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1 Introduction

Following Schnabl’s analytic solution for tachyon condensation [1], analytic techniques in

open string field theory have provided a remarkably clear and beautiful description of the

endpoint of tachyon condensation on unstable D-branes [2–4]. However, efforts to extend

these techniques beyond the universal sector have been less fruitful. Several solutions

describing marginal deformations have been found, especially as a perturbative expansion in

the deformation parameter [5–13].1 But the main question about marginal deformations is

whether string field theory can describe the full moduli space of vacua connected to a given

D-brane system [21–24], and this question seems out of reach in a perturbative approach.

On a different line of thought, there have also been interesting proposals to describe the

formation of lower dimensional D-branes by following a given boundary world-sheet RG

1A more nonperturbative approach to marginal deformations was provided by the KOS solution [14],

which will play a central role in our discussion, and the old identity-based solution for marginal deformations

introduced by Takahashi and Tanimoto [15], for which there have been interesting recent developments [16–

19]. A solution which aims to unify these approaches was recently proposed in [20].
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flow [25, 26]. A success was the computation of the energy and closed string tadpole [26–

28], but further work has encountered subtle problems with the equation of motion [27–30],

and has been limited by the very few known soluble worldsheet RG-flows.

In light of these difficulties, one particularly attractive proposal was advanced by Kier-

maier, Okawa, and Soler (KOS) [14]. By making a gauge transformation of the solu-

tion [5, 6] for nonsingular marginal deformations, they managed to construct a solution

which could be expressed directly in terms of boundary condition changing (bcc) operators

σ, σ relating the perturbative vacuum to the boundary conformal field theory (BCFT) of

the D-brane system one wishes to describe. Since the existence of bcc operators relating

BCFTs is a generic fact, this suggests a kind of all-purpose string field theory solution

which could be used to describe any open string background. For the KOS solution to

work, however, the bcc operators must satisfy a rather unusual property:

lim
s→0

σ(s)σ(0) = 1, (s > 0). (1.1)

While this is satisfied for backgrounds related by nonsingular marginal deformations, usu-

ally bcc operators have nonvanishing conformal weight, and their OPEs are singular. Ef-

forts to generalize the KOS solution to avoid (1.1) have so far been unsuccessful.

In this paper we observe that bcc operators satisfying (1.1) can, in fact, describe any

change of boundary condition provided the time component of the Xµ BCFT is unaltered.

The idea is as follows. Suppose σ∗, σ∗ are bcc operators of weight h satisfying

σ∗(s)σ∗(0) ∼
1

s2h
+ less singular, (s > 0), (1.2)

and which act as the identity operator in the time direction. We will construct an analytic

solution using a modified pair of bcc operators2

σ(s) = σ∗e
i
√
hX0

(s), σ(s) = σ∗e
−i

√
hX0

(s). (1.3)

The plane-wave factors e±i
√
hX0

cancel the conformal weight of σ∗ and σ∗, and because

e−i
√
hX0

(s)ei
√
hX0

(0) ∼ s2h, (s > 0), (1.4)

the modified bcc operators satisfy equation (1.1). The resulting solution will have nontrivial

primaries excited in the X0 BCFT, which a priori could effect the physical interpretation

of the solution. In fact, the e±i
√
hX0

factors are bcc operators which turn on a Wilson

line in the time direction. But since the only physical effect of a Wilson line is through

winding modes, and the time direction is noncompact, the timelike Wilson line is physically

invisible. In field theory, a constant timelike Wilson line is pure gauge:

Aµ = λδ 0
µ = eiλx

0
i∂µ(e

−iλx0
), (1.5)

which suggests that the timelike primaries excited by σ, σ could likewise be removed by a

gauge transformation in string field theory, though doing this in practice may be nontrivial.

2We use α′ = 1 units.
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The implications of this simple idea are profound. It means that string field theory

can provide a closed form description of a far greater range of backgrounds than have been

identified in level truncation or analytically, and in fact the bulk of D-brane setups one

might care to consider in string theory. After modest generalization of the considerations of

KOS, the solution is extraordinarily simple. Finding the energy, the closed string tadpole,

and the cohomology are easily reduced to worldsheet computations. Remarkably, the

solution even satisfies (a generalization of [3]) the Schnabl gauge condition.

2 Algebra

We begin by quickly reviewing the algebraic ingredients we need to formulate the solution.

This is (mostly) standard material; see also the original paper by KOS [14] and Noumi and

Okawa [31],3 and for further explanations of the algebraic formalism we use, see [3, 32–34].

We start with string field theory formulated around some reference D-brane system,

described by a boundary conformal field theory BCFT0. Then we construct a classical

solution describing some other D-brane system, described by a boundary conformal field

theory BCFT∗. We assume that BCFT0 and BCFT∗ are factorized in the form

BCFTc=25 ⊗ BCFTX0 ⊗ BCFTbc (2.1)

BCFT0 and BCFT∗ share a common bc ghost factor and a noncompact, timelike free

boson X0 subject to Neumann boundary conditions. The c = 25 components of the two

BCFTs can be different and essentially arbitrary provided they share the same bulk CFT.

