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Abstract Detection and removal of fences from digi-
tal images becomes essential when an important part of
the scene turns to be occluded by such unwanted struc-
tures. Image de-fencing is challenging because manually
marking fence boundaries is tedious and time consum-
ing. The fence is a distributed object and may cover a
significant portion of the scene. In this paper a novel im-
age de-fencing algorithm that e↵ectively detects and re-
moves fences with minimal user input is presented. The
user is only requested to mark few fence pixels; then,
color models are estimated and used to train Bayes
classifier to segment the fence and the background. Fi-
nally, the fence mask is refined exploiting connected
component analysis and morphological operators. To
restore the occluded region a hybrid inpainting algo-
rithm is proposed that integrates exemplar-based tech-
nique with a pyramid based interpolation approach. In
contrast to previous solutions which work only for reg-
ular pattern fences, the proposed technique is able to
remove both regular and irregular fences. A large num-
ber of experiments are carried out on a wide variety of
images containing di↵erent types of fences demonstrat-
ing the e↵ectiveness of the proposed approach. The pro-
posed approach is also compared with state-of-the-art
image de-fencing and inpainting techniques and showed
convincing results.
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1 Introduction

Image de-fencing is an important problem in recreational
photography where seamless removal of fences from the
photographs is required due to aesthetic reasons. The
removal should be undetectable to the general view-
ers. Many times, a photographer captures scenes that
are behind fences such as wild animals in cages, natu-
ral scenes behind barbed fences, etc. These fences may
spread over the entire image and their manual removal
can be very tedious, time consuming and generally re-
quires special artistic skills. Therefore the semi-automatic
and user friendly image de-fencing proposed in this pa-
per turns out to be an important tool in computational
photography.

Image de-fencing is challenging because automatic
fence detection is a di�cult task. Fences can be of dif-
ferent shapes, texture, and color. Some fences have reg-
ular repeating patterns while others are completely ir-
regular. Moreover, the same fence may also have vari-
ations in color, texture and shape. To the best of our
knowledge, currently no automatic fence detection tech-
nique exits that may work for both regular and irreg-
ular fences. Secondly, a good restoration algorithm is
required that seamlessly replaces the fence pixels with
an estimate of the occluded background pixels. Image
inpainting techniques may serve the purpose if the fence
region is small and coherent. In presence of large fences,
the existing image inpainting techniques may not get a
good estimate of the occluded pixels.

We propose a semi-automatic fence detection algo-
rithm that can detect a wide range of fences of vary-
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ing shapes, textures and colors with significantly higher
accuracy than the existing algorithms. The proposed
algorithm can detect both regular and irregular pat-
tern fences. Multiple fences present in the same image
can also be removed in multiple iterations. The pro-
posed fence detection technique computes the statisti-
cal characteristics of the fence pixels marked by a user
and use them to extract the fence. To improve fence
segmentation accuracy, we use context aware morpho-
logical techniques. To restore the fence region, we pro-
pose a hybrid inpainting technique by blending patch
based inpainting [9] with image pyramids based inpaint-
ing [11] to produce improved visual results. The results
of the proposed image de-fencing technique are com-
pared with the existing state-of-the art techniques on
a wide variety of images containing various types of
fences. Objective metrics are also provided to measure
the quality of the restored images. Our conclusion is
that the proposed technique significantly outperforms
the existing fence detection and restoration techniques.

