the self-
consistent-field (SCF) equation at each point k,

FRSH(k)ci(k) = εi(k)S(k)ci(k), (5)

with the RSH Fock matrix FRSH
µν (k) = g eik·gFRSH

µνg where
FRSH
µνg = ⟨χ0

µ |F̂RSH| χg
ν⟩, and similarly for the overlap matrix

Sµν(k). The matrix FRSH
µνg is expressed as

FRSH
µνg = hµνg + Jµνg + K lr

µνg + V sr
xc, µνg, (6)

where hµνg = ⟨χ0
µ |T̂ + V̂ext| χg

ν⟩ are the kinetic + external
potential integrals, V sr

xc, µνg = ⟨χ0
µ |V̂ sr

xc | χg
ν⟩ are the short-range

exchange-correlation potential integrals, Jµνg is the usual
Hartree potential contribution calculated with Coulombic two-
electron integrals

Jµνg =

λσml

Pλσl (χ0
µ χ

g
ν |wee| χm

σ χ
m+l
λ

), (7)

and K lr
µνg is the long-range HF exchange potential contribution

calculated with long-range two-electron integrals

K lr
µνg = −

1
2


λσml

Pλσl (χ0
µ χ

m+l
λ

|w lr
ee| χm

σ χ
g
ν). (8)

In these expressions, the density matrix Pλσl is obtained from
the occupied orbital coefficients as

Pλσl =
2
v


BZ


i

cλi(k)c∗σi(k)θ(εF − εi(k))eik·ldk, (9)

where v is the volume of the Brillouin zone (BZ) and εF is the
Fermi energy.

Finally, the RSH energy per unit cell takes the form

ERSH =

µνg

Pνµg


hµνg +

1
2

(
Jµνg + K lr

µνg

)
+ Esr

xc, (10)

where the short-range exchange-correlation energy per unit
cell is, e.g., for generalized-gradient approximations,

Esr
xc =


unit cell

n(r)ϵ sr
xc(n(r),∇n(r)) dr, (11)

where the integration is over one unit cell and n(r)
=

λσml Pλσl χ

m+l
λ

(r)χm
σ(r) is the electron density. In this

work, we use either the short-range local-density-approxima-
tion (LDA) exchange-correlation functional of Ref. 70 or
the short-range Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional of Ref. 14 (which is a modified version
of the one of Ref. 71). The method will thus be referred to as
RSHLDA or RSHPBE, respectively.
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B. Periodic long-range local second-order
Møller-Plesset correction

The RSH scheme does not contain long-range correlation,
but it can be used as a reference for a nonlinear Rayleigh-
Schrödinger perturbation theory11,72,73 to calculate the long-
range correlation energy. At second order, the long-range
correlation energy is rigorously given by a standard MP2
expression evaluated with RSH orbitals and orbital energies,
and long-range two-electron integrals.11,12 Here, we give the
main equations of the long-range local MP2 correction for
periodic systems.

After the periodic RSH calculation, the crystalline RSH
canonical occupied orbitals are transformed into localized74

symmetry-adapted75 mutually orthogonal Wannier func-
tions (WFs). As regards the virtual orbital space, mutually
nonorthogonal PAOs are constructed by projecting the indi-
vidual atomic-orbital basis functions on the virtual space.33

The long-range first-order double-excitation amplitudes T lr
ia,jb

are then obtained by iteratively solving the following system
of linear equations:33,46,76

K lr
ia,jb +


(cd)∈[ij]


FRSH

ac T lr
ic,jd Sdb + Sac T lr

ic,jd FRSH
db


−


(cd)∈u[j]
Sac


k near j

FRSH
ik T lr

kc,jd Sdb

−


(cd)∈u[i]
Sac


k near i

T lr
ic,kd FRSH

kj Sdb = 0, (12)

where i, j, k refer to WF occupied orbitals, and a, b, c, d to
PAO virtual orbitals (bold indices combine the index within
the unit cell and the lattice vector). The locality is exploited by
restricting the sums over PAO pairs (cd) to the pair domain [ij]
of PAOs spatially close to at least one of the WF i or j, or to
the domain u[i] (or u[j]) which is the union of all [ik] (or [jk])
where the sum over k is in turn limited to WFs spatially close
to i (or j). In Eq. (12), K lr

ia,jb = (ia|w lr
ee|jb) are the long-range

two-electron exchange integrals in the WF/PAO basis, Sab is
the overlap between PAOs, and FRSH

ij and FRSH
ab are elements of

the RSH Fock matrix in WF and PAO basis, which is obtained
by transformation of the Fock matrix in the atomic-orbital basis
FRSH
µνg .