In this way, the shift between the backgrounds BCFT0 and BCFT∗ can be represented by

boundary condition changing operators, as explained in the introduction. For backgrounds

not of the form (2.1) we do not have a general construction, though in some cases such

backgrounds can be realized.4

The solution is formulated within the subalgebra of wedge states with operator inser-

tions [1, 39]. A wedge state [40] is any positive star algebra power of the SL(2,R) vacuum

Ω ≡ |0〉:
Ωα, α ≥ 0. (2.2)

Here (and in the rest of the paper) we omit the ∗ symbol when multiplying string fields. In

the limit ǫ → 0, the wedge state Ωǫ approaches the formal identity of the star algebra, called

the identity string field. We write the identity string field simply as 1. The conformal field

theory definition of a wedge state is easiest to visualize in the sliver coordinate frame [1, 32,

41, 42], where Ωα is represented as a semi-infinite, vertical “strip” of worldsheet of width

α, as shown in figure 1. The “strip” can be glued to itself or to other “strips” along the

3We follow the conventions of [3], in particular we use the “left-handed” star product. KOS use the

“right-handed” star product, and the opposite sign for the fields K and B.
4The exponential timelike [5, 6, 14, 35, 36] and lightlike [37, 38] rolling tachyon solutions are examples of

nonsingular marginal deformations, and therefore are described by boundary condition changing operators

of the kind needed to construct the solution. The cosh(X0) deformation [35] could be realized by turning

on an imaginary Wilson line in a noncompact spacelike direction, if available. These backgrounds are not

described by BCFTs of the form (2.1).
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B c �휎 �휎Ω  = e
α −αK

c(s) �휎(s) �휎(s)

B

ε → 0 ε → 0 ε → 0 ε → 0
α

BCFT
0

BCFT* BCFT* BCFT
0

K

K

ε → 0

Figure 1. The wedge state Ωα and the fields K,B, c, σ, σ represented as semi-infinite “strips” with

operator insertions in correlation functions on the cylinder. Note that star multiplication of two

string fields glues the right half of the first strip to the left half of the second strip.

vertical edges, resulting in worldsheet correlation functions on the cylinder (which can be

mapped to the upper half plane). To describe the solution, the “strips” should also contain

particular operator insertions, specifically, boundary insertions of the c-ghost,

c(s), (2.3)

boundary condition changing operators,

σ(s), σ(s), (2.4)

and vertical line integral insertions of the energy-momentum tensor and b-ghost,

K =

∫ i∞

−i∞

dz

2πi
T (z), (2.5)

B =

∫ i∞

−i∞

dz

2πi
b(z). (2.6)

The operator σ changes the open string boundary condition from BCFT0 to BCFT∗, and σ

changes the boundary condition in reverse, from BCFT∗ back to BCFT0. We assume that

σ and σ are weight zero primaries constructed by tensoring a primary bcc in the c = 25

component of the BCFT with a timelike Wilson line. However, much of our discussion can

be generalized to non-primary bccs.

This class of states can be conveniently expressed by taking star products of five

“atomic” string fields:

K, B, c, σ, σ. (2.7)

Each string field can be defined as an infinitesimally thin “strip” carrying the respective

operator insertion (denoted by the same symbol), as shown in figure 1.5 The field K

generates the algebra of wedge states, in that any positive power of the SL(2,R) vacuum

can be written

Ωα = e−αK . (2.8)

5Note that σ, σ are fields of a stretched string between BCFT0 and BCFT∗. They are not string fields

in BCFT0.
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Of particular importance are the string fields [3]

1

1 +K
=

∫ ∞

0
dα e−αΩα, (2.9)

1√
1 +K

=
1√
π

∫ ∞

0
dα

e−α

√
α
Ωα, (2.10)

which are defined via the Schwinger parameterization in terms of a continuous superposition

of wedge states. Multiplying a wedge state with K,B, c, σ, σ on the left (right) effectively

inserts the corresponding operator on the left (right) edge of the “strip” defining the wedge

state. In this way, we can insert all of the operators we need by taking star products of

these five basic string fields.

The fields satisfy a number of algebraic relations. First, we have BRST variations:

QK = 0; QB = K; Qc = c∂c; Qσ = c∂σ; Qσ = c∂σ, (2.11)

where ∂ ≡ [K, ·]. Note that the BRST variation of σ and σ is exactly like that of a

dimension zero matter primary. We also have algebraic relations:

B2 = c2 = 0; [K,B] = 0; Bc+ cB = 1;

[σ, c] = 0; [σ, ∂c] =0; [σ,B] = 0;

[σ, c] = 0; [σ, ∂c] =0; [σ,B] = 0. (2.12)

The first three relations are well-known [32], and the last six follow trivially from the fact

that σ and σ represent matter operators. Finally, we have two important relations:

σσ = 1; (2.13)

σσ = finite. (2.14)

The first equation follows from the OPE (1.1) discussed in the introduction. The second

equation is somewhat surprising, since if σσ 6= 1 we have an “associativity anomaly:”

(σσ)σ 6= σ(σσ). (2.15)

This reflects an ambiguity in the definition of correlators when 3 or more bccs collide. (See

appendix A.) This leads to a few subtleties which are important to be aware of. But in

practice the product σσ never appears in all essential computations with the solution, and

there is no need to assign it a definite value. So associativity anomalies do not appear.