2 Related Work

The term ‘Image De-fencing’ is due to Liu et al. [17].
Their fence detection approach is based on the obser-
vation that fences often have a regular or near regular
repeating patterns (lattice) such as diamonds, rectan-
gles, or squares. Points of interest defining one lattice
are taken as user input and the most regular lattice
is searched in the image. By using the similar struc-
tures in the image, a near regular fence is detected.
From all the lattices, average lattice shape is computed
and compared with each lattice to compute the stan-
dard deviation which is used to separate the foreground
from the background and a fence mask is generated.
The fence region is then inpainted using texture based
inpainting proposed by Criminisi et al. [9]. The tech-
nique proposed in [17] exhibits good results when the
fence is quasi-regular, while it exhibits severe detec-
tion errors on irregular fences. The authors show that
their detection algorithm may fail [17] even on some
near regular pattern fence. Moreover, the fence removal
procedure does not produce plausible results especially
when the region covered by the fence is relatively large.
The image de-fencing technique proposed in [24] im-
proved the automatic fence detection and also proposed
to use mutiple views of the scene to inpaint occluded
regions. However, the single view images are inpainted
using [9]. Similar algorithms have been proposed to de-
tect the near-regular patterns with user intervention
[14–16, 18, 19, 29]. In contrast to such research e↵orts,
our proposed algorithm can e�ciently detect both reg-
ular and irregular fences. Furthermore, the proposed

inpainting algorithm can better estimate the occluded
content when the fence region is relatively large.

The current image de-fencing algorithms rely on the
already existing image inpainting techniques to restore
the fence region. Image inpainting refers to the tech-
niques used for restoration of damage regions in images
or for removal of the unwanted objects from images
such as time stamps, signatures, scratches etc. [3,25,27]
The inpainting technique proposed in [8, 9] is consid-
ered to be a seminal work that introduced the so called
exemplar-based or patch-based inpainting. It used ex-
emplar based texture synthesis to replicate the texture
and structure in the occluded region and is capable to
remove larger objects from images. The algorithm pro-
posed in [20] improves the exemplar inpainting by ex-
ploiting the depth map of the color image. Depth map is
used to order the object for inpainting. Image inpaint-
ing [21] used single Gaussian di↵usion kernel to restore
the damaged region. It is observed that the cracks or
damaged regions in images may not have same width
across the crack. In such cases using a single di↵usion
kernel as proposed in [21] may not produce good re-
sults. A simple but fast image inpainting technique was
proposed in [10] that automatically uses weighted ker-
nels of variable size to restore the damaged regions with
changing width. However, this technique is also limited
to recover small regions. An algorithm for removing
stains from images is proposed in [32] which restores
the structure and texture in the image. Several other
techniques [2, 4–6, 22, 30, 31] have also been proposed
and most existing techniques produce good results for
small occluded regions while few improved inpainting
algorithms such as [1, 7] show better results in case of
large coherent regions. Fences in images usually span
over the entire image and cover a large portion of the
image which makes it a di�cult problem for the ex-
isting inpainting techniques. The proposed inpainting
algorithm recovers the occlusions in hierarchical way
and is able to inpaint large regions spanned over the
entire image better than the existing algorithms.

The rest of the paper is organized as follows: the pro-
posed fence detection technique is described in Section
3. The fence refinement procedure and fence restora-
tion is presented in Sections 4 and 5. The experimental
results and objective quality assessment is provided in
Section 6. Our conclusions are discussed in Section 7.

3 The Proposed Fence Detection Algorithm

The proposed de-fencing algorithm works in four steps,
starting with the estimation of the fence covariance ma-
trix. In the second step, the fence is segmented using
the fence color model. In the third step the fence mask
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is refined by eliminating the false positives and false
negatives and finally the fence region is recovered by a
novel hybrid inpainting algorithm.

3.1 Fence Pixels Classification

It can be noted that most fences share certain statis-
tical characteristics which can be used to identify the
fence pixels in the image. One of such characteristic is
the fence color. Indeed, the range of the fence color may
be very limited; therefore, the user can select a small
number of fence pixels (10 ⇡ 15) which are then used
for fence modeling (other methods of selection can be
used to specify fence pixels sample like drawing a line
on the fence or coloring the fence with paint brush). To
minimize the selection error and for increasing the data
sample for better modeling accuracy, the k-neighbors
of any manually selected pixel are considered as fence
samples. The fence samples are then used to estimate
the mean and the covariance matrix and hence, a Gaus-
sian distribution model of the fence is constructed. We
chose Gaussian distribution as it is simple to handle
analytically and easy to estimate. Moreover, it is ob-
served that the fence color dispersion is usually very
limited making the usage of Gaussian distribution for
its modeling both simple and very e↵ective. Using such
distribution model, fence pixels in the image are iden-
tified.

