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We introduce orbital specific virtuals (OSVs) to represent the truncated pair-specific virtual space in
periodic local Møller-Plesset perturbation theory of second order (LMP2). The OSVs are constructed
by diagonalization of the LMP2 amplitude matrices which correspond to diagonal Wannier-function
(WF) pairs. Only a subset of these OSVs is adopted for the subsequent OSV-LMP2 calculation,
namely, those with largest contribution to the diagonal pair correlation energy and with the accumu-
lated value of these contributions reaching a certain accuracy. The virtual space for a general (non
diagonal) pair is spanned by the union of the two OSV sets related to the individual WFs of the pair.
In the periodic LMP2 method, the diagonal LMP2 amplitude matrices needed for the construction
of the OSVs are calculated in the basis of projected atomic orbitals (PAOs), employing very large
PAO domains. It turns out that the OSVs are excellent to describe short range correlation, yet less
appropriate for long range van der Waals correlation. In order to compensate for this bias towards
short range correlation, we augment the virtual space spanned by the OSVs by the most diffuse
PAOs of the corresponding minimal PAO domain. The Fock and overlap matrices in OSV basis are
constructed in the reciprocal space. The 4-index electron repulsion integrals are calculated by local
density fitting and, for distant pairs, via multipole approximation. New procedures for determining the
fit-domains and the distant-pair lists, leading to higher efficiency in the 4-index integral evaluation,
have been implemented. Generally, and in contrast to our previous PAO based periodic LMP2 method,
the OSV-LMP2 method does not require anymore great care in the specification of the individual
domains (to get a balanced description when calculating energy differences) and is in that sense a
black box procedure. Discontinuities in potential energy surfaces, which may occur for PAO-based
calculations if one is not careful, virtually disappear for OSV-LMP2. Moreover, due to much
increased compactness of the pair-specific virtual spaces, the OSV-LMP2 calculations are faster and
require much less memory than PAO-LMP2 calculations, despite the noticeable overhead of the initial
OSV construction procedure. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921301]

I. INTRODUCTION

During the past several years, periodic quantum chemical
wavefunction methods have become an increasingly important
tool in solid state applications.1–10 Furthermore, by combining
the periodic quantum chemical treatment with finite-cluster
approaches, like, e.g., the incremental scheme,11,12 unprec-
edented accuracy has been reached in the determination of
interaction energies in periodic systems.13–18

Presently, there are three development directions of 3D-
periodic correlation techniques; (i) the reciprocal-space plane-
wave approach,19–22 reaching coupled cluster level; (ii) mas-
sively parallel canonical MP223 and RPA24 methods, employ-
ing atomic orbital basis sets and plane waves as an auxiliary
basis for density fitting; and (iii) direct-space local MP225–27

and MP2-F1228 methods.
Employing spatially local orbitals to span the occupied

and virtual Hartree-Fock (HF) spaces introduces sparsity in

a)Electronic address: denis.usvyat@chemie.uni-regensburg.de
b)Electronic address: lorenzo.maschio@unito.it
c)Electronic address: martin.schuetz@chemie.uni-regensburg.de

direct-space quantities like the MP2 amplitudes, etc. This can
be exploited to achieve low (or even linear) scaling of the
computational cost with the number of atoms per unit cell.
For the occupied space, usually orthogonal localized orbitals
are employed. If the orthogonality constraint for the occupied
orbitals is released,29,30 their localization rate can be substan-
tially improved. On the other hand, non-orthogonality leads to
additional couplings between individual amplitudes, i.e., inter-
pair coupling in the local MP2 equations via the corresponding
overlap matrix elements. This, in turn, again increases the
computational cost and offsets the gain due to the additional
sparsity. In MP2 (as well as in other perturbative methods) it is
possible to avoid this complication by employing the Laplace-
transform of the energy denominator,31,32 which is used, for
example, for AO-based schemes.33–35

For the virtual space, it is also possible to construct orthog-
onal localized orbitals.36 However, since in high quality corre-
lated calculations the number of virtual orbitals is usually
much larger than the number of the occupied ones, and they
are more diffuse than the latter, their mutual orthogonaliza-
tion can worsen their localization. Within the local correlation

0021-9606/2015/143(10)/102805/12/$30.00 143, 102805-1 © 2015 AIP Publishing LLC
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formalism, nonorthogonality of the virtual orbitals is not a
great obstacle for high computational efficiency. Therefore,
more effort is invested in constructing a compact and compu-
tationally convenient, but not necessarily orthogonal virtual
basis.

Projected atomic orbitals (PAOs), introduced first by Pu-
lay,37–39 are among the most widely used local orbital repre-
sentations of the virtual space. PAOs, like the AOs from which
they originate, are highly localized. Hence, the excitation space
related to a certain pair of occupied orbitals (denoted as pair
virtual space in the following) can be truncated a priori to
pair specific pair domains. These pair domains comprise those
(relatively few) PAOs, centered in the vicinity of the respective
two occupied orbitals. Such a truncation is motivated by the
rapid (exponential) decay rate of the pair amplitudes with
respect to the distance between occupied orbitals and PAOs.
Note that the PAOs themselves are not pair specific, yet the
pair domains are pair specific in the sense that they contain
pair specific subsets of PAOs.

The PAO approach has been employed in molecular local
MP240–44 and coupled cluster45–52 methods including explicit
correlation,53–55 in time-dependent coupled cluster linear re-
sponse,56–60 as well as in multireference techniques.61 Also the
periodic local MP226,62–64 and MP2-F1228 methods as imple-
mented in the CRYSCOR program26 so far employ PAOs.

However, PAOs have certain shortcomings. In particular,
for high accuracy, the PAO pair domains may still be relatively
large, especially so in 3D densely packed systems (up to a
few hundred orbitals per pair),65 which leads to excessively
large doubles amplitude sets. Furthermore, pair domains usu-
ally respond abruptly rather than smoothly to changes in the
molecular structure, i.e., by inclusion or exclusion of an atom
(with all PAOs centered on it) from the pair domain. This may
lead to discontinuities in potential energy surfaces and to non-
physical artifacts in energy differences, unless the domains
are chosen to be identical for all considered geometries. Note
that geometry optimizations employ fixed domains and pair
lists, which eventually have to be re-specified close to the
minimum in case of large geometry changes between initial
and final structures.41,60 Head-Gordon et al. proposed to damp
pair domains in order to avoid discontinuities in the potential
energy surfaces.66 However, such an approach would lead to
even larger pair domains in 3D densely packed systems.