Still, it is important to understand why σσ 6= 1 in general. Consider the 2-point

function of bcc operators on the unit disk:

〈σ(1)σ(eiθ)〉. (2.16)

For angles in the range [0, θ] the correlator has BCFT0 boundary conditions, and outside

this range it has BCFT∗ boundary conditions. Since σ and σ are dimension zero primaries,

– 5 –
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this 2-point function is independent of the angular separation. Therefore, in the limit

θ → 0+ we can use the OPE (1.1) to find

〈σ(1)σ(eiθ)〉 = g∗, (2.17)

where g∗ is the disk partition function in BCFT∗ (the g-function). Now consider θ → 2π−.
In this limit the correlator should be proportional to g0 —the disk partition function in

BCFT0 —times the coefficient of the identity operator in the σ-σ OPE. But since the

correlator must be equal to g∗, we find

lim
s→0

σ(s)σ(0) =
g∗
g0

, (s > 0). (2.18)

The disk partition functions will be different if the D-brane configurations have different

energies. So in general σσ 6= 1.

Let us explain another puzzle, which in the past seemed to give a compelling argument

that the KOS solution could only describe marginal deformations. Since σ and σ are weight

zero primaries with regular OPE, it is natural to define the operator

V = σ∂σ. (2.19)

This should be a weight 1 primary, and it naively defines a 1-parameter family of conformal

boundary conditions connecting BCFT0 and BCFT∗. To see this, consider a wedge state

deformed by a V -boundary interaction [14]

e−(K+λV ). (2.20)

At λ = 0, this describes the boundary condition of BCFT0. Meanwhile, at λ = 1 (assuming

σσ = 1),

e−K−σ∂σ = e−K−σKσ+σσK = e−σKσ = σΩσ. (2.21)

So we find the boundary condition of BCFT∗. Thus it seems that BCFT∗ must represent

a marginal deformation of BCFT0. The problem is that this argument makes assumptions

about the nature of short distance collisions of the σs and V which are not valid in general.

We will explain how this happens (for lump solutions) in section 7.

3 Solution

The solution is most easily described by starting with string field theory formulated around

the tachyon vacuum. Specifically, we begin with the “simple” solution for the tachyon

vacuum, introduced in [3]:

Ψtv =
1√

1 +K
c(1 +K)Bc

1√
1 +K

. (3.1)

The equations of motion expanded around the tachyon vacuum are

QΨtvΦ+ Φ2 = 0, (3.2)

– 6 –
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where QΨtv = Q + [Ψtv, ] is the shifted kinetic operator. To describe the perturbative

vacuum BCFT0, we should take the solution

Φ = −Ψtv. (3.3)

Now suppose we want to describe some other D-brane system BCFT∗. A natural guess

would be to subtract the tachyon vacuum in BCFT∗:

Φ
?
= −σΨtvσ, (3.4)

where σ and σ are needed to translate the degrees of freedom of BCFT∗ into BCFT0.

Surprisingly, this almost works. It would be a solution if QΨtv annihilated σ and σ.

In this connection, it is worth noting that σ and σ are killed by the kinetic operator

of a different tachyon vacuum solution, namely, a singular tachyon vacuum consisting of a

divergent insertion of the c ghost [43]:6

Ψsingular =
1

α
c, α → 0. (3.5)

This is closely related to the boundary string field theory description of the tachyon vac-

uum [44, 45], in that it naturally leads to a boundary deformation of the worldsheet action

given by an infinite constant which sets all correlators to zero. The corresponding kinetic

operator leaves σ and σ invariant in a trivial way since [σ, c] = [σ, c] = 0. This suggests we

should look for “regularized” analogues of σ and σ which are left invariant by QΨtv :

QΨtvΣ = 0; QΨtvΣ = 0. (3.6)

We can guess the needed expressions Σ and Σ as follows. Since QΨtv has trivial cohomology,

we should be able to write Σ and Σ as QΨtv of some string field. If there is no change of

boundary condition, we expect Σ = Σ = 1, in which case this string field can be nothing

but the homotopy operator for the tachyon vacuum [2, 3], which satisfies

1 = QΨtv

(

B

1 +K

)

. (3.7)

If the change of boundary condition is nontrivial, one might guess that the homotopy

operator should be accompanied by an insertion of a bcc operator. Thus we are lead to

the expressions7

Σ = QΨtv

(

1√
1 +K

Bσ
1√

1 +K

)

; (3.8)