Let I be an image of size M ⇥ N and I(x1, y1),
I(x2, y2),. . . , I(xn, yn) be the n fence pixels selected by
the user. The color components of these n pixels and
their k neighbors are represented as a n(k+1)⇥3 matrix
P. Where the columns of P contains red, green and blue
components, respectively of the (k + 1)n fence sample
pixels. Given the sample pixels in P, the mean µ and
covariance ⌃ of each color component can be computed
as shown in equations 1 and 2.
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where �(↵,�) is given by:

�(↵,�) =
1

n(k+1)

n(k+1)P
i=1

(P(i,↵)� µ↵)(P(i,�)� µ�))

where ↵,� 2 {1, 2, 3} and µ1 = µr, µ2 = µg and µ3 =
µb.

Based on µ and⌃, we build two classification stages.
A first rough classification is based on the well-known
Mahalanobis distance. This classification may lack in
accuracy if the user input is not precise. Then, the
classification is refined using Bayes detection of fence
pixels.

Mahalanobis distance dt,f of each test pixel xt =
[rt, gt, bt]> is defined as:

dt,f = (x� µ)>(⌃)�1(x� µ) (3)

Each pixel is then classified as fence if its distance is less
than a predefined threshold ⌧ , non-fence pixel other-
wise. Then, the classification is refined applying Bayes’
theorem to compute posterior probability for the fence
and the non-fence classes and pixels are assigned to the
class with higher probability. Posterior probability is
defined as the Bayesian distance from the class mean
and covariance matrix, i.e. the distance according to
the Gaussian distribution model of the class.

Let pf and pnf be the prior probabilities that a pixel
is and is not part of the fence. For a given pixel x, the
posterior probability of fence class is given as:

P (µf ,⌃f |x) =
P (x|µf ,⌃f)P (µf ,⌃f )

P (x)
(4)

where µf , ⌃f are mean and covariance for fence class
and P (x|µf ,⌃f ) is the likelihood that x belongs to
fence class represented by a Gaussian distribution model
(µf ,⌃f ) and is calculated as:

P (x|µf ,⌃f) =
1

(2⇡)
3
2

p
|⌃f |

e

� 1
2 (x�µ)>(⌃)�1(x�µ) (5)

where P (µf ,⌃f ) is the fence distribution model and is
given by:

P (µf ,⌃f ) = pf

The P (x) is the normalizing factor and may be com-
puted as:

P (x) = P (x|µf ,⌃f )pf + P (x|µnf ,⌃nf )pnf (6)

where (µnf ,⌃nf ) is non-fence class distribution model.
The Equation 4 can now be written as:

P (µf ,⌃f |x) =
e

� 1
2 (x�µ)>(⌃f )

�1(x�µ)
pf

(2⇡)
3
2

p
|⌃f |P (x)

(7)

Analogously, the posterior of a pixel for non-fence class
may be computed by:

P (µnf ,⌃nf |x) =
e

� 1
2 (x�µ)>(⌃nf )

�1(x�µ)
pnf

(2⇡)
3
2

p
|⌃nf |P (x)

(8)
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(a) (b)

Fig. 1: Classification error. (a) an image with fence, (b)
fence detected.

For a particular pixel x, P (x) is same for P (µf ,⌃f |x))
and P (µnf ,⌃nf |x), and (2⇡)

3
2 is a constant, so these

two terms can be ignored to reduce the computational
cost. Hence, Eq. 7 and 8 can be re-written as:

P

0(µf ,⌃f |x) =
1p
|⌃f |

e

� 1
2 (x�µ)>⌃�1

f (x�µ)
pf (9)

P

0(µnf ,⌃nf |x) =
1p
|⌃nf |

e

� 1
2 (x�µ)>⌃�1

nf (x�µ)
pnf (10)

For each pixel x in the image, posterior probabilities
of fence and non-fence classes are computed for each
x using Equations 9 and 10, respectively; finally, x is
assigned to the class with the highest posterior proba-
bility:

x 2 FC if P

0(µf ,⌃f |x) � P

0(µnf ,⌃nf |x)
x 2 NFC otherwise

where FC is fence class and NFC is non-fence class.
The classified pixels are used to create the fence mask
⌦, of size M ⇥N :