True pair specific orbitals, i.e., orbitals which are indeed
pair specific by themselves, the so called pair natural orbitals
(PNOs), were already suggested 40 years ago by Meyer.67

Recently, they have been revived in the local context by Neese
et al. and others.68–75 A truncated PNO basis spans the most
compact virtual space that captures a given amount of pair
correlation. For a given accuracy, the number of PNOs required
is many times smaller than that of PAOs.74 Furthermore, PNO-
based schemes are virtually free from the problem of poten-
tial energy surface discontinuity, since PNOs naturally adapt
themselves to the change of geometry. A drawback of the
PNOs approach is that the overall amount of PNOs is much
larger than that of PAOs (since they are truly pair specific).
Therefore, objects like the PNO Fock and overlap matrices can
become sizeable and hence expensive to compute, store, and
manipulate.

The orbital specific virtual (OSV) approach,76–80 which
uses the unions of diagonal pair natural orbitals as pair specific
virtual space, can be regarded as a compromise between PAOs
and PNOs. Indeed, substantially less OSVs than PAOs per
pair are required to reach the same accuracy. Furthermore,
also OSVs adapt to geometry changes and hence are less
prone to cause discontinuities in the potential energy surface
than PAOs. Compared to PNOs, the pair-specific OSV spaces
are larger, but the dimensionality of the intermediate quan-
tities and the associated computational cost is generally lower.
Moreover, the OSV machinery can be used as the first step
towards a PNO scheme, both algorithmically (PNOs are often
constructed from OSVs70,73,75) and technically, as the OSV
routines can be adapted accordingly for PNOs. A comparison
between various choices of orbitals to represent pair virtual
spaces in molecular systems can be found in Ref. 74.

In this paper, we present an OSV implementation of the
periodic local MP2 method. In the following sections, we
describe the formalism and algorithms for constructing the
OSVs, for calculating the 4-index integrals involving OSVs
via local density fitting and multipole approximations, and for
solving the LMP2 equations in the OSV basis. Furthermore,
the shortcoming of the OSVs to capture long-range van der
Waals correlation is analyzed. As is demonstrated, this defi-
ciency can be circumvented by adding the few most diffuse
PAOs to each related OSV set.

The new OSV based periodic LMP2 method, in contrast
to its PAO based precursor, is a black-box method. Moreover,
it is computationally more efficient (due to a lower prefactor)
than the previous (already linear scaling) PAO based method.

II. THEORY

A. Orbital specific virtuals

The concept of OSVs has initially been introduced from
the angle of a tensor decomposition of the doubles ampli-
tudes.76 Equivalently, OSVs can be defined as PNOs for diag-
onal pairs, i.e., the orbitals that diagonalize the MP2 virtual
pair density matrices Dii corresponding to diagonal pairs ii
of, in our case, localized occupied orbitals φi belonging to the
reference unit cell,

Dii
ab =


c

T ii
acT

ii
bc. (1)

T ii
ac are MP2 doubles amplitudes in the basis of yet unspecified

normalized and mutually orthogonal virtual orbitals φa, φb,
and φc. Since the amplitude matrix for a diagonal pair is sym-
metric, the eigenvectors of the density matrix Dii are identical
to those of the amplitudes T ii

ab
themselves, hence, the latter can

be used for the OSV specification.
The orbital invariant MP2 formalism, which has to be

adopted for local MP2, involves inter-pair couplings via the
occupied-occupied block of the Fock matrix, i.e., the internal
Fock matrix.25,81 Hence, a linear equation system has to be
solved to obtain the LMP2 amplitudes. OSVs generated from
such amplitudes may be useful in the context of a subsequent
coupled cluster calculation, but trivially not for the MP2 prob-
lem itself (since the problem is already solved then). In order
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to generate a sensible set of OSVs for a local MP2 calculation
itself, just the required diagonal pair amplitudes T̄ii are calcu-
lated at the uncoupled LMP2 level70,73,75,79 (corresponding to
the zeroth LMP2 iteration) according to

T̄ ii
ab =

(ia| jb)
ϵa + ϵb − f ii − f j j

, (2)

where f is the Fock matrix and (ia| jb) is an electron repulsion
integral in chemical (Mulliken) notation

(ia| jb) =


dr1φ
∗
i(r1)φa(r1)


dr2

1
|r1 − r2| φ

∗
j(r2)φb(r2).

(3)

Note that the T̄ii can deviate from the orbital-invariant
LMP2 solution. Nevertheless, since the inter-pair couplings
in LMP2 via the diagonal-dominant internal Fock matrix are
weak, such an approximation is not expected to affect the OSVs
significantly.

In Eq. (2), the virtual orbitals are assumed to diagonalize
the Fock matrix, i.e., ϵa is the eigenvalue of the external Fock
matrix related to virtual orbital φa. Hence, only the inter-pair
coupling via the internal Fock matrix of the LMP2 equations
is neglected. This is naturally achieved by employing canon-
ical virtual orbitals φa.73,76,79 However, the electron repulsion
integrals in the canonical virtual basis are not available in the
periodic LMP2 implementation. A convenient alternative is
to utilize the pair-specific pseudo-canonical orbitals instead,
which diagonalize the external Fock matrix in the spaces of
the related PAO pair domains.

Pseudo-canonical orbitals are already used for generat-
ing the amplitude updates via first-order perturbation the-
ory when solving the LMP2 equations. The amplitudes T̄ii

defined in Eq. (2) thus are identical to the LMP2 amplitudes
of the zeroth iteration before transforming them back from
pseudo-canonical to PAO basis. The pair-specific transforma-
tion matrices W[i j] between the pseudo-canonical and the PAO
basis are normally evaluated by diagonalization of the related
pair-specific piece of the PAO overlap matrix, removal of the
numerically redundant orbitals, normalization of the surviving
ones, and a subsequent diagonalization of the Fock matrix
in this new orthogonal basis.25,45,82 All this implies that the
amplitudes T̄ii required for OSV construction can easily be
computed with the existing LMP2 code.

Since only a very limited set of pairs (namely the diagonal
set) is involved, much larger domains than in usual LMP2
calculations can be used without significant computational
cost. This possibility of using large PAO domains for OSV
construction is important because the individual virtual spaces
spanned by these domains should be close to the full canonical
virtual space; too small domains would re-introduce disconti-
nuities in the potential energy surface through the backdoor.

The importance of a particular OSV φ
[i]
ã (related to occu-

pied orbital φi) for the subsequent LMP2 calculation can be
assessed by its individual contribution,

eii
ã[i] = t̄ ii

ã[i](iã[i]|iã[i]), (4)

to the total correlation energy of the ii-pair. In the above equa-
tion, t̄ ii

ã[i] is the corresponding eigenvalue of the T̄[ii] amplitude

matrix. In order to truncate the virtual space spanned by the
OSVs related to φi, i.e., the eigenvectors of T̄[ii], the latter are
ordered according to descending eii

ã[i]. OSVs are accepted until
the difference between the sum over the corresponding eii

ã[i] and
the total ii-pair energy falls below a certain threshold EOSV.