Σ = QΨtv

(

1√
1 +K

Bσ
1√

1 +K

)

. (3.9)

6Plugging into the equations of motion, this is a solution at order 1
α2 since c2 = 0. To get subleading

orders to work requires a regularization of the solution.
7Closely related expressions appear in [20, 25] in the description of the cohomology for marginal defor-

mations.
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By construction, these fields are killed by QΨtv . To have a solution to the equations of

motion, Σ and Σ must satisfy the additional property

ΣΣ = 1. (3.10)

This can be demonstrated as follows:

ΣΣ = QΨtv

(

1√
1 +K

σB
1√

1 +K

)

QΨtv

(

1√
1 +K

Bσ
1√

1 +K

)

,

= QΨtv

(

1√
1 +K

σB
1√

1 +K
QΨtv

(

B

1 +K

√
1 +Kσ

1√
1 +K

))

,

= QΨtv

(

1√
1 +K

σB
1√

1 +K
QΨtv

(

B

1 +K

)√
1 +Kσ

1√
1 +K

)

,

= QΨtv

(

1√
1 +K

σB
1√

1 +K

√
1 +Kσ

1√
1 +K

)

,

= QΨtv

(

B

1 +K

)

= 1. (3.11)

Taking the product in the opposite order, we also have ΣΣ = g∗
g0
, so Σ and Σ multiply just

like σ and σ.8

Therefore, after replacing (σ, σ) with (Σ,Σ), our initial guess for the solution turns out

to be correct:

Φ = −ΣΨtvΣ, (3.12)

Substituting previous expressions for Ψtv, Σ and Σ we find more explicitly,

Φ = − 1√
1 +K

c(1 +K)σ
B

1 +K
σ(1 +K)c

1√
1 +K

. (3.13)

This is a solution to the equations of motion around the tachyon vacuum. Shifting back to

the perturbative vacuum, the solution takes the form:

Ψ = Ψtv − ΣΨtvΣ,

=
1√

1 +K
c

[

(1 +K)− (1 +K)σ
1

1 +K
σ(1 +K)

]

Bc
1√

1 +K
. (3.14)

In the special case σσ = 1, this expression is equivalent to the original solution proposed

by KOS [14]:

ΨKOS = − 1√
1 +K

c∂σ
1

1 +K
σ(1 +K)Bc

1√
1 +K

, (σσ = 1). (3.15)

To see this, use

∂σ = (1 +K)σ − σ(1 +K), (3.16)

8Note that the derivation (3.11) only requires σσ = 1 and [B, σ] = [B, σ] = 0. Therefore, all other

relations satisfied by σ and σ in equations (2.11) and (2.12) are not needed to have a solution to the

equations of motion. In particular σ and σ do not necessarily have to be primaries, but in this case the

solution will take a different form from (3.14), and will not satisfy the gauge condition (3.20). In this paper

we have a specific realization of σ and σ in mind, so we will assume all relations in (2.11) and (2.12) without

qualification.
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and plug in to the KOS solution to reproduce (3.14). Note that when σσ 6= 1, the KOS

solution does not satisfy the equations of motion, whereas (3.14) does.

Let us explain a few technical properties of the solution. It satisfies the string field

reality condition,9

Ψ‡ = Ψ. (3.17)

A nice property of the reality condition is that Σ and Σ are conjugate to each other:

Σ‡ = Σ; Σ
‡
= Σ. (3.18)

and therefore are analogous to unitary operators. (The analogy is not complete because

ΣΣ 6= 1 in general). However, for some purposes it is natural to work with a non-real form

of the solution [3]:

Ψ′ =
√
1 +KΨ

1√
1 +K

,

= c

[

(1 +K)− (1 +K)σ
1

1 +K
σ(1 +K)

]

Bc
1

1 +K
. (3.19)

Now the square root factors do not appear, and the solution requires one fewer Schwinger

integration. The non-real solution may be more appropriate for a potential generalization

to the superstring, since at present we do not have a controlled solution for the superstring

tachyon vacuum which satisfies the reality condition [4]. The solution satisfies a linear

gauge condition [3]:

B 1√
1+K

, 1√
1+K

Ψ = 0. (3.20)

This is an example of a so-called dressed Schnabl gauge, BF,G = 0, where the operator BF,G

is defined

BF,G ≡ F
1

2
B−
(

F−1[ · ]G−1
)

G. (3.21)

B− is the BPZ odd component of Schnabl’s B0 [47] and F,G are any pair of states in the

wedge algebra.10 The Schnabl gauge corresponds to the special case B0 = B√
Ω,

√
Ω = 0.

We will discuss the analogous solution in Schnabl gauge in section 6.

4 Energy and closed string tadpole

We now discuss two important gauge invariant quantities associated with the solution:

the spacetime action, and the so-called Ellwood invariant [48–52], which is closely related

to the closed string tadpole amplitude [52] and the boundary state [53, 54]. Usually the

computation of these quantities is a core technical obstacle for an analytic solution. But

for us it will require very little work, since the computations almost immediately reduce to

those of the tachyon vacuum, which are already described in [3].