⌦(i, j) =

⇢
1 if I(i, j) is fence pixel
0 otherwise

Bayes’ classification generally yields reasonable fence
detection; nonetheless some pixels are still misclassified.
In particular, we observed that pixels around the outer
edges of the fence are misclassified. Fig. 1 shows a fence
image and its respective fence mask. During the clas-
sification, some fence pixels are misclassified and some
non-fence pixels are marked as fence pixels due to color
similarity. Such classification errors can be eliminated
or at least mitigated as discussed in the following sec-
tion.

4 Fence Mask Refinement

The fence detection mechanism described above may
yield both false positives, i.e. non-fence pixels marked as
fence pixels and false negatives, i.e. fence pixels marked
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Fig. 2: (a) Size of components found in mask 1b,
(b) fence mask after elimination of False Positives,
(c) fence mask after dilation.

as non-fence pixels. Such misclassification generally oc-
curs due to color variations in the fence or color similar-
ity of non-fence pixels with the fence pixels. For accu-
rate fence detection, false positives and false negatives
can be reduced using morphological tools as described
in the following.

False positives (FP) usually appear as small blobs
in the non-fence regions. To eliminate the FP pixels, we
divide the fence mask into the corresponding connected
components. The connected components of significant
size represent the fence whereas the small ones are usu-
ally FP pixel caused by noise or color similarity. Given
the fence mask ⌦, let {C1, C2, C3, · · ·Cn} be its n con-
nected components. The size of each component |Ci| is
determined and those with small size can be dropped.
This goal is achieved automatically, by sorting the con-
nected component according to their size in descending
order; then the largest ⇢ components are selected as
parts of the fence. The number of selected components
⇢ is selected automatically such that:

⇢X

i=1

|Ci|  ↵

nX

j=1

|Cj | (11)

where ↵ is a parameter specifying the expected frac-
tion of correctly classified pixels. In our experiments it
turned out that setting ↵ = 0.95 yields good results.
Fig. 2a shows the sizes of the 447 connected compo-
nents found in image 1b. It can be observed that there
are only few components with large size whereas most
of them contains less than 15 pixels and represent FP
pixels. Fig. 2b shows the fence mask after refinement.

False Negatives (FN) usually appear around the fence
boundaries. These FP pixels are those characterized by
a color more similar to image background than the fence
model. Such FN pixels may also cause discontinuities in
the fence mask. Such FN pixels and broken segments of
the fence can be included in the fence mask by using the
dilation morphological operator [26]. Dilation expands
the fence regions and hence reconnects its disconnected
segments. Fig. 2c shows the fence mask obtained after
dilation with a typical structuring element.
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5 Restoration of Fence Occluded Regions

The restoration of the fence region is a challenging task
because the fence may extend along the entire image
and may occlude a significant portion of the image,
e.g. up to 40% in some cases. Recovery of such a large
area is not possible through traditional inpainting al-
gorithms which aim at concealing small and coherent
regions. In this paper, a hybrid inpainting algorithm
is proposed - hybrid because it combines interpolation
based and exemplar based inpainting techniques. This
algorithm is an extended version of the pyramid inter-
polation [11] where we added an additional exemplar-
based inpainting functionality [9] to restore large re-
gions. The method [11] constructs a pyramid of the
image until all the occluded pixels are eliminated and
then the recovery procedure starts from the top pyra-
mid level. This technique, like most of other inpainting
methods, can restore only small regions and may pro-
duce blurring when restoring large patches. Exemplar
based inpainting [9], on the contrary, can restore larger
areas by flowing the background texture in the missing
region. Nonetheless, the area occluded by fences can be
so large that even patch based methods may fail. For
this reasons here we propose a novel hybrid method.

The proposed inpainting algorithm works in two
steps. First, the image is successively downsampled so
as to reduce the area covered by the fence region; then,
the fence holes are inpainted at low resolution using
patch based inpainting. In the second step, the inpainted
region is upsampled and copied in the corresponding
full resolution image. The two steps are described in
detail in the following two subsections.