The K lr
ia,jb integrals are efficiently evaluated through a

robust77 density-fitting scheme, suitably adapted for periodic
systems.78–81 By introducing an auxiliary basis set of Gaussian-
type functions—here indicated by indices P and Q—the inte-
grals are approximated as

K lr
ia,jb ≈


P

dP
ia(P|w lr

ee|jb) +


Q

(ia|w lr
ee|Q)dQ

jb

−

PQ

dP
ia(P|w lr

ee|Q)dQ
jb, (13)

with fitting coefficients

dP
ia =


Q

(ia|1/r |Q)�J−1�
Q,P, (14)

where
�
J−1�

Q,P is the Q,P element of the inverse of the matrix
of Coulomb integrals over the auxiliary functions

JP,Q = (P|1/r |Q). In Eqs. (13) and (14), the summation over
fitting functions P and Q is limited to suitable local fitting
domains.

The long-range local MP2 correlation energy per unit cell
is then given as

Elr
c,MP2 =


(ij)∈P


(ab)∈[ij]

K lr
ia,jb (2 T lr

ia,jb − T lr
ib,ja), (15)

where the first sum is over occupied WF pairs (ij) taken from
a truncated list P, in which the first WF i is located in the
reference unit cell and the second WF j is restricted within
a given distance to the first WF i. The method obtained after
adding the long-range local MP2 correlation energy to the
RSH energy will be referred to as RSHLDA+MP2 or RSH-
PBE+MP2. Obviously, for µ = 0, the method reduces to pure
LDA82 or pure PBE,83 while for µ = ∞ it reduces to pure MP2.
We note that, since exactly the same range-separated Fock
operator used in the SCF iterations is adopted for the evaluation
of the long-range local MP2 correlation energy, no contribution
from single excitations84 arises.

We also consider the SCS variant29 of MP2

Elr
c,SCS−MP2 =


(ij)∈P


(ab)∈[ij]

K lr
ia,jb

(cOS + cSS) T lr
ia,jb − cSS T lr

ib,ja


,

(16)

where the opposite-spin (OS) and same-spin (SS) coefficients,
taken from the original work,29 are cOS = 6/5 and cSS = 1/3.
For molecular systems, the SCS variant of MP2 has been
shown to significantly improve the accuracy of MP2 for en-
ergy differences and properties. For compactness of notation,
the method will be referred to as RSHLDA+SCS or RSH-
PBE+SCS.

III. COMPUTATIONAL DETAILS

A. Test systems

A small but representative set of crystalline systems was
chosen in order to cover the diverse types of chemical bond
typical of solids (see Figure 1): rare-gas crystals (Ne, Ar),
molecular solids (CO2, HCN, NH3), ionic crystals (LiH, LiF),
and covalent semiconductors (Si, SiC). Metals were not
considered in this study since the perturbative nature of the
MP2 approach does not allow calculations on systems with a
very small or zero band gap.85

The LiH crystal, being the simplest 3D crystal, has been
the subject of much attention recently,19,86–92 and convergence
of the total MP2 energy with basis set was carefully inves-
tigated by some of us.93 The three molecular crystals have
been chosen in order to evaluate different natures of inter-
actions which contribute to the total cohesion energy. This
includes dispersive and electrostatic quadrupole-quadrupole
interactions94 in CO2 crystal and hydrogen bonds in NH3 crys-
tal. The HCN crystal, instead, represents a simple example of a
molecular crystal in which both dispersion and hydrogen bond-
ing are present. These particular systems have been studied
by different authors with different approaches, including peri-
odic post-Hartree-Fock methods in the last few years.92,95–100
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FIG. 1. Pictorial representation of unit cells of crystals used as a benchmark
in this work. (a) Neon. (b) Argon. (c) Carbon dioxide. (d) Ammonia. (e)
Hydrogen cyanide. (f) Lithium hydride. (g) Lithium fluoride. (h) Silicon. (i)
Silicon carbide.

Rare-gas crystals are of general interest as purely dispersion-
bonded crystals, where the dominant role of electron correla-
tion effects is well known.101–105

TABLE I. Structural information about the crystals used in this work. nato is
the total number of atoms per cell. In the last column, we report reference to
the works each structure was taken from.