9The operation ‡ is defined as the composition of Hermitian and BPZ conjugation [46]. It is formally

analogous to Hermitian conjugation of an operator. The fields K,B and c are self-conjugate, K‡ = K etc,

while σ‡ = σ.
10To check the gauge condition, note that 1

2
B− is a derivation of the star product satisfying 1

2
B−K = B

and it annihilates all other fields in the algebra.
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Let us start by computing the spacetime action:11

S = Tr

[

−1

2
ΨQΨ− 1

3
Ψ3

]

, (4.1)

where we use Tr[·] to denote the 1-string vertex (or Witten integral). Since we consider

time-independent configurations, really we are interested in the energy, which is minus the

action divided by the volume of the time coordinate:

E = − S

Vol(X0)
. (4.2)

For us, the volume of time must be infinite otherwise the timelike Wilson-line alters the

physical interpretation of the solution. Still we can compactify time and consider the limit

when the volume goes to infinity. This has the effect of normalizing the disk partition

function in the timelike component of the X0 BCFT to unity (for the purposes of the

energy computation). Plugging in the solution Ψ = Ψtv +Φ we find:

E =
1

Vol(X0)

(

− g0
2π2

+Tr

[

−1

2
ΦQΨtvΦ− 1

3
Φ3

])

, (4.3)

where the term − g0
2π2 comes from the energy of tachyon vacuum Ψtv. Assuming the equa-

tions of motion, this simplifies to12

E =
1

Vol(X0)

(

− g0
2π2

+
1

6
Tr
[

Φ3
]

)

. (4.4)

Plugging in Φ = −ΣΨtvΣ and using ΣΣ = 1, we find

Tr[Φ3] = −Tr
[

Ψ3
tv

]

BCFT∗
, (4.5)

where the subscript BCFT∗ indicates that the whole boundary in the correlator has BCFT∗
boundary conditions. Except for the normalization of the disk partition function, this is

exactly the computation of the cubic term in the action for Ψtv, and by standard manipu-

lations we find

E =
1

Vol(X0)

(

− g0
2π2

+
g∗
2π2

)

, (4.6)

which is the expected energy difference between BCFT0 and BCFT∗.
Next we compute the Ellwood invariant [52],

TrV [Ψ], (4.7)

11We set the open string coupling constant to unity. This means that the disk partition function in

BCFT0 must be normalized to the volume of the reference D-brane to compute the correct energy.
12The validity of the equations of motion contracted with the solution is notoriously subtle in string field

theory [32, 58, 59]. In the current context, one might worry about potentially ambiguous collisions of σ and

σ. To clarify this question, we considered a regularization of the solution Φ → ΦΩǫ. We found no evidence

of problems in the ǫ → 0 limit. We confirmed this by explicit computation of the regularized kinetic and

cubic terms of the action for the 2-brane solution (8.9), where both the four and six point functions of bcc

operators are easily obtained in closed form.
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where TrV [·] is the 1-string vertex with a midpoint insertion of an on-shell closed string

vertex operator of the form V = ccV matter. Based on examples and general arguments [52–

54, 60], the Ellwood invariant is believed to compute the shift in the closed string tadpole

amplitude between BCFT0 and BCFT∗, or equivalently the shift in the on-shell part of the

boundary state [54]:

TrV [Ψ] =
1

4πi

(

〈V|c−0 |B0〉 − 〈V|c−0 |B∗〉
)

, (4.8)

where |B0〉 is the boundary state in BCFT0 and |B∗〉 is the boundary state in BCFT∗. The
contribution from BCFT0 appears automatically from Ψtv, and looking at the contribution

from Φ,

TrV [Φ] = −TrV [ΣΨtvΣ] = −TrV [Ψtv]BCFT∗ = − 1

4πi
〈V|c−0 |B∗〉, (4.9)

we get the contribution from BCFT∗. Therefore the solution correctly describes the shift

in the closed string tadpole amplitude.

More interesting than the closed string tadpole is the full BCFT boundary state. A

rigorous approach would follow the construction of Kiermaier, Okawa, and Zwiebach [14],

but for present purposes it is enough to take the more pragmatic route of [54], which requires

little more than the above computation of the Ellwood invariant. The key observation

of [54] is that we can compute the overlap of the boundary state with any matter primary

V provided we tensor with an auxiliary BCFT (with vanishing central charge) and compute

the Ellwood invariant with a modified matter vertex operator

wV, (4.10)

where w lives in the auxiliary BCFT and cancels the conformal weight of V so that the

combination is a weight (1, 1) matter+auxiliary primary. From the form of the solution, it is

clear that the boundary state of the solution |BΨ〉 can be factorized into timelike/spacelike

components:13

|BΨ〉 = |BΨ〉X
0 ⊗ |BΨ〉c=25 ⊗ |B〉bc. (4.11)

The matter part of the boundary state can be expressed as a sum of Virasoro Ishibashi

states |Vα〉〉 associated with spinless primaries Vα in the time/spacelike sectors, with ap-

propriate coefficients:

|BΨ〉 =







∑

α=
X0 primaries

nα
Ψ|Vα〉〉






⊗







∑

β=
c=25 primaries

nβ
Ψ|Vβ〉〉






⊗ |B〉bc. (4.12)

The coefficients nα
Ψ represent disk one-point functions of V α with the appropriate boundary

condition. Here V α is the dual vertex operator to Vα, so that 〈V α|Vβ〉 = δαβ . Following the

13Note that disk 1-point functions in BCFT∗ represent the contraction of a bulk vertex operator with

a closed string state which is manifestly space/time factorized on account of the factorization of σ and σ.