5.1 Image Down-sampling and Texture Recovery

Both the image I(m,n) and the fence mask ⌦(m,n)
are successively downsampled yielding the set of images
{I0, I1, · · · , IS}, {⌦0, ⌦1, · · ·⌦S}, where Ik, ⌦k are the
result of k downsampling by a factor 2 (on both rows
and columns). The maximum downsampling level S is
selected so as to reduce image sizes below a predefined
threshold �. Simple downsampling without anti-aliasing
filter can be used. Indeed, in this case it is not critical to
maintain high visual quality of the downsampled image
as whole. On the contrary, we want to reduce the area
covered by the fence pixels while retaining the local
information of the pixels in the fence neighborhood.

Thus, the width of the fence in ⌦S is considerably
reduced and can be recovered more easily. We propose
to recover the fence holes left in IS using the Crimin-
isi patch based method. It is worth pointing out that,
working with a downsampled version of the image, also

(a) (b) (c) (d)

Fig. 3: (a) An image with fence mask (in black color),
(b)–(d) are its three down-sampled images.

dramatically reduce the computational cost required by
inpainting.

5.2 Upsampling of the Inpainted Region

After inpainting, the downsampled image needs to be
upsampled back to the original resolution. Let Îk repre-
sent the de-fenced image recovered at resolution level k,
i.e. ÎS is used to denote the inpainted image obtained at
the lowest resolution. Any image Îk recovered at level k
can be upsampled, e.g. using a Gaussian kernel define
by:

e
Ik�1(x, y) =

i=2X

i=�2

j=2X

j=�2

w(i, j)Îk(2x+ i, 2y + j) (12)

where w = hh

> with h = 1
16 [1 4 6 4 1] is a Gaussian

weighting function and e
Ik�1 is an upsampled version

of Îk. Then, only the upsampled fence pixels are copied
from e

Ik�1 to the corresponding recovered image at level
k � 1, whereas the non fence pixels are left untouched,
as follows:

Îk�1(x, y) =

⇢ e
Ik�1(x, y) if ⌦k�1(x, y) = 1;
Ik�1(x, y) if ⌦k�1(x, y) = 0.

This process is iterated up to computation of Î0 in
which the fence region is completely recovered. Fig. 3
shows an example of downsampling process with S = 3
(� = 200) whereas Fig. 4 shows the images obtained by
inpainting and iterative upsampling.

It may be noted that in case of large fence width the
proposed recovery procedure may introduce blur e↵ect
in the restored region. To improve the visual quality in
such cases super resolution methods like [12, 13, 28, 33]
can be used to upsample the inpainted image however,
such methods usually take considerable amount of exe-
cution time.
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(a) (b) (c) (d)

Fig. 4: Corresponding de-fenced version of images
shown in Fig. 3.

6 Experiments and Results

In this section the proposed image de-fencing technique
is tested on several images. Performance is analyzed
in terms of both fence detection accuracy and visual
quality of the recovered image. We also note that the
proposed algorithm can be used in a more general set-
ting where one wishes to remove objects other than
fences or even textures. Objective evaluation is carried
out on the proposed hybrid inpainting algorithm using
di↵erent size and types of fences. Moreover, the per-
formance of the proposed algorithm is also compared
with state-of-the-art image de-fencing and inpainting
techniques. Results on 18 experiments are reported in
this section. Table 1 summarizes the experiment de-
tails showing image characteristics, algorithm settings
and execution time of the proposed approach. The ex-
ecution time has been obtained on an Intel Core i7 2.5
GHz with 8 GB RAM and includes IO time, fence detec-
tion, refinement and image recovery. The test database
and the source code of the proposed technique will be
released soon at the paper website1.