System a;b;c (Å)
Space
group nato References

Rare-gas
Ne 4.464 Fm3̄m 1 125–127
Ar 5.300 Fm3̄m 1 128 and 129

Molecular
CO2 5.54 Pa3̄ 12 123, 124,

and 130
NH3 5.048 P213 16 131
HCN 4.13;

4.85; 4.34
Imm2 3 132

Ionic
LiH 4.084 Fm3̄m 2 89
LiF 4.010 Fm3̄m 2 133

Semiconductor
Si 5.430 Fd3̄m 2 134

SiC 4.358 F4̄3m 2 135

Details on the systems and the geometries we used in the
calculations are reported in Table I. The experimental lattice
parameters, as indicated, were adopted in all cases. For molec-
ular crystals, internal coordinates were taken from Ref. 95,
where they were obtained by a fixed-volume optimization of
internal coordinates performed at the B3LYP-D* level.106

B. Parameters of the calculations

All the periodic calculations were performed with devel-
opment versions of the C1431 and C18,46,47,84

programs. Molecular calculations were performed either with
the above codes or with M.107,108 As for the C
calculations, we adopted a homogeneous 8 × 8 × 8 k-point
sampling of the reciprocal space, and integral-screening toler-
ances set to 10−8,10−8,10−8,10−20,10−50. For the meaning of
these thresholds, we address the user to the C14 user’s
manual;109 here, we just point out that, as in our previous
works,93,95 we tightened the thresholds for the exchange inte-
grals (last two numbers) with respect to defaults.

In C, the fundamental input parameters refer to the
locality ansatz. In particular, the most relevant one is the selec-
tion of excitation domains assigned to each occupied orbital,
since in the present calculations the recently implemented
orbital-specific-virtual method110 was not adopted. Domains
for rare-gas and ionic solids were chosen in order to consider
PAOs belonging to two coordinated shells of atoms around
the occupied orbital, while for molecular crystals the domains
coincide with the molecule to which the orbital belongs. For
semiconductor crystals, we selected the domains in order to
take into account six tetrahedral units for a total amount of 26
atoms around each bond orbital. The maximum pair distance
considered for the evaluation of MP2 correlation energy was
fixed at 12 Å. Two-electron integrals within this range are eval-
uated efficiently in C either by density fitting78,80,81 or
multipolar expansion techniques—if the inter-orbital distance
exceeds 8 Å.

C. Basis sets

As mentioned in the Introduction, the C and
C programs use a basis set of Gaussian-type orbital
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functions centred on atoms to create atomic orbitals. In this
study, we mainly employed Dunning’s cc-pVXZ.111 Where
possible, unmodified basis sets with X = D, T, Q have been
used.

Exceptions are as follows:112

• LiH and LiF crystals: a suitably optimized cc-pVQZ
basis set (see the supplementary material for details)112

was adopted for Li in all calculations, regardless of the
basis on H or F. The basis sets indicated in the tables and
figures refer, therefore, only to the latter atomic species,
for which we used standard Dunning’s basis sets.

• Si and SiC crystals: the cc-pVDZ basis for Si needed to
be re-optimized in order to allow for SCF convergence.
However, it was possible to use an unmodified cc-pVDZ
basis on C.

Augmentation was made only for polarization shells, i.e., no
diffuse s-type functions were included in any case. Hereafter,
the prefix p-aug will be adopted. This augmentation scheme
proved, in a number of cases,30,95–97 to be very effective in
keeping the beneficial effects of polarization-augmented basis
sets on the correlation energy while moderating the impact
on the computational demands. No dual basis-set scheme84

is adopted in the present work, which would imply contri-
butions from single excitations in the MP2 treatment.30 As
a consequence, the single-excitation contribution is always
zero in the calculations presented here. We did not attempt to
extrapolate our results to the complete-basis-set limit (a recent
work113 suggests an exponential convergence of the long-range
correlation energy upon the cardinal number of the basis) since
this would go beyond the scopes of the present work.

D. Cohesive energies

We computed the cohesive energy Ecoh(V ) per X (where
X can stand for either a molecule or an atom) at a given volume
V of the unit cell as

Ecoh =
Ebulk

Z
− E[gas]

X , (17)

where Z is either the number of molecular units or the number
of atoms in the unit cell; Ebulk and E[gas]

X are, respectively, the
total energy per unit cell of the bulk system and the total energy
of X in the gas phase geometry—which has been optimized
at the B3LYP-D* level for molecular systems, for consistency
with the adopted crystalline structures. When X refers to a
single atom, as in the case of rare-gas crystals, obviously
E[gas]
X = E[bulk]

X .
In order to correct for the basis set superposition error

(BSSE), we adopted the standard Boys-Bernardi counterpoise
(CP) method,114

ECP
coh = Ecoh + E[bulk]

X − E[bulk]
X+gh, (18)

where E[bulk]
X and E[bulk]

X+gh are the energies of X in the crystalline
bulk geometry without and with ghost functions, respectively.
Note that in the case of ionic crystals, cohesive energies are
evaluated with respect to the isolated atoms, not ions. The
energies for the latter were computed in the framework of the
spin-unrestricted formalism, using the M code.107,108