The AO coefficients COSV for OSV φ
[i]
ã belonging to the

occupied localized orbital (in the periodic context denoted as
Wannier function (WF)) φi, are given by the expression

COSV
µM, ã[i] =


āA∈[ii]PAO

CPAO
µM, āA


a[ii]

W [ii]
āA,a[ii]Q

ii

a[ii], ã[i]. (5)

Here, greek indices denote AOs, and latin ones with an
overbar—PAOs. The calligraphic indices represent the unit
cells where the corresponding orbitals are centered (orbital
indices without a calligraphic index lie in the reference cell),
and CPAO is the PAO coefficient matrix specifying the PAOs in
the AO basis. We note that both OSVs and pseudocanonical
orbitals always belong to the same cell as the corresponding
WF. The PAO-summation is restricted to the (large, vide supra)
PAO domain [ii] of the diagonal ii-pair, φ[ii]a are the pseudo-
canonical orbitals corresponding to this domain, and Qii

a[ii], ã[i]
is the eigenvector of the amplitude matrix T̄ii in the pseudo-
canonical basis, corresponding to the eigenvalue t̄ ii

ã[i].

B. OSVs and long-range correlation

The OSVs obviously allow for a very efficient truncation
of the virtual space for diagonal pairs (they are the related
natural orbitals). Yet, this does not automatically imply that
they also form an optimal basis for the off-diagonal pairs. In
fact, an accurate description of long-range correlation (van der
Waals dispersion) requires inclusion of diffuse orbitals, which
are not as essential for the description of short-range corre-
lation. Consequently, those OSVs needed to describe long-
range correlation contribute very little to the diagonal pair
energies and thus, are usually dropped in the OSV construction
procedure described above, unless extremely tight truncation
thresholds are used. Yet, such tight thresholds are not really
an option, since (i) a lot of unwanted OSVs are then included
in the calculation, as well, and (ii) OSVs corresponding to
low eigenvalues t̄ ii

ã[i] become very delocalized and oscillatory
due to their mutual orthogonality, implying that the resulting
orbital product densities become increasingly difficult to fit,
which, in turn, necessitates extensively large fit domains and
rich fitting basis sets. This aspect will be further discussed and
illustrated with numerical examples in Sec. III.

On the other hand, it is known that diffuse high angular
momentum AOs are of prime importance for a proper descrip-
tion of long range correlation.1 Therefore, the above mentioned
problem can to a large extent be circumvented by augmenting
the individual sets of OSVs (as obtained with a relatively loose
threshold EOSV) by the few most diffuse PAOs centered on
related atoms. It turns out that a single PAO shell per angular
momentum for each atom within the minimal domain of a
given WF is sufficient to properly describe long range correla-
tion. These minimal domains are determined by the Boughton-
Pulay (BP) procedure83 with a criterion of 0.9. The number of
PAOs in these minimal domains is rather modest; they contain
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either just a single atom (for lone-pair WFs) or two atoms (for
bonding WFs). Furthermore, these minimal domains are well
defined and remain the same along changes in the geometry,
unless the bonding pattern changes entirely. Augmenting the
OSVs by such PAOs hence does not lead to discontinuities
in the potential energy surface. In Sec. III, it is demonstrated
that after inclusion of these extra PAOs, tight OSV truncation
thresholds can be avoided, making the density fitting much
more stable.

C. Electron repulsion integrals with OSVs

In order to adapt the existing PAO-based periodic LMP2
code described in Refs. 25, 63, 84, and 85 to OSVs, the latter
are treated as fictitious PAOs, which belong not to atoms but
rather to WFs that are considered in this context as pseudo-
atoms. Above mentioned additional PAOs are also treated like
OSVs, i.e., assigned to WFs rather than atoms, and the OSV
coefficient matrix defined in Eq. (5) is extended with the re-
spective piece of the PAO coefficient matrix by concatenation.

The OSV orbital pseudo domain [i] for each WF φi con-
sists only of one pseudo-atom, i.e., the WF itself. Proceeding
along this avenue, the adaptation of the PAO routines to OSVs
is straightforward: OSV pair domains [i j] are formed by unify-
ing the two individual orbital pseudo domains [i] and [ j] of the
WFs φi and φ j. As in the PAO case, the functions spanning the
pair-specific virtual space [i j] can be redundant, and amplitude
updates are computed in the same way as for PAOs.

However, some of the computational approaches em-
ployed for PAOs had to be modified to obtain stable results
for OSVs. This mainly concerns the evaluation of electron
repulsion integrals (ERIs) (iãA | jJ b̃B) involving OSVs: for
“strong” or “weak” pairs i jJ , the calculation of the ERIs
proceeds via local density fitting as described in Refs. 84 and
86, while for “distant” pairs the ERIs are approximated by a
multipole expansion.25 The latter implies that for distant pairs
the respective orbital product densities φiφãA and φ jJφb̃B
must not mutually overlap. In order to fulfill this condition, a
conservative value of 8 Å for the distance criterion specifying
distant pairs is employed in our PAO-based periodic LMP2
implementation. This was shown to work well in numerous
applications.1–4,14–17,87 Yet specifying the distant pairs by a
single strict distance criterion for all systems has certain disad-
vantages, which become more important when substituting
PAOs by OSVs. First, for many systems this single distance
criterion is much too strict, which unnecessarily increases the
computational cost. On the other hand, for other systems like
e.g., small band gap semiconductors where the WFs cannot
be so well localized, a distance criterion of 8 Å may still
be good for PAOs, but insufficient for OSVs, which can be
more delocalized than PAOs. To circumvent this problem, we
propose an adaptive approach, which decides on the basis of
the real spread and orientation of the WFs in the pair, if a
multipole approximation is appropriate or not, i.e., if the pair
should belong to the strong/weak pair class, or the distant pair
class.

An estimation of the mutual penetration of the two WF-
OSV product densities of a pair can be reduced to the analysis
of the penetration of the WFs of this pair. To this end, we

adopt an approach recently proposed by Kats:88 the mutual
penetration of two WFs is estimated by the product of the
two atomic populations qi

AA obtained from the two individual
densities of the two WFs, i.e.,

Oi jJ =

AA

�
qi
AA

� ���q
j

A(A⊖J )
��� , (6)

with

qi
AA =


ν∈A


µM

CWF
µM, iSµ,ν(A⊖M)CWF

νA, i. (7)

Here, CWF is the AO coefficient matrix of the WFs, index A
denotes atoms in the reference cell, indexA the lattice vector
of the atom’s actual cell, and the symbolic operation ⊖ the
actual operation on the corresponding lattice vectors. Since
the Mulliken charges in Eq. (7) can be negative, their absolute
values are used in the estimator Oi jJ defined in Eq. (6).