The values of the parameters involved in the pro-
posed de-fencing algorithm are found empirically. The
user can select these values to improve the quality of
the detection and the subsequent restoration. The first
parameter is the number of points the user must mark
on the fence to construct the fence model. This value
depends on the variation of color in the fence, in case
of one solid color few points e.g., 5 are su�cient but in
case the fence color has large variation 15 to 20 points
must be enough. Based on these marked points, its k

neighbors are selected to increase the data samples. For
thin fences, k is set to 3 and for thick fences its value
may be set to 9. The size of structuring element used
in Sect. ?? depends on the width of the fence; in our
experiments size ranging from 3⇥ 3 to 9⇥ 9 have been

1
http://www.di.unito.it/

~

farid/Research/defencing.

html

used in most cases. The occlusion inpainting phase de-
pends on a single parameter, namely the value of � that
limit the downsampling process to a given scale. From
experiments, we observe that � = 200 yields the best
trade-o↵ on all the images used in this work.

6.1 Visual Quality Inspection

In the following a large set of sample results is shown
and commented, pointing out that the proposed algo-
rithm is very e↵ective in removing any object that is
characterized by a specific color model, locally occludes
the imaged scene, and potentially extends over all the
picture.

Fig. 5 and 6 show a series of images covered by
regular fences. In these experiments, images with thin
fences, thick fences and fences with di↵erent orienta-
tions are selected and all these fences are successfully
removed. The proposed fence detection algorithm can
be applied to detect not only the regular but also irreg-
ular fences. Fig. 7 shows two examples where irregular
fences have been first detected and then successfully
removed from the images.

Removing fence from image when occluded by other
objects is more di�cult task both in terms of fence de-
tection and restoration. In such cases, the fence nor-
mally has larger variation in color and may contain
other artifacts like shadows of foreground objects which
make it di�cult to be detected. Due to foreground oc-
clusion, the seamless restoration is also di�cult as tar-
get region must not mix with foreground objects. Fig. 8
shows some examples where fence is covered with fore-
ground objects like flowers and has been detected and
removed. The quality of de-fenced images demonstrates
the e�ciency of the proposed technique in this case as
well.

The proposed algorithm can also be used for other
types of occluding pattern. Fig. 9 shows some examples
where general objects like rods, bars and multiple fences
are removed.

In the last example we applied the proposed algo-
rithm to the case of a multi color object, which is a fence
with multiple colors. In this a case the detection algo-
rithm can be applied iteratively , by removing fence of
one color at a time. Fig. 10 shows the fence colored with
red, green, blue and yellow. The de-fencing algorithm
has been applied iteratively to each color. The left im-
age in Fig. 10 is the input image; the middle image is
the result of removing the green fence. The intermedi-
ate de-fenced image is then used to train a model for
blue fence removal an so on.

http://www.di.unito.it/~farid/Research/defencing.html
http://www.di.unito.it/~farid/Research/defencing.html
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Table 1: Experimental details. WS is window size used in fence detection, SE means size of Structuring Element
for dilation, %FOC is percentage of fence occluded region in image. Execution time is in seconds.

Exp. Category Exp# Description Image Size WS SE %FOC Time

Regular Fence

1 Chimpanzee 509⇥ 332 3 7 25.73 37.08
2 Dog 338⇥ 352 5 5 28.85 37.83
3 House 800⇥ 600 3 7 23.90 24.91
4 Lion 480⇥ 360 5 7 9.47 10.72
5 Out door 450⇥ 320 3 5 32.27 52.66
6 Road 2431⇥ 1996 5 9 10.92 34.18

Irregular Fence
7 Thistle 648⇥ 486 5 7 7.91 11.23
8 Sparrow on Fence 800⇥ 576 5 5 5.58 8.52

Occluded Fence

9 Larkspur Flower 340⇥ 269 3 7 38.55 23.9
10 Purple Flowers 450⇥ 600 5 7 13.93 11.30
11 Bear 588⇥ 354 3 5 20.87 60.42
12 Snapdragon Vine 800⇥ 919 5 5 12.41 9.79

General Objects

13 Eagle 556⇥ 450 5 7 11.03 5.36
14 Loggerhead Shrike 600⇥ 400 7 5 2.58 7.33
15 Heaven’s Fence 1440⇥ 900 7 11 12.15 12.62
16 Red Robin 331⇥ 331 5 5 24.26 16.72
17 Garden 672⇥ 545 7 15 34.84 13.85
18 Wall 972⇥ 648 7 5 34.34 75.79

Fig. 5: Regular fence removal (Exp. 1-2), from left to right: original image, initial fence detection, fence after
removing false positives, fence after dilation and de-fenced image.