IV. DEPENDENCE ON THE RANGE-SEPARATION
PARAMETER

The literature discussing the implementations of range-
separated DFT approaches for molecular systems often adopts
a value of µ = 0.5 bohr−1 (if not otherwise specified, bohr−1

will be dropped in Secs. IV and V) for the range-separation
parameter (see Sec. II). This originates from some benchmark
on molecular systems and is justified under the consideration
that µ should correspond to the inverse of the average distance
between valence electrons (i.e., twice the Seitz radius, giving
around 1-2 bohrs in valence regions).61

Solids exhibit a wider variety of chemical bonds with
respect to molecular complexes: dispersion interactions, ionic,
covalent, and metallic bond (the latter we cannot deal with,
using the approaches presented in this work). The crystalline
environment is, by itself, different in nature from that of a
molecular system, due to its infinite character and close pack-
ing of atoms. For these reasons, we studied the dependence on
the value of µ. The range we considered was 0.1–1.0 (corre-
sponding to distances between electrons ranging from about
5 to 0.5 Å) which represents a range of physically reasonable
distances.

In Figure 2, the cohesive energy calculated with the RSH-
PBE+MP2 method is reported as a function of µ for three
systems of our benchmark set: the Ne, CO2, and LiH crystals.
For each system, curves obtained with different basis sets are
reported, as well as the experimental value.

In the case of the purely dispersion-bonded Ne crystal, the
cohesive energy is quite dependent on the basis set. It stems

FIG. 2. Cohesive energy of the Ne, CO2, and LiH crystals calculated with
the RSHPBE+MP2 method as a function of the range-separation parameter
µ for different basis sets.
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not only from the expected strong basis set dependence of the
MP2 part but also from the basis set dependence of the DFT
part which is even stronger for this system. The latter can be
probably explained by the very small scale of the interaction
energy (of an order of just a kJ/mol) and a delicate balance
between dispersion attraction and exchange repulsion which
needs to be captured in a proper way. At the same time, for
any given basis set, the energy is almost independent of µ
above µ & 0.5. In particular, with the largest basis set (p-aug-
cc-pVQZ), RSHPBE+MP2 gives an accurate cohesive energy
for µ & 0.4.

For the other two systems, the basis set dependence is
virtually negligible at the scale of the interaction energy, pro-
vided the polarization-augmented basis sets are used. For the
CO2 crystal (middle panel of Figure 2), the curves of the
cohesive energy exhibit a minimum at µ ≈ 0.4–0.5 for all basis
sets. Near this minimum, RSHPBE+MP2 slightly overbinds
with the augmented basis sets. The obtained cohesive energy
is much more accurate than pure PBE (µ = 0), as shown in
Figure 3 where we reported the same curves in an extended
range of µ. The effect of the diffuse basis functions on the
RSHPBE+MP2 cohesive energy is important for µ & 0.4 and
seems converged with the p-aug-cc-pVDZ basis set. For µ
. 0.2, the role of many-body correlation effects, not included
in the exchange-correlation functional, becomes insignificant
and the impact of augmentation of the basis set becomes very
small. For the LiH crystal, the cohesive energy curves are
quite flat between µ = 0.1 and 0.5, with a minimum at around
µ ≈ 0.2. Near the minimum, RSHPBE+MP2 gives an accurate
cohesive energy with basis sets larger than the cc-pVDZ basis
set.

In Figure 4, the decomposition of the RSHPBE+MP2/p-
aug-cc-pVDZ cohesive energy curves of Figure 2 in individual
RSHPBE and MP2 contributions is reported. It is interesting
to observe how the absolute value of the MP2 contribution
increases for Ne and CO2 when increasing µ from 0.1 to about
0.5 and then saturates. For LiH, the absolute value of the MP2
contribution increases almost linearly as a function of µ. This
can be rationalized in the following way. By increasing the µ
parameter, one progressively includes more short-range MP2
correlation. For small values of µ, it still means adding more
dispersion, leading to progressive growth of the magnitude of

FIG. 4. Decomposition of the RSHPBE+MP2 cohesive energy of the Ne,
CO2, and LiH crystals in individual RSHPBE and MP2 contributions as a
function of the range-separation parameter µ for the p-aug-cc-pVDZ basis
set.

the attractive MP2 contribution. However, at some point, µ
becomes so large, that the short-range intra-molecular MP2
component of the interaction energy, which is usually repulsive
in molecular crystals,99 starts contributing. Further on, it even
outruns the short-range dispersion, whose accumulation slows
down due to the packing effects, and the MP2 contribution
curve for Ne and CO2 turns into a slightly decaying regime.
In contrast to the molecular crystals, for LiH, the short-range
correlation is stabilizing (correlation substantially strengthens
binding even in LiH molecule89), so in this system the magni-
tude of the MP2 contribution always grows with increase of
the µ parameter.