Oi jJ is evaluated for each pair from the initial large pair
list (to define the latter, a sufficiently large distance criterion
of 12 Å is used). If Oi jJ is smaller than a specified threshold,
the pair is assigned to the distant pair class and the multi-
pole approximation is employed for the ERIs. Since the WFs
of such distant pairs are well separated, only ERIs of the
type (i ã[i]| jJ b̃[ j]J ) are calculated. For the other pairs, the
density fitting (DF) procedure is used to compute all 4 types
of integrals

(i ã[i]| jJ b̃[i]), (i ã[i]| jJ b̃[ j]J ),
(i ã[ j]J | jJ b̃[i]), (i ã[ j]J | jJ b̃[ j]J ).

These are computed via robust local density fitting28,84,89,90

�
iãA | jJ b̃B

�
=


PP∈[iãA]DF

diãA
PP

�
PP | jJ b̃B

�

+


PP∈[ jJ b̃B]DF

(iãA |PP) d jJ b̃B
PP

−


PP∈[i ãA]DF
QQ∈[ jJ b̃B]DF

diãA
PP (PP |QQ) d jJ b̃B

QQ , (8)

with P and Q being indices of auxiliary basis functions. The
DF coefficients are determined as

diãA
PP =


QQ∈[iãA]DF

(iãA |QQ) (QQ |PP)−1. (9)

Of course translational symmetry applies to all objects in
Eq. (8) so that all quantities are evaluated with one index being
in the reference cell, e.g.,

(PP |QQ) = (P|Q(Q ⊖ P)) (10)

or
�
PP | jJ b̃B

�
=
�
P(P ⊖ J )| j b̃(B ⊖ J )� . (11)

In the PAO case, the local fit-domains [iãA]DF are constructed
on the basis of the quasi-populations defined in Eq. (2.13) of
Ref. 84 for each pair formed by a WF and an atom. [iāA]DF
thus is identical for each pair of the given WF and any PAO
centered on this atom. For OSVs such a specification turned
out not to be sufficiently stable. OSVs can be less localized
and have a more complicated form than PAOs. In this work
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we employ a simpler technique for the construction of the fit-
domains, which turned out to be quite successful. The OSVs
belonging to a certain WF jJ are localized around this WF.
Then, the product of any of these OSVs and the WF i should
have its maximum somewhere in between the centers of the
WF i and WF jJ . Consequently, a decent fit-domain appro-
priate for all ERIs involving WF i and the OSVs of WF jJ
should comprise all fitting functions centered on the atoms
surrounding the mid-point between the WFs i and jJ within
a certain radius. Test calculations indeed show that such an
approach works well, providing sufficient accuracy with just
a few fit-domain centers (see Sec. III).

D. Fock and overlap matrices in the OSV basis

The next step after constructing the ERIs (either via DF
or multipole approximation) is to solve the LMP2 equations.25

Here again the PAO code is employed with the OSVs treated as
fictitious PAOs centered on pseudo-atoms as described at the
beginning of Sec. II C.

The LMP2 equations involve the external Fock and over-
lap matrices.25 It is convenient to construct these matrices
in the reciprocal space where one benefits from their block-
diagonal structure due to the k-vector symmetry. To this end,
the OSV coefficients are first Fourier transformed to the recip-
rocal space,

COSV
µ, ã[i] (k) =


M

COSV
µM, ã[i] exp (ikRM) . (12)

The reciprocal images

Sµν (k) =

N

Sµ,νN exp (−ikRN) (13)

of the AO overlap SµνN matrices are then transformed into the
OSV basis according to

Sã[i], b̃[ j] (k) =

µν

(
COSV
µ, ã[i] (k)

)†
Sµν (k)COSV

ν, b̃[ j] (k) (14)

and transformed back thereafter to the direct space

Sã[i]I, b̃[ j] =
1
Nk


k

Sã[i], b̃[ j] exp (−ikRI) . (15)

The external Fock matrix in OSV basis Fã[i]I, b̃[ j] is obtained
analogously.

The attentive reader may note a subtlety in the signs of the
exponents in Eqs. (12)–(15). For example, one may wonder
why the direct Fourier transform (FT) of the overlap matrix
S from direct to reciprocal space, Eq. (13) has the same sign
in the exponential as the back FT of its Fourier image from
reciprocal to direct space, Eq. (15). The reason for that is that
the transformation indices differ in these two equations, i.e.,
in Eq. (13) it is the ket index, whereas in Eq. (15) it is the
bra index that is transformed. The FT of the OSV coefficient
matrix COSV, on the other hand, has a different sign in the
exponential than the one of S, even though both are direct FTs.
As before, the transformation indices differ. Furthermore, the
(COSV)† transforms conversely to S, implying another change
of sign in the exponential.43,91 Finally, formation of the adjoint,

i.e., (COSV)† from (COSV), implies complex conjugation and
hence a third change of sign in the exponential.

As already mentioned above, and as will be demonstrated
in Sec. III, the representation of the pair virtual spaces by OSVs
augmented with a few diffuse PAOs is much more compact
than that of PAOs alone. The resulting set of amplitudes hence
is substantially smaller than in the PAO basis, which leads
to substantial speedups and savings in memory when solving
the LMP2 equations. This also helps to avoid input-output
overhead, since the whole amplitude set can usually be kept
in memory, whereas in the PAO case the algorithm often has
to page amplitudes.

On the other hand, the overall external overlap and Fock
matrices are more cumbersome with respect to memory con-
sumption in the OSV case, since the overall number of OSVs
(plus additional diffuse PAOs) by far exceeds the number of
PAOs. Indeed, the number of pseudo-atoms, i.e., WFs, are usu-
ally larger than the number of atoms per cell, while the number
of OSVs per pseudo-atom, which remain after truncation with
a reasonable threshold, plus additional diffuse PAOs, are also
larger than the number of PAOs per atom. Consequently, the
overall external overlap and Fock matrices consume consider-
ably more memory than the PAO counterparts and may consti-
tute a potential memory bottleneck in some calculations.

In order to avoid that, the individual blocks are pre-
screened and the external Fock and overlap matrices kept in
core in sparse form. The external Fock matrix is only involved
in matrix multiplications involving identical pair domains on
column and row side (no pair couplings), which restricts the
required blocks to pairs of pseudo-atoms of the restricted
WF pair list. The overlap matrix, on the other hand, also
couples OSVs corresponding to different pairs, i.e., living in
different pair domains.25 The required blocks, therefore, are
not confined to the restricted WF pair list. In order to reduce
the number of blocks such that also the overlap matrix can be
kept in core, we employ prescreening: the size of the individual
contribution of a certain block of the overlap matrix to the
residual is estimated on the basis of the maximal values of
the zeroth-iteration amplitudes for each pair, the values of
the internal Fock matrix (coupling individual WF pairs), and
the maximum values of the OSV overlap matrix for different
pseudo-atom pairs. By virtue of this prescreening procedure,
the external Fock and overlap matrices in OSV basis can easily
be kept in core, keeping the memory consumption of the OSV
LMP2 equation solver rather low.