6.2 Comparison with State-of-the-art Techniques

The performance of proposed algorithm is compared
with three state-of-the-art image de-fencing and inpaint-
ing techniques. We compare the proposed technique
with Liu [17] and Park [24] image de-fencing approaches
to evaluate its performance in terms of fence detection
and fence removal. Moreover, the proposed hybrid in-
painting method is also compared with Criminisi in-
painting algorithm [9] in terms of image quality and
execution time.

6.2.1 Comparison with image de-fencing techniques

Both Liu [17] and Park [24] image de-fencing approaches
use lattice detection algorithm to detect the fence. Af-
ter fence detection the Liu algorithm used Criminisi in-
painting [9] to recover the occluded regions, whereas the

Park algorithm proposed multiview inpainting. Such an
approach can be used only when two images of the
scene, captured from two very close viewpoints, are
available. The occluded region in source image is searched
in the second image and filled with the best candidate.
In case the best match cannot be found, Criminisi in-
painting [9] is used to estimate the occlusions. Multi-
view inpainting generally produces better results than
single view inpainting as most of the occluded pixels
are visible in the second view. However, two views of
the same scene are not usually available.

As described in Sect. 2, the Liu and Park algorithms
work for regular and near-regular pattern fences. Both
approaches fail to detect irregular pattern fences, and in
some cases they may fail to obtain a complete lattice in

2 These test images are are borrowed from Liu dataset:
http://vision.cse.psu.edu/research/imageDe-fencing/

index.shtml

http://vision.cse.psu.edu/research/imageDe-fencing/index.shtml
http://vision.cse.psu.edu/research/imageDe-fencing/index.shtml
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Fig. 6: Regular fence removal (Exp 3-6): original (top) and de-fenced (bottom) image.

Fig. 7: Irregular fence removal (Exp. 7-8): original (left) and de-fenced (right) image.

Fig. 8: Occluded fence removal (Exp. 9-12): original (top) and de-fenced (bottom) image.

Fig. 9: Rod, bars and multiple fence removal (Exp: 13-18): original (top) and de-fenced (bottom) image.

regular pattern fence too. On the contrary, the proposed
algorithm is able to detect regular as well as irregular
pattern fences (see Section 6). Fig. 11 compares the
results in terms of fence detection obtained by the pro-
posed approach and the Liu algorithm on symmetrical
fences. The symmetric fences/objects detected by Liu
algorithm are shown superimposed on the test image

in yellow and red color. These results show that Liu
algorithm may fail to detect approximatively regular
pattern fences whereas the proposed algorithm success-
fully detects the fences in all the tested cases. Fig. 12
compares the performance of the proposed algorithm
and Liu approach in terms of fence removal. The figure
shows two examples where the Liu algorithm success-
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(a) (b) (c)

Fig. 10: Removing multiple colors: (a) original image,
(b) green bar removal, (c) blue bar removal.

(a) (b) (c) (d)

Fig. 11: Examples where Liu de-fencing approach [17]
fails in fence detection2. (a) test image, (b) fence de-
tected by Liu algorithm (shown in yellow and red col-
ors), (c) fence detected by proposed algorithm, (d) de-
fenced image by proposed algorithm.

Test Image Liu [17] Ours

Fig. 12: Examples where Liu de-fencing approach [17]
fails in fence detection or in removal phase2. Left: test
image; Middle: fence detection results of Liu Algorithm;
Right: de-fenced image using proposed approach.

Test Image Liu [17] Park [24] Ours

Fig. 13: Comparison with Liu and Park image de-
fencing approaches.

fully detects the fences but fails to recover the occluded
region. The proposed approach successfully detects and
removes the fences in these images. The results of Park
algorithm on the previous images (Figs. 11, and 12) are
not available, and therefore we could not include them
in the comparison.