From the present results, we conclude that the value
of µ = 0.5 is reasonable for the solids considered. Hence,

FIG. 3. Cohesive energy of the CO2 crystal calculated with the RSHPBE+MP2 method as a function of the range-separation parameter µ for different basis
sets.
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TABLE II. Benchmark of range-separated double-hybrid methods on cohesive energies (Ecoh in kJ/mol) of crystalline systems using double-zeta quality basis
sets. The RSHLDA+MP2, RSHPBE+MP2, RSHLDA+SCS, and RSHPBE+SCS results are obtained with a value of the range-separation parameter of µ = 0.5.
The statistical indicators calculated are mean errors (MEs), error variances (σ2), mean absolute error (MAEs), and mean absolute relative errors (MAREs).

LDA PBE RSHLDA+MP2 RSHPBE+MP2 RSHLDA+SCS RSHPBE+SCS MP2 SCS

Crystal Ecoh % Ecoh % Ecoh % Ecoh % Ecoh % Ecoh % Ecoh % Ecoh % Expt. Referencesa

Ne −0.31 84 −0.27 86 +0.11 106 +0.10 105 +0.18 109 +0.18 109 +0.22 111 +0.28 114 −1.97 126
Ar −6.84 12 +2.36 131 +1.10 114 +0.87 111 +2.00 126 +1.77 123 +3.13 140 +4.07 153 −7.73 129
CO2 −27.8 11 −3.8 88 −21.9 30 −22.6 27 −17.6 43 −18.2 41 −11.5 63 −7.9 75 −31.1 136
NH3 −55.2 52 −26.9 26 −32.1 12 −32.8 10 −29.1 20 −29.7 18 −24.2 33 −19.5 46 −36.3 136
HCN −51.4 21 −28.0 34 −40.1 6 −40.4 5 −36.3 15 −36.6 14 −31.7 26 −27.2 36 −42.6 136
LiH −265 10 −236 2 −245 2 −238 1 −244 2 −237 1 −226 6 −229 5 −240 137
LiF −482 12 −425 1 −454 6 −438 2 −452 5 −438 2 −432 0 −427 1 −430 137
Si −506 12 −433 4 −493 9 −490 8 −469 4 −465 3 −433 4 −404 11 −452 137
SiC −697 12 −603 4 −648 4 −638 2 −633 0 −623 0 −585 6 −559 11 −625 137
σ2 12.1 5.0 6.0 4.8 3.9 2.7 6.0 9.9
ME −25.0 12.6 −7.4 −3.6 −1.3 2.4 14.1 21.9
MAE 26.3 12.6 13.3 9.5 10.0 7.0 14.5 21.9
MARE 25 42 32 30 36 35 43 50

aThe experimental sublimation energies of molecular crystals taken from Ref. 136 were corrected for zero-point energy (ZPE) and thermal effects at 298 K by a constant 2RT
contribution.138 Atomization energies of semiconductors and ionic crystals were corrected for ZPE in accordance with the zero-point anharmonic expansion correction (values from
Ref. 139).

as a conservative choice based on previous experience on
molecular systems, we chose this value of µ for the wider
benchmark of the range-separated double hybrids carried out
in Sec. V. Notably, for that value of µ, range-separated double
hybrids show a similar basis set dependence as full MP2 for
the basis sets considered here.

V. A WIDER BENCHMARK OF RANGE-SEPARATED
DOUBLE HYBRIDS IN SOLIDS

The results reported in Sec. IV give a first hint that
range-separated double hybrids might provide cohesive energy
of solids that are more accurate than the ones obtained by
pure DFT or pure MP2, as generally observed for molecular
systems. In this section, we further benchmarked the range-
separated double hybrids, with double-zeta quality basis sets,
on the set of solids described in Sec. III A. In Table II, cohesive
energies are compiled for the cc-pVDZ basis set and the
following methods:

• Pure DFT (LDA and PBE), corresponding to µ = 0.
• Pure MP2 and SCS-MP2, corresponding to µ = ∞.
• Range-separated combinations of the above with µ
= 0.5.

For each system, the zero-point-energy (ZPE) corrected exper-
imental cohesive energy is also provided, and a number of
statistical indicators are calculated.