III. TEST CALCULATIONS

A. Test systems

For testing the performance of the OSV-based periodic
LMP2 code we considered several systems, which exemplify
common applications of the periodic LMP2 method. Emphasis
was put on the long-range van der Waals correlation, which
is problematic for DFT and thus requires a proper quantum
chemical treatment for accurate description. Moreover, as
already discussed above, the OSVs themselves do not provide
an optimal virtual basis for long-range correlation. Hence, it
is crucial to test the effectiveness of the approach on those
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systems, where long-range correlation provides an essential
contribution to binding. To this end, we considered the follow-
ing crystals: (i) the high (β-) and low temperature (α-) phases
of the GeF2 crystal;6 (ii) the molecular crystal CO2;1,15 and
(iii) adsorption of argon atoms on the MgO (001) surface.14

Additionally, we also included the germanium crystal, which
is an example of a densely packed system with relatively
delocalized WFs. In all the calculations, basis sets of triple-
zeta quality were employed, which for CO2, Ar, and GeF2
were augmented with d- and f-diffuse orbitals. These diffuse
polarization functions are essential for an accurate description
of dispersion.1 For a detailed specification of the computational
parameters, we refer to supplementary material.92

The GeF2 crystal has a complex binding pattern: the cova-
lently bound GeF2 chains are stacked together by intermolec-
ular forces with a large contribution from dispersion.6 The two
studied polymorphs have different symmetries, so the relative
energy between them can show how sensitive the proposed
approach is to the change in the symmetry. Besides that, the
calculation of the lattice energy of GeF2, which can be defined
with reference to an individual GeF2 molecule, demonstrates
the influence of changes in the bonding structure (in the crystal
each Ge atom has 3 bonds with F) on the stability of the
approach. Finally, GeF2 is also a challenging test system in
terms of the number of correlated electrons: together with
the d-electrons of the Ge atoms included in the correlation
treatment, it has 116 “valence” electrons per cell, which in a
periodic LMP2 calculation with a standard pair cut-off distance
of 12 Å are correlated with more than 4000 electrons. For
β-GeF2 that corresponds to 59 136 WF pairs.

B. Comparison of OSV and PAO performance

We start with the general analysis of the performance of
the OSV-based LMP2 method with different truncation toler-
ances on the germanium crystal. The minimal PAO domains
(vide supra) for this crystal consist of two atoms and contain,
within the basis set employed, 94 PAOs. For LMP2 applica-
tions, PAO domains of this size are usually not sufficient. The
next possible PAO domains (still reflecting the symmetry of the
crystal) contain 8 atoms or 376 PAOs, which becomes already
computationally rather demanding. E.g., the size of the doubles
amplitude buffer amounts in this case to 10 GB. The next
possible choices for the domains are 20 and 32 atoms, which
correspond to more than 60 GB of doubles amplitudes, and
cannot be handled in a PAO-based LMP2 calculation without
inclusion of point-group symmetry.25 In Fig. 1, it is shown how
the correlation energy converges w.r. to the PAO domain size
(horizontal dashed lines).

The LMP2 energy, calculated with OSVs constructed
from 8-atom PAO domains, obviously has the lower bound
of the 8-atom PAO LMP2 energy. It closely approaches this
value for an OSV truncation tolerance of EOSV = 10−7. On the
other hand, for tolerancesEOSV < 10−6 it becomes increasingly
difficult to fit the ERIs accurately: forEOSV = 10−7 (and 8-atom
initial PAO domains), the correct energy can be obtained only
with a fit basis designed for a quadruple-zeta (rather than a
triple-zeta) AO basis. Therefore, even though the pair-specific
virtual OSV basis constructed with EOSV = 10−7 is substan-

FIG. 1. The LMP2 correlation energy for the germanium crystal, calculated
with PAOs and OSVs as a function of the OSV truncation tolerance (panel
(a)). Panel (b) shows the corresponding number of virtual orbitals (PAOs,
OSVs, or OSVs plus few PAOs) per WF. The 2-, 8-, 20-, and 32-atoms are
the possible choices for the PAO domains in this high symmetry crystal. In
the OSV calculations, the fit-domains were constructed by the procedure
described in Sec. II C, and comprise either 4 atoms (denoted as “small
fitdom”), 8 atoms for VQZ fit, or 15 atoms otherwise. OSV + PAO denotes the
OSV virtual basis augmented with the most diffuse PAOs from the minimal
domain as described in Sec. II B.

tially smaller than the 8-atom PAO domain, the difficulties with
achieving a stable fit renders such thresholds as impractical
(vide infra). On the other hand, with tolerances of EOSV = 10−4

or EOSV = 10−5 the fit even with very small fit domains is quite
accurate, yet the deviation of the correlation energy from the
8-atom PAO lower bound still is rather large. A substantial
improvement is achieved by addition of diffuse PAOs from
the minimal (in this case 2-atom) domains. Most importantly,
the additional fraction of correlation energy so obtained is to a
large extent long-range van der Waals correlation (vide infra).
At the same time, these extra PAOs become less relevant for
OSV calculations with tighter truncation tolerances.

A further lowering of the correlation energy is achieved
by expansion of the initial PAO domain, say, by constructing
the OSVs on the basis of a 32-atom PAO calculation instead. In
this case, the OSV-LMP2 energy with EOSV = 10−6 tolerance
(plus diffuse PAOs) is even below the 8-atom PAO energy. Yet
fitting in this case becomes more difficult: even a fitting basis
for quadruple zeta AO basis sets in conjunction with 8-atom
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TABLE I. LMP2 correlation contributions to the interaction energy of Ar adsorbed on the MgO (100) surface (at minimum energy separation) and to the lattice
energies of the CO2 and GeF2 crystals. For Ar–MgO, the correlation interaction energy was partitioned into intra-adsorbate (∆Eintra-Ar), intra-slab (∆Eintra-MgO),
and inter-Ar–MgO (∆Einter) components.14,93 The lattice energies of the CO2 and GeF2 crystals were defined with reference to the CO2 (unrelaxed) and GeF2
(relaxed at the MP2 level) molecules,92 respectively. For the α and β phases of GeF2, the LMP2 correlation part of the relative stability is also given. This
quantity was calculated as the difference between either the total correlation energies Ecorr, or the correlation parts of the lattice energies ∆Elat. For GeF2, two
AO basis sets of triple- and augmented-triple-zeta quality were used (see supplementary material92 for the exact specification). In the OSV calculations, the
WF specific virtual spaces were generated according to an EOSV tolerance of 10−4 or 10−5, without or with additional diffuse PAOs (denoted as OSV + PAOs).
The domains in the PAO calculations were defined either automatically by the Boughton-Pulay method with the tolerance TBP= 0.99 or explicitly (“denoted as
extended domains”) by specifying the number of atoms for each WF (see supplementary material92 for the exact specification). The OSVs were generated from
a 25-atom PAO domain. All energies are given in kJ/mol.