The ghost factor of the boundary state is universal in bosonic string theory [54].
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proposal of [54] we can compute these coefficients with the Ellwood invariant:14

nα
Ψ = 2πiTrVα [Φ], Vα = cc(wαV α). (4.13)

From (4.9) it is clear that this computes the disk one-point function in BCFT∗ (provided

〈wα〉disk = 1), and therefore we recover the expected boundary state. One important

point, which we can now address in a more explicit manner, is the extent to which the

timelike Wilson line effects the physical interpretation of the solution. For this we need

to investigate the coefficients nα
Ψ for the timelike factor of the boundary state. Evaluating

the vacuum correlator for the spacelike components and mapping to the upper half plane,

we find

nα
Ψ = const.×

〈

exp

[√
h

∫ ∞

−∞
ds i∂X0(s)

]

V α(i, i)

〉X0,BCFT0

UHP

, (4.14)

where, by evaluating the correlator in the timelike component of BCFT0, we bring out the

Wilson line boundary interaction with coupling
√
h given by the conformal weight h of the

spacelike bcc operators. Since i∂X0 is a chiral operator, we can regularize the boundary

interaction by simply deforming the contours away from the boundary [61]. Deforming the

contours to surround the bulk insertion, we potentially pick up a residue from a pole in

the OPE if i∂X0 with V α. The only primary with such a pole is a plane wave

i∂X0(z)eikX
0
(w,w) ∼ k

2

1

z − w
eikX

0
, z → w, (4.15)

but momentum conservation in the 1-point function forces k = 0. Therefore the i∂X0

contours close without hitting a pole, and we find:

nα
Ψ = const× 〈V α(0, 0)〉X0,BCFT0

UHP . (4.16)

The timelike component of the boundary state is unchanged by the solution. This is

consistent with the expectation that the timelike Wilson line is pure gauge.

5 Cohomology and background independence

The physical excitations of the solution Ψ are described by the cohomology of the shifted

kinetic operator,

QΨ = Q+ [Ψ, ·]. (5.1)

This cohomology should be the same as the cohomology of Q in BCFT∗. With a few

qualifications, we will show that this is indeed the case.

Let us start by assuming that the solution Ψ is a marginal deformation, since here the

argument is uncomplicated. In this case the disk partition functions are equal g0 = g∗ and

Σ and Σ are inverses in both directions:

ΣΣ = ΣΣ = 1, (marginal case). (5.2)

14A potentially subtle point in this approach is that it requires a definition of the solution in an enhanced

BCFT which includes the auxiliary factor. For the solution (3.14), this only requires taking K → K+Kaux,

where Kaux represents an insertion of the energy-momentum tensor in the auxiliary BCFT.
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Note also the relations15

QΨ0Σ = 0; Q0ΨΣ = 0. (5.3)

For example the first can be demonstrated as follows:

QΨ0Σ = QΣ+ΨΣ,

= QΣ+ΨtvΣ− ΣΨtvΣΣ,

= QΣ+ΨtvΣ− ΣΨtv,

= QΨtvΣ = 0. (5.4)

and the second follows similarly. With these ingredients, we can define an isomorphism

between states in BCFT0 and BCFT∗:

ϕ0 = f(ϕ∗) = Σϕ∗Σ; (5.5)

ϕ∗ = f−1(ϕ0) = Σϕ0Σ, (5.6)

satisfying

f ◦ f−1 = 1BCFT0 ; f−1 ◦ f = 1BCFT∗ . (5.7)

where ϕ0 and ϕ∗ are suitably well-behaved states in BCFT0 and BCFT∗, respectively.

Furthermore, (5.3) implies that f and f−1 satisfy

QΨf(ϕ∗) = f(Qϕ∗); Qf−1(ϕ0) = f−1(QΨϕ0), (5.8)

so we have an isomorphism of cohomologies. In summary, if Ψ is a marginal deformation,

the cohomology of QΨ in BCFT0 is identical to the cohomology of Q in BCFT∗.