Looking at the mean errors (MEs), the mean absolute
errors (MAEs), or the error variances (σ2), it is seen that
the range-separated double hybrids globally perform better
for cohesive energies than the respective pure DFT and pure
MP2 methods. The mean absolute relative errors (MAREs)
also confirm this trend, with the exception of pure LDA which
gives better cohesive energies for Ar and CO2 with the cc-
pVDZ basis set compared to the other methods, leading to
the smallest MARE despite being less accurate than the other
methods for ionic and semiconducting crystals. As a matter
of fact, the large difference in behavior on individual systems

TABLE III. Same as Table II with polarization-augmented double-zeta quality basis sets.

LDA PBE RSHLDA+MP2 RSHPBE+MP2 RSHLDA+SCS RSHPBE+SCS MP2 SCS

Crystal Ecoh % Ecoh % Ecoh % Ecoh % Ecoh % Ecoh % Ecoh % Ecoh % Expt. Referencesa

Ne −0.44 78 −0.40 86 −1.24 37 −1.23 38 −0.87 56 −0.86 56 −1.10 44 −0.74 62 −1.97 126
Ar −11.9 54 +0.42 105 −7.50 3 −7.65 1 −4.88 37 −5.03 35 −6.45 17 −3.57 54 −7.73 129
CO2 −32.9 6 −5.8 81 −33.6 8 −34.4 11 −17.6 43 −27.5 12 −25.2 19 −18.5 41 −31.1 136
NH3 −55.6 53 −26.2 28 −38.8 7 −39.7 9 −29.1 20 −35.0 4 −31.8 12 −25.4 30 −36.3 136
HCN −54.9 29 −29.7 30 −48.4 14 −48.7 14 −36.3 15 −43.4 2 −41.4 3 −35.0 18 −42.6 136
LiH −263 10 −233 3 −243 1 −236 2 −241 0 −235 2 −225 6 −229 5 −240 137
LiF −482 12 −426 1 −454 6 −440 2 −453 5 −440 2 −435 1 −429 0 −430 137
Si −509 13 −436 4 −474 5 −474 5 −453 0 −448 1 −425 6 −395 13 −452 137
SiC −701 12 −607 3 −652 4 −642 3 −638 2 −627 0 −599 4 −577 8 −625 137
σ2 12.6 4.5 4.8 3.4 3.0 1.4 4.6 8.6
ME −27.1 11.4 −9.5 −6.3 −3.1 0.5 8.5 17.1
MAE 27.5 11.4 9.8 7.4 5.4 3.4 9.6 17.1
MARE 30 37 9 9 13 13 12 25

aSee footnote in Table II.
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observed between pure LDA and PBE is greatly smoothened in
the range-separated double hybrids which yield similar results
for the two density functionals. Yet, on average, the PBE-based
range-separated double hybrids give slightly more accurate
cohesive energies than the LDA-based ones. The SCS variants
of the range-separated double hybrids perform better that the
non-SCS ones for the semiconducting crystals, but worse for
the rare-gas and molecular crystals.

Results for the p-aug-cc-pVDZ basis are analogously
reported in Table III. Similar trends are observed even though
the results are more mixed. In comparison to pure PBE and
pure MP2, the RSHPBE+MP2 method provides cohesive
energies that are more accurate for Ne, Ar, CO2, and NH3,
and about as accurate for LiH, LiF, Si, and SiC. The HCN
crystal is a challenging system: it is known that pure MP2
(with large basis sets) tends to overbind this crystal,99 and the
RSHLDA+MP2 or RSHPBE+MP2 method seems to accen-
tuate this behavior.

Concerning molecular crystals, results can be compared
with density-scaled double hybrids reported in Ref. 30. For
HCN, the comparison is more straightforward since the same
basis set was used in both cases. With the DS1DH-PBEsol (λ
= 0.80) functional, the computed cohesive energies are −33.6
and −39.3 kJ/mol for the cc-pVDZ and p-aug-cc-pVDZ basis
sets, respectively, remarkably smaller than RSHLDA+MP2
and RSHPBE+MP2 methods. A similar behaviour is observed
for CO2 and NH3, even if the basis sets are not exactly the same.
For DS1DH-PBE, the cohesive energies are even smaller.

VI. CONCLUSIONS

We implemented and tested range-separated double-
hybrids methods in the C and C programs for the
study of crystalline solids. The approaches considered include
either LDA- or PBE-type density functionals for short-range
electron-electron interactions, and a local MP2 correlation
correction for the long-range electron-electron interactions
either in its standard or its SCS form.