OSVs OSVs + PAOs PAOs

EOSV= 10−4 EOSV= 10−5 EOSV= 10−4 EOSV= 10−5 TBP= 0.99 Extended domains

Ar–MgO
∆Einter −6.159 −7.554 −7.533 −8.000 −7.835 −7.921
∆Eintra-MgO +0.967 +1.104 +1.175 +1.140 +1.205 +1.155
∆Eintra-Ar +0.178 +0.187 +0.191 +0.191 +0.211 +0.211

CO2

∆Elat −19.15 −22.88 −24.76 −25.71 −25.72 −26.37

GeF2, VTZ-basis
∆Eα

lat −15.93 −23.79 −25.43 −27.70 −23.79 −29.23
∆E

β
lat −12.48 −20.46 −21.99 −24.22 −18.00 −26.60

∆Eα−∆Eβ −2.61 −3.32 −3.17 −3.43 −2.50 −1.69
∆Eα

lat−∆E
β
lat −3.45 −3.33 −3.43 −3.47 −5.79 −2.63

GeF2, AVTZ-basis
∆Eα

lat −43.49 −46.65
∆E

β
lat −40.64 −42.58

∆Eα
corr−∆E

β
corr −3.33 −5.58

∆Eα
lat−∆E

β
lat −2.85 −4.07

fit domains is not sufficient to obtain a correct LMP2 energy
above the PAO 32-atom domain bound with EOSV = 10−7 OSV
tolerance.

To summarize, OSVs constructed from large PAO do-
mains with tolerance EOSV = 10−5, and augmented by addi-
tional diffuse PAOs belonging to the minimal domains, can be
considered to be the optimal choice with respect to accuracy vs.
efficiency. In case of Ge this yields a correlation energy close
to that of the 8-atom domain PAO calculation.

Similar results are also obtained for energy differences
(interaction and lattice energies), as shown in Table I. The
additional PAOs are indeed essential to capture the long-range
correlation: comparison with PAO calculations using extended
domains shows that the van der Waals dominated interaction
energies of these systems are quite well described by utilizing
an OSV basis generated withEOSV = 10−5 and augmented with
diffuse PAOs as described above. On the other hand, without
diffuse PAOs the OSV results are rather poor. Yet in GeF2, even
with inclusion of diffuse PAOs the EOSV = 10−5 OSV calcu-
lations underestimate the lattice energy by about 2-3 kJ/mol,
compared to the extended domain PAO calculation (which, on
the other hand, is considerably more expensive, vide infra).
This discrepancy can be considered as acceptable, especially
taking into account the size of the total lattice energy, of which
the HF contribution alone amounts to about −40 kJ/mol.

The relative stability between the α and β phases of GeF2
is a much more delicate quantity than the lattice energy, since
it amounts only to a few kJ/mol. And here the OSV based
calculations turn out to be much more stable than those with

PAOs. As is evident from Table I, the OSV results are quite
insensitive to the domain or basis set size. Furthermore, virtu-
ally the same result is achieved, if the relative energy is
evaluated from the total energies [contaminated by basis set
superposition error (BSSE)] or the lattice energies, where the
BSSE is counterpoise corrected. At the same time, the devia-
tions among the different PAO results are substantially larger.
Whether OSVs are generally superior to PAOs for computing
relative stabilities remains, however, an open question and
requires further investigation.

Finally, we note that the change of the bonding structure
from the crystal (each Ge atom has three bonds) to the molecule
(Ge atom has two bonds) leads to different minimal domains
(with the default minimal domain BP tolerance of 0.9), and
thus to different numbers of additional PAOs added to the
OSVs for certain pairs in crystal and molecule, respectively.
This could potentially be a drawback of the OSV plus diffuse
PAOs scheme, which again becomes dependent on the choice
of the domains. However, our calculations show that in GeF2
the mismatch between the virtual spaces has only a minor effect
on the lattice energy, which changes only by −0.3 kJ/mol,
if the minimal domains in the crystal are adjusted to those
in the monomer. Yet this discrepancy has no effect on the
smoothness of the potential energy surface of the crystal, since
it originates from a domain mismatch between crystal and
isolated monomer, rather than individual crystal geometries.

Another important aspect of the OSV scheme is the size
of the initial PAO domains needed for the construction of the
OSVs. As already discussed above in the context of the Ge

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.199.49.91 On: Mon, 29 Jun 2015 14:22:07



102805-8 Usvyat, Maschio, and Schütz J. Chem. Phys. 143, 102805 (2015)

FIG. 2. The deviations of various LMP2 correlation energy differences for
different choices of the initial PAO domain from the reference calculations
with 35-atom initial PAO domain (or larger if dictated by symmetry92). The
following quantities were considered: (i) the correlation parts of the lattice
energies of the CO2 and GeF2 crystals (∆Elat), (ii) the intra-slab (∆Eintra-MgO),
intra-adsorbate (∆Eintra-MgO), and inter-Ar–MgO (∆Einter) components of the
correlation contribution to the adsorption energy of Ar on the MgO (100)
surface, and (iii) the correlation part of the relative stability calculated either
as the difference of the lattice energies ∆(∆Elat) or the total correlation
energies ∆Ecorr.

crystal, expansion of the initial PAO domains leads to a lower-
ing of the total correlation energy. Besides that, large PAO
domains are essential for smearing out the energy fluctuations
due to a mismatch in the virtual space for different points on the
potential surface or in the reference structures, when evaluating
energy differences. The PAO correlation energy with large
domains indeed approaches the canonical result (see Ref. 65
or the sequence of the PAO LMP2 energies in Fig. 1). There-
fore, the larger the domains, the less harmful the mismatch in
the domain sizes for the smoothness of the LMP2 potential
surface.

Expansion of the PAO domains for the OSV generation is
obviously much easier than for pure PAO-based LMP2 calcu-
lations (since in the former case only diagonal pairs are treated
with these large PAO domains), but not entirely effortless.
Therefore, it is important to find an optimal range for the
domain sizes. Fig. 2 shows the deviations of various correlation
energy differences, i.e., the correlation part of (i) the adsorption
energy (Ar–MgO), (ii) the lattice energy (CO2 and GeF2), and
(iii) the relative stability (GeF2) from the related reference
values. The related reference values are OSV results with large
initial PAO domains of 35 atoms or larger, as dictated by the
crystalline structure.92

For CO2 or Ar–MgO, the initial PAO domain size is not
so critical, but the relative stability of the GeF2 phases is very
sensitive to it, especially that computed from the total corre-
lation energies. This correlates with the strong dependence of
this quantity on the domain size in the pure PAO calculations
as reported in Table I. In any case, for domains larger than
25 atoms, all the considered quantities are converged within
±0.2 kJ/mol.