The non-marginal case is more subtle. Here, we still have equations (5.3) and (5.8),

but since ΣΣ 6= 1 equation (5.7) is replaced with

f ◦ f−1 =

(

g∗
g0

)2

× 1BCFT0 ; f−1 ◦ f = 1BCFT∗ . (5.9)

Thus composition of f and f−1 would seem to be non-associative, and it is not clear that

we have a well-defined isomorphism. This is an indication that we need to be more careful

about domains. To start, let H0 denote the state space of BCFT0 and H∗ the state space

of BCFT∗. Consider a subspace of “perturbative” states in BCFT∗,

Hpert
∗ ⊂ H∗. (5.10)

Loosely speaking, Hpert
∗ consists of string fields which produce no collisions with bcc op-

erators upon multiplication with Σ and Σ. This includes, for example, perturbative Fock

states. Mapping Hpert
∗ using f in (5.5) defines a subspace of states in BCFT0:

f ◦ Hpert
∗ ⊂ H0. (5.11)

15We define QΦ1Φ2
A ≡ QA+Φ1A+(−1)AAΦ1. This is the kinetic operator for a stretched string between

classical solutions Φ1 and Φ2.
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Using the inverse map f−1 in (5.6), it is clear that this subspace in BCFT0 is isomorphic

to the subspace Hpert
∗ in BCFT∗. Therefore, if we look for the cohomology of QΨ within

f ◦ Hpert
∗ , it will be the same as the cohomology of Q in Hpert

∗ .

This may not appear to be fully satisfactory. While Hpert
∗ represents a fairly generic

class of states in BCFT∗, f ◦ Hpert
∗ are rather peculiar states in BCFT0. Our main reason

for restricting domains is to have a well-defined isomorphism between the state spaces, but

this is probably more than is needed to prove the isomorphism of cohomologies. Let us

explain this with a degenerate example. Consider the tachyon vacuum, where Σ = Σ = 0.

In this case, f ◦ Hpert
∗ is the zero vector, which of course is consistent with the absence

of cohomology. But the tachyon vacuum kinetic operator has trivial cohomology not just

when computed on the zero vector, but also when computed for fairly arbitrary states in

BCFT0.
16 In a similar way, for general backgrounds the cohomology of QΨ may be correct

even when computed outside f ◦Hpert
∗ , though at present we will not attempt to make this

statement precise.

Let us point out an important consequence of our construction. Consider the action

expanded around the solution Ψ:

S =
g0 − g∗
2π2

+Tr

[

−1

2
Φ0QΨΦ0 −

1

3
Φ3
0

]

. (5.12)

Setting Φ0 = ΣΦ∗Σ this becomes

S =
g0 − g∗
2π2

+Tr

[

−1

2
Φ∗QΦ∗ −

1

3
(Φ∗)

3

]

BCFT∗

. (5.13)

Thus we have recovered the string field theory formulated around BCFT∗. This gives an

astonishingly simple proof of background independence in open string field theory.17

6 Schnabl gauge solution

The solution we have been working with is simple, but it is close to being singular from

the perspective of the identity string field [66] and for some purposes it may be necessary

to work with a more regular solution. Ideally, we would like to find an analogue of (3.14)

in Schnabl gauge [1]:

B0ΨSch = 0. (6.1)

The expectation is that in Schnabl gauge the solution should be built from wedge states

Ωα with α strictly greater than one. By contrast, the original solution (3.14) is built from

wedge states all the way down to the identity string field.

There is a simple transformation relating solutions in different dressed Schnabl gauges:

ΨF =
√

F/f Ψf
1

1 +B 1−F/f
K Ψf

√

F/f, (6.2)

16For Schnabl’s solution and related solutions, the absence of cohomology is clear for reasonably well-

behaved states [2]. However, this remains a subtle question. There are indications that cohomology at exotic

ghost numbers appears for the Siegel gauge condensate [55], and for the identity-based tachyon vacuum

solution of Takahashi and Tanimoto [15, 56, 57].
17Previous analysis of this problem can be found in [25, 62–65].
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where Ψf is a solution in B√
f,
√
f -gauge and ΨF is a solution in B√

F ,
√
F -gauge. This is

a version of the Zeze map, introduced in [67]. In the current situation, we want to map

from a solution satisfying B 1√
1+K

, 1√
1+K

= 0 to Schnabl gauge B0 = B√
Ω,

√
Ω = 0, and the

transformation becomes18

ΨSch =
√

Ω(1 +K)Ψ
1

1 +B∆Ψ

√

(1 +K)Ω, (6.3)

where ∆ is the string field

∆ ≡ 1− Ω

K
− Ω. (6.4)

The field ∆ has a special interpretation. Given any B√
F ,

√
F -gauge there are two dis-

tinguished elements of the wedge algebra: the “security strip” F , which surrounds the

operator insertions in the solution, and the “homotopy field” 1−F
K , which appears (for ex-

ample) in the homotopy operator which trivializes the cohomology around the tachyon

vacuum [2, 68]. The simplest gauge B 1√
1+K

, 1√
1+K

= 0 has the special property that the

security strip and homotopy field are equal. Therefore, the field ∆ characterizes the failure

of Schnabl gauge to be “simple.” Substituting (3.14) we find a more explicit expression for

the Schnabl-gauge solution:

ΨSch =
√
Ωc

1

1 +
(

1− (1 +K)σ 1
1+Kσ

)

∆

(

1− (1 +K)σ
1

1 +K
σ

)

(1 +K)Bc
√
Ω. (6.5)

We would like to define this as a power series in ∆. Computing the ∆n correction in the

Fock space requires knowledge of a 2n+3-point correlator with a test state in BCFT0 and

2n + 2 bcc operators. Such correlators would be difficult to compute in general, and the

original solution (3.14) is certainly simpler.