The value of µ = 0.5 bohr−1 for the range-separation pa-
rameter commonly adopted for molecular systems was found
to be also a reasonable choice for solids and was thus adopted
for this study. The range-separated double-hybrids methods
have been tested on a significant test set of cohesive energies of
nine prototypical crystalline systems. A summary of the results
is provided in Figure 5. With double-zeta correlation consistent
basis sets, either augmented with diffuse polarization functions
or not, the range-separated double hybrids are globally more
accurate than the respective pure DFT or MP2 calculations.
As for pure MP2, the effect of augmentation of the basis set
with diffuse polarization functions is important for the range-
separated double hybrids, reducing the MARE values by about
a factor of three with respect to non-augmented results. Over-
all, the SCS variants of the range-separated double-hybrids
appear to be less accurate than the non-SCS ones, but the
reader shall be aware that the present benchmark set does not
include stacking-type interactions, where SCS is expected to
bring more significant improvements.

Future developments of range-separated DFT approaches
for solids might include the implementation of other flavors

FIG. 5. Summary of the performance of methods tested in this work on
crystalline system, measured by their MAREs (cf. Tables II and III). Empty
lined bars refer to the cc-pVDZ basis set and fully colored bars refer to the
p-aug-cc-pVDZ basis set.

of the methods (such as different short-range density func-
tionals115 or different long-range electron correlation
methods116,117). In particular, the notorious overestimation
of dispersion by MP2 in highly polarizable systems, which
can affect, as observed in this work, also the range-separated
double-hybrids employing MP2 as the long-range model, can
be cured by substituting the latter with approximate coupled-
cluster models, containing only the low-order slowly decaying
terms.118–120

We plan also to gain more experience on calculations tack-
ling “real-life” problems. The performance on diverse prop-
erties other than cohesive energies will be of interest. One
notable example is the relative stability of crystalline poly-
morphs,49,55,121 which traditionally represent a tough challenge
for quantum chemistry methods. Another quantity of inter-
est, where the range-separated double hybrids can become
particularly effective, is physisorption on surfaces or in porous
crystals. Indeed, since the short-range part of the interaction,
including the intra-host and intra-adsorbate components, is
in this scheme described by DFT, the MP2 treatment can be
reduced to the inter-host-adsorbate pairs only,122 making such
calculations computationally very efficient.
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APPENDIX: MOLECULAR DIMERS CUT
FROM THE BULK

In order to highlight the peculiarities of the crys-
talline case with respect to the molecular one, we have per-
formed the same kind of calculations as presented in Tables II
and III on molecular dimers. Since our aim is not to discuss the
performance of range-separated double hybrids on molecular
complexes, which has been widely explored in the literature,
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TABLE IV. Molecular complexes: benchmark of range-separated double-hybrid methods on interaction energies (Eint in kJ/mol) of dimers cut out from bulk
crystals using the cc-pVDZ basis set. The RSHLDA+MP2, RSHPBE+MP2, RSHLDA+SCS, and RSHPBE+SCS results are for a value of the range-separation
parameter of µ = 0.5. Reference CCSD(T) calculations are for an aug-cc-pV5Z basis set. “hb,” “db,” and “db2” label three different HCN dimers, cf. Figure 6.

LDA PBE RSHLDA+MP2 RSHPBE+MP2 RSHLDA+SCS RSHPBE+SCS MP2 SCS

System Eint % Eint % Eint % Eint % Eint % Eint % Eint % Eint % CCSD(T)

[Ne]2 −0.027 85 −0.024 86 +0.013 107 +0.012 107 +0.018 110 +0.018 110 +0.022 112 +0.026 115 −0.178
[Ar]2 −0.64 19 +0.06 112 +0.15 128 +0.13 124 +0.21 139 +0.19 136 +0.32 159 +0.38 171 −0.54
[CO2]2 −4.7 116 −0.9 59 −2.9 30 −3.0 35 −2.2 2 −2.4 7 −1.4 34 −0.9 59 −2.2
[NH3]2 −18.3 219 −10.7 87 −9.9 73 −10.0 74 −9.4 63 −9.4 64 −7.8 36 −6.8 18 −5.7
[HCN]2/hb −27.0 173 −17.5 76 −20.4 106 −20.5 107 −19.5 97 −19.6 98 −16.3 64 −14.6 48 −9.9
[HCN]2/db +3.8 74 +4.3 95 +4.5 105 +4.4 101 +4.8 119 +4.7 115 +4.3 96 +4.5 107 +2.2
[HCN]2/db2 −0.9 321 +2.1 418 +1.8 349 +1.7 310 +2.4 484 +2.2 446 +2.3 467 +2.8 608 +0.4
Li–H −715 11 −712 11 −702 10 −703 10 −702 10 −703 10 −697 9 −698 9 −641
Li–F −767 13 −762 13 −745 10 −745 10 −745 10 −745 10 −737 9 −737 9 −676
σ2 13.2 12.4 10.3 10.4 10.3 10.4 9.3 9.3
ME −21.8 −18.5 −15.8 −16.0 −15.5 −15.7 −13.7 −13.3
MAE 22.2 19.4 16.6 16.7 16.5 16.6 14.6 14.6
MARE 115 106 102 98 115 111 110 127