To analyze the efficiency of the new approach in compar-
ison to the PAO-LMP2 method, we consider GeF2 in the VTZ
basis (cf. Table II). For this system, solving of the LMP2
equations constitutes the computational bottleneck of the PAO
calculation: this step alone takes more than half of the overall
time. Furthermore, the memory requirements become quite
large: already with small domains (BP threshold of 0.99),
which according to the results of Table I are by far not yet
sufficient for an accurate description, the size of the amplitude
buffer is nearly 5 GB. For extended domains it increases to
27 GB. In the OSV case, on the other hand, the LMP2 equations
become computationally inexpensive, with relatively modest
memory requirements due to the compactness of the OSV-
based pair specific virtual spaces; the amplitudes require just
slightly more than 3 GB. Furthermore, the overlap and Fock
matrices, which become generally quite large in the OSV case,
require after prescreening (cf. Sec. II D) not more than 1 GB
each. The dominant step in the OSV calculation is clearly
the integral evaluation, but even this step is faster than in the
PAO case. That makes the OSV overall less expensive than
the PAO calculations, despite the overhead due to the initial
OSV generation, for which an additional large-domain PAO
calculation for diagonal pairs has to be carried out.

C. Accuracy of ERIs

Next we investigate accuracy and stability of the ERI
evaluation by DF or multipole expansion. The latter technique
is very efficient, but applicable only to ERIs which involve
non-penetrating densities. In the PAO-based periodic LMP2
method, those pairs treated by the multipole approximation (the
so-called distant pairs) are determined according to a distance
criterion Rdist related to the spacing between the two WFs.
However, as seen in Fig. 3(a), a distance criterion beyond which
the multipole approximation can safely be invoked, is quite
system dependent. For example, for the semiconductor Ge, Rdist
should be at least set to 11 Å, while for the molecular CO2

TABLE II. Elapsed computational times in hours for OSV- and PAO-based LMP2 calculations (and main
individual steps thereof) for α-GeF2 with VTZ orbital basis, using a serial compilation of the code linked with
explicitly parallelized BLAS libraries on an 8-core AMD Opteron 6180 SE node. The computational parameters
are given in the supplementary material.92

PAOs OSVs + PAOs

TBP= 0.99 Extended domains EOSV= 10−5

OSV or PAO generation 0.3 0.3 7.1
Multipolar integrals 0.5 1.3 0.5
DF integrals 14.5 19.9 11.0
LMP2 equations 24.0 46.6 4.5
Total 39.3 68.1 23.1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.199.49.91 On: Mon, 29 Jun 2015 14:22:07



102805-9 Usvyat, Maschio, and Schütz J. Chem. Phys. 143, 102805 (2015)

FIG. 3. The OSV LMP2 correlation energies for the germanium and CO2
crystals as a function of the distant-pair tolerance. In panel (a), the distance
criterion is used; in panel (b) the threshold for the new Oi jJ estimate
[Eq. (6)] denoted as the WF tolerance. The amounts of pairs treated by density
fitting (NDF), and by the multipole approximation (NMult) (i.e., the number
of distant pairs) are also given for the relevant values of the tolerances. In
panel (a), the vertical lines indicate the distant pair cutoffs, providing the same
number of distant pairs as in the new scheme (panel (b)) with the tolerance
3×10−6.

crystal an Rdist of 5 Å is already sufficient. Thus, if Rdist = 11 Å
would be specified as the general default value (as dictated
by the case of Ge), it would be much too large for the CO2
case and similar systems, making calculations on such systems
unnecessarily costly. Besides that, it is very likely that an Rdist
value of 11 Å is still too small for a system with even narrower
band gap than Ge. Ineffectiveness of the distance criterion to
define the distant-pair range has also recently been noted in the
context of new local correlation approaches for molecules.70,75

The new distant pair criterion introduced in Sec. II C is
much more adequate in this respect. It depends on the actual
spread and orientation of the WFs and thus adapts to the system
under study. This is illustrated in Fig. 3(b), where the same
two systems CO2 and Ge are subject to the new treatment. The
error in the correlation energy drops to the 10−5 hartree region
at approximately the same value of the threshold for the Oi jJ
quantity defined in Eq. (6). The Oi jJ quantity turns out to be
a much better criterion for specifying distant pairs than Rdist,
substantially increasing the amount of ERIs, which can safely
be treated by the multipole expansion.

For the density fitting scheme itself, we also have intro-
duced a new procedure for the generation of the local fit
domain, as is explained in Sec. II C. Table III compiles the
total correlation energies and energy differences for all the test
systems. Despite its simplicity the new scheme turns out to be
very efficient. Already with 6-atom fit-domains the fitting error

becomes less than 10−4 hartree per atom for the total energy and
falls below 0.1 kJ/mol for energy differences. The largest error
in the total correlation energy is observed for GeF2, most likely
due to the d-electrons of germanium, which were included in
the correlation treatment of this system. However, even in this
case the error is below 10−4 hartree per atom, and, even more
importantly, it virtually vanishes for the energy differences.

The possibility to employ such small fit-domains is impor-
tant for reasons of efficiency. Otherwise, due to the unfavorable
cubic scaling (with the number of fitting functions) of the linear
equation solver, calculation of the fitting coefficients in Eq. (9)
may become the computational bottleneck. It has already been
mentioned above that the necessary size of the fit domains for
a reasonable fit of the ERIs sensitively depends on the OSV
threshold EOSV. Tightening this threshold implies consider-
ably larger fit domains. For that reason, the use of tight EOSV
becomes computationally expensive and thus inconvenient in
applications. As already stated above, we recommend a EOSV
value of 10−5 and augmentation of the OSV basis by diffuse
PAOs.

D. Smoothness of potential energy surfaces

Finally, we test how well a black box OSV-LMP2 approach
works for potential surfaces in comparison to PAO-LMP2.
To this end we calculated the potential energy curve of the
Ar–MgO interaction along the perpendicular distance between
the argon monolayer and the MgO slab. The inter-argon separa-
tion within the chosen 2 × 2 monolayer is such that the Ar–Ar
interaction is small and not relevant in the present context.14

The Ar–MgO interaction potential is very shallow, and
even small discontinuities become apparent at this scale. More-
over, since van der Waals dispersion is the dominant attractive
force (the contribution due to induction is much smaller), this
test shows if van der Waals dispersion indeed is accurately
captured by the OSV-LMP2 method with the default set of
the parameters specified in accordance with the results of
above tests, i.e., with the virtual space spanned by OSVs with
truncation tolerance EOSV = 10−5 plus diffuse PAOs, 25 atoms
in the initial PAO domain, 8 atoms in the fit domain, and
distant pair tolerance set to 10−6. Fig. 4 displays the OSV-
LMP2 potential energy curve and, for reference, two curves
calculated with the PAO-LMP2 approach. The first one was
obtained with extended and individually specified domains (1
atom for WFs on Ar, and 6 or 7 atoms for WFs on MgO,
depending if the WF is located on the surface or in the internal
layer, respectively).92 Such a specification of the virtual space
delivers accurate and smooth potential energy surfaces and
was actually employed in a previous application, i.e., the study
of geometrical frustration of an Ar monolayer on the MgO
surface.14 Yet, it is not a black-box approach since an explicit
specification of individual orbital domains is necessary, rather
than just providing a threshold. The second PAO curve was
calculated with “black-box” PAO domains obtained from the
BP procedure with a criterion of 0.99. In Fig. 4, in addition to
the total interaction energies, also the intra-MgO, intra-Ar, and
inter-Ar–MgO correlation components thereof are plotted.