One immediate question is whether a power series in ∆ converges. We do not know

the answer to this question in general, but if our goal is to regulate the identity-like nature

of the solution (3.14), we can choose any number of dressed Schnabl gauges where the

analogue of ∆ can be taken to be as small as we like, and presumably the power series can

be made to converge. Still, in the case of Schnabl gauge we can get some insight into the

nature of convergence by looking at the the case σ = σ = 0. This gives Schnabl’s solution

for the tachyon vacuum, expressed in the form

ΨSch =
√
Ωc

1 +K

1 + ∆
Bc

√
Ω. (6.6)

Actually, for illustrative purposes we can ignore the ghosts and look at the ghost number

zero toy model [1]:

1 +K

1 + ∆
Ω. (6.7)

18This formula actually takes the same form in transforming B 1
√

1+K
, 1
√

1+K

gauge to any B√
F,

√
F gauge,

with the replacement Ω → F .
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To see convergence in powers of ∆, consider the coefficient of L−2|0〉, which can be com-

puted by the formula [1, 69]

L−2|0〉 coefficient = −1

3
+

4

3

∫ ∞

0
dK Ke−K

(

1 +K

1 + ∆
Ω

)

,

= −1

3
+

4

3

∫ ∞

0
dK Ke−K

(

KΩ

1− Ω

)

,

= −3 +
8

3
ζ(3). (6.8)

Now expand this in powers of ∆:

L−2|0〉 coefficient = −1

3
+

4

3

∞
∑

n=0

(−1)n
∫ ∞

0
dK K(1 +K)e−2K∆n. (6.9)

Using the method of steepest descent, the nth contribution to this sum for large n can be

estimated as

(−1)n
∫ ∞

0
dK K(1 +K)e−2K∆n =

√

2π∆(γ)

n|∆′′(γ)|∆(γ)nγ(1 + γ)e−2γ + . . . , (6.10)

where ∆(γ) ≈ 0.298426 is the maximum value of ∆ as a function ofK, ∆′′(γ) ≈ −0.0736153

is the second derivative of ∆ at its maximum, and γ ≈ 1.79328. Thus the nth term in

the expansion in powers of ∆ is exponentially suppressed, and the series converges fairly

quickly. In fact, convergence is much faster than standard definition of Schnabl’s solution

as a power series in Ω:

L−2|0〉 coefficient = −1

3
+

4

3

∞
∑

n=0

∫ ∞

0
dK K2e−(2+n)K . (6.11)

where the nth term contributes as 2/n3.

The power series expansion in ∆ has another interesting property: it gives a definition

of Schnabl’s solution without the phantom term.19 To see that this is the case, compute

the Ellwood invariant:

TrV [ΨSch] = TrV

[

c
1 +K

1 + ∆
BcΩ

]

=
∞
∑

n=0

(−1)nTrV [c(1 +K)∆nBcΩ] . (6.12)

Using the well-known formula [71]

TrV [cFBcG] = −F (0)G′(0)
1

4πi
〈V|c−0 |B0〉, (6.13)

for F,G states in the wedge algebra, we find

TrV [ΨSch] =
∞
∑

n=0

(−1)n∆(0)n
1

4πi
〈V|B0〉. (6.14)

19For some relevant discussions of the phantom term in Schnabl’s solution and other solutions, see [1, 3,

29, 32, 58, 68, 70].
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Since ∆(0) = 0, the sole contribution to the Ellwood invariant comes from the zeroth order

term in the power series in ∆. Dropping a BRST trivial piece, this is simply the zero

momentum tachyon: √
Ωc

√
Ω =

2

π
c1|0〉. (6.15)

The source for the closed string does not come from a sliver-like phantom term.

7 Tachyon lump

Having completed the general discussion of the solution, we turn our attention to a specific

(and fundamental) example: the tachyon lump, describing the formation of a D(p − 1)-

brane in the string field theory of a Dp-brane. Previous numerical constructions of the

tachyon lump in Siegel gauge are discussed in [54, 72–74]. We will describe formation of

the lump along a direction X1 which has been compactified on a circle of radius R. The bcc

operators describing this background are the Neumann-Dirichlet twist operators σND, σND

of weight 1
16 , described for example in [75–77]. Tensoring with a Wilson line gives:

σ(s) = σNDe
iX0/4(s); σ(s) = σNDe

−iX0/4(s). (7.1)

For our computations, the most important piece of information we need to know about the

Neumann-