we have extracted dimers from the bulk structures without
re-optimizing the geometries. This has been done for rare-
gas, ionic, and molecular crystals. As a reference, we have
performed calculations at the same geometry with coupled
cluster singles, doubles, and perturbative triples (CCSD(T))
using a p-aug-cc-pV5Z basis set.

Tables IV and V compile the results for the cc-pVDZ and
p-aug-cc-pVDZ basis sets. In the case of HCN, three different
types of dimer were chosen to highlight the different types of
interaction present in the cluster. In Figure 6, a portion of the
bulk crystal is reported, where some monomers are labeled: one
purely hydrogen-bonded (“hb”) and two dispersion-bonded
(“db” and “db2”). In the case of LiH and LiF, the cohesive
energy is computed with respect to the neutral atoms.

Although the test set is not the same as in Sec. V, and is
strongly biased towards molecular and dispersion-bonded sys-
tems, some comparisons on MAEs and MAREs can be made.
At a first glance, it clearly appears that these two indicators are
significantly higher than in the bulk systems.

For the rare-gas dimers, the results are tremendously
improved by the addition of diffuse functions in the basis set.
This effect is almost exactly parallel to what was observed for
bulk crystals, and the same can be said about the performance
of different methods for these systems.

The molecular dimers show a completely different picture:
here, relative errors are quite large in all cases, so that these
errors dominate the overall statistics. It is indeed clear, from
inspection of different dimers from the HCN crystal structure,
how good (excellent, in the case of pure LDA) results for
the bulk come from error cancellations—overestimation of
hydrogen bonds and underestimation of dispersion interac-
tions. One must not be surprised to find positive value for the
interaction between some dimers, because they are not at the
equilibrium geometry.

Looking at ionic systems—LiH and LiF—we see that
the results seem almost insensitive to the method and to
the augmentation of the basis set. We attribute this behavior
to the strong, extremely short-ranged character of the ionic

TABLE V. Molecular complexes: same as Table IV with the p-aug-cc-pVDZ basis set.

LDA PBE RSHLDA+MP2 RSHPBE+MP2 RSHLDA+SCS RSHPBE+SCS MP2 SCS

System Eint % Eint % Eint % Eint % Eint % Eint % Eint % Eint % CCSD(T)

[Ne]2 −0.038 79 −0.035 80 −0.080 55 −0.081 55 −0.055 69 −0.055 69 −0.072 59 −0.047 74 −0.178
[Ar]2 −1.07 98 −0.14 74 −0.34 37 −0.37 32 −0.17 69 −0.19 64 −0.22 59 −0.03 95 −0.54
[CO2]2 −5.8 164 −1.4 38 −4.6 110 −4.8 116 −3.6 66 −3.8 72 −3.4 56 −2.4 11 −2.2
[NH3]2 −17.9 212 −10.2 78 −11.1 94 −11.2 95 −10.3 79 −10.3 80 −9.4 64 −8.0 40 −5.7
[HCN]2/hb −27.9 182 −18.1 83 −22.1 123 −22.1 123 −20.9 111 −21.0 112 −18.1 82 −16.2 63 −9.9
[HCN]2/db +3.7 70 +4.3 99 +4.3 98 +4.2 94 +4.8 118 +4.7 114 +3.7 68 +4.1 88 +2.2
[HCN]2/db2 −1.5 468 +1.9 362 +0.7 66 +0.5 19 +1.5 260 +1.3 215 +0.8 100 +1.7 316 +0.4
Li–H −720 12 −717 12 −707 10 −708 10 −707 10 −708 10 −700 9 −700 9 −641
Li–F −765 13 −760 12 −744 10 −745 10 −744 10 −744 10 −736 9 −736 9 −676
σ2 13.4 12.6 10.6 10.7 10.6 10.7 9.4 9.4
ME −22.5 −19.1 −16.9 −17.1 −16.5 −16.7 −14.7 −14.1
MAE 22.9 19.8 17.4 17.5 17.2 17.3 14.9 14.6
MARE 144 93 67 62 88 83 56 78
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FIG. 6. The HCN dimers extracted from the bulk structure.

interaction. At the same time, recalling the results from Sec. V,
long-range electron correlation effects (dispersion) are key to
a correct description of the bulk.
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