Evidently, the “black box” PAO approach is not safe
due to a possible mismatch in the corresponding pair-specific
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TABLE III. The LMP2 total correlation energies (in hartree) and correlation contributions to the interaction energies (in kJ/mol), calculated with OSVs
(EOSV= 10−5 plus diffuse PAOs) with different fit-domains and fitting basis sets. The corresponding computational times TDF-coef. for solving the density fitting
equations [Eq. (9)] are also given (in hours, and as the fraction of the overall computational time TLMP2, for Ge and CO2 calculations only). The specifications
of the fitting basis set can be found in the supplementary material.92

Fit basis VTZ V5Z

No. of atoms in fit domain 4 6 8 10 15 20 8

Ge
Ecorr, hartree −0.227 878 −0.227 645 3 −0.227 644 7 −0.227 607 3 −0.227 606 0 −0.227 566 8 −0.227 606 8
TDF-coef., h 0.5 1.1 1.7 6.5 9.9 16.9 5.5
TDF-coef./TLMP2, % 9.0 19.4 27.1 55.8 65.1 76.0 39.1

CO2

Ecorr, hartree −2.486 963 −2.486 953 −2.487 055 −2.486 922 −2.486 911 −2.486 875 −2.486 867
∆Elat, kJ/mol −25.705 0 −25.698 9 −25.710 9 −25.697 1 −25.698 1 −25.702 6 −25.710 0
TDF-coef., h 0.2 0.4 0.9 2.3 5.2 12.7 5.5
TDF-coef./TLMP2, % 1.6 3.0 6.1 13.6 26.2 45.5 13.8

Ar–MgO
Ecorr, hartree −1.932 688 7 −1.932 637 0 −1.932 705 3 −1.932 703 1 −1.932 702 6 −1.932 701 7 −1.932 748 0
∆Einter, kJ/mol −7.650 −7.887 −7.979 −7.980 −8.000 −8.002 −8.002
∆Eintra-MgO, kJ/mol 1.139 6 1.140 5 1.139 8 1.139 8 1.139 8 1.139 5 1.135 0
∆Eintra-Ar, kJ/mol 0.1908 0.1908 0.190 8 0.190 8 0.190 8 0.190 8 0.190 5

GeF2, VTZ-basis
Eα

corr, hartree −2.744 162 −2.744 191 −2.744 200 −2.744 241 −2.744 285 −2.744 295 −2.743 453
∆Eα

lat −18.186 1 −18.199 0 −18.196 8 −18.198 3 −18.196 1 −18.194 7 −18.151 6
∆Eα

corr−∆E
β
corr −3.543 1 −3.450 6 −3.427 2 −3.449 7 −3.453 6 −3.450 7 −3.415 6

virtual spaces of the full system vs. slab or monolayer alone.
Moreover, if not kept fixed for different Ar–MgO distances
(which is not done in these calculations), there is also a possible
mismatch in the virtual spaces from point to point along
the curve. As can be seen, this mismatch mainly affects the
intra-slab correlation component of the interaction energy and
causes non-physical steps on the potential surface, quite large
at the scale of the interaction of this system. Obviously, this
problem is absent if the domains are individually defined to be
the same in all the calculations.

FIG. 4. The HF + LMP2 (OSV or PAO) adsorption energy (diamonds) for
Ar on the MgO (100) surface (on top of the Mg atom),14,92 as a function
of the Ar–Mg distance. In the PAO LMP2 case, the PAO domains were
determined by the BP procedure with the tolerance of 0.99 (black dotted
lines), or defined explicitly to consist of 6 (or 7 for the internal layer) atoms
for the oxygen WFs and 1 atom for the argon WFs (red dashed lines). The
OSV curves (blue solid lines) were obtained with EOSV= 10−5 plus diffuse
PAOs from the minimal domains. The intra-slab (triangles), intra-adsorbate
(circles), and inter-slab-adsorbate (squares) components of the correlation
part of the interaction energy are also shown.

The OSV approach, on the other hand, delivers interaction
energies very close to those obtained with the individual
explicit specification of the PAO orbital domains. Indeed, the
most problematic intra-slab component in Fig. 4 is in the
OSV case virtually indistinguishable from that with explicit
PAO domain specification, while it is full of kinks when the
automatic BP PAO domain approach is employed instead.
At the same time, the OSV approach remains a black-box
method without the requirement for a tedious specification
of individual orbital domains. We note that there are still
small discontinuities in the OSV-LMP2 curve caused by slight
mismatch of corresponding virtual spaces (this appears to be
unavoidable in blind truncation procedures). However, these
discontinuities are much smaller than those of the PAO-LMP2
calculations with BP domains and hardly visible anymore at
the scale of even this small interaction energy.

IV. CONCLUSIONS

A new periodic local MP2 method has been presented. It
employs orbital specific virtuals to represent the pair specific
virtual spaces. OSVs are the eigenvectors of the doubles ampli-
tude matrices of diagonal Wannier function pairs.

The OSV-LMP2 method has a number of advantages
over our previous PAO-based implementation. First, virtual
space truncation is controlled by a single parameter. This turns
the OSV-LMP2 method into a black-box approach, which,
in contrast to its PAO based precursor, no longer requires
a tedious input for PAO domain specification. At the same
time, PAO calculations employing the automatic Boughton-
Pulay scheme can be prone to large discontinuities in potential
surfaces, which originate from a mismatch of the virtual spaces
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from one point to the other. This problem virtually vanishes
when OSVs are used. Second, due to the higher compactness of
the virtual space OSV-LMP2 is faster (especially for the LMP2
equation solver), and has a considerably smaller memory
footprint than its PAO based predecessor. This is also very
important for efficient parallelization, which is simpler if the
amplitude buffer can be replicated.27

We note that OSVs also have certain deficiencies. For
example, it is much more difficult to incorporate point group
symmetry in the OSV treatment, which, in case of PAOs can
lead to considerable savings for highly symmetric (e.g., cubic)
crystals. Next, since the OSVs are natural orbitals for diagonal
pairs, the truncated OSV basis has a bias towards short-range
correlation. Van der Waals long-range correlation, which is
often essential in solids,2 is less well described by OSVs.
We have demonstrated that this problem can be circumvented
by augmenting the OSV-based virtual space associated with
each Wannier function by the few most diffuse PAOs of the
corresponding minimal domain.
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