Fig. 13 compares the performance of proposed algo-
rithm with Liu and Park de-fencing approaches. Since
both the proposed and the Liu algorithms are single-
view image de-fencing approaches, we use single-view
images in this comparison The images used in this com-
parison are courtesy of Park dataset [23] available at3.
On such test images, it can be noted that our algorithm
yields better results than Liu whereas the Park algo-
rithm yields slightly better image reconstruction than
ours. This is mainly due to the improved lattice de-
tection in Park algorithm. Few fence parts can still be
noted in our reconstructed images since the proposed
fence detection algorithm is based solely on the color
model of the fence. On the contrary, the Park algorithm,
in addition to color, exploits the fence structure (in the
form of lattices). The results presented in Figs. 11, 12
and 13 show that the proposed algorithm performs bet-
ter than Liu de-fencing approach and its performance
is comparable with Park algorithm. However, in case of
asymmetrical and non-uniform fences Liu and Park al-
gorithms do not work whereas the proposed de-fencing
algorithm is more general and can e↵ectively remove
such objects (e.g. see Figs. 7 and 9).

6.2.2 Comparison with image inpainting techniques

In this section, we compare the proposed hybrid in-
painting algorithm with Criminisi algorithm [9]. In par-
ticular the proposed inpainting and method in [9] are
used to recover the same regions. The results show that
the proposed inpainting method yields better quality,
especially when the fence is large. Fig. 14 shows the
visual quality obtained by [9] on 3 test images. In-

3
http://vision.cse.psu.edu/data/data.shtml

http://vision.cse.psu.edu/data/data.shtml
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Fence Image Criminisi [9] Ours

Fig. 14: Fence inpainting comparison of proposed algo-
rithm with Criminisi [9]. The main inpainting artifacts
are pointed out by red circles.

Original Fence Mask Criminisi [9] Ours

Fig. 15: Comparison of proposed hybrid inpainting with
Criminisi [9] on synthetic data. Red circle points some
inpainting artifacts.
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Fig. 16: (a) Execution time comparison of the proposed
algorithm with [9] over 18 experiments, (b) Quality
comparison in terms of PSNR.

terpolation artifacts produced by [9] can be spotted
easily as compared to our results. Indeed, in the pres-
ence of large fences, the proposed technique performs
better. Thanks to the multiresolution approach which
decreases the fence area and produces fast and better
matches for occluded regions. Moreover, the proposed
hybrid inpainting technique turns to be approximately
19 times faster than exemplar based inpainting (execu-
tion time comparison is given in Fig. 16a). This gain in
speed is again due to our multiresolution approach.

Finally, we compare the obtained image quality ver-
sus [9] also in terms of Peak Signal to Noise Ration
(PSNR). These experiment are carried out with syn-
thetic data where we manually occlude some regions
with a known fence mask, thus allowing us to compute
PSNR of the recovered image with respect to the origi-
nal one. Ten experiments are performed on five test im-
ages (624⇥ 480) with two fences with di↵erent widths.
The results are presented in Fig. 16b. The graph shows
that the proposed technique is consistently better in
restoring the fence region with an average gain of 0.5
dB. Fig. 15 shows two examples of de-fencing on syn-
thetic data set. The results demonstrate that the pro-
posed algorithm is better than existing algorithms both
in terms of PSNR and visual quality.

7 Conclusion

A novel approach for removing fences from digital pho-
tographs is presented in this paper. The proposed tech-
nique requires minimum user intervention to detect the
fence. Based on user input, a fence model is constructed
and a two level classification algorithm segments the
fence from the background. The detected fence is re-
fined through connected component analysis and by
using morphological operators. To recover the fence re-
gion, a hybrid inpainting technique is proposed that
integrates the exemplar-based inpainting with pixel in-
terpolation method based on pyramid. The proposed
algorithm is capable to detect symmetric as well as
asymmetric fences and restores the fence regions e�-
ciently. Moreover, the experiments point out that the
proposed technique can be generalized to the problem of
removing other kind of unwanted distributed patterns.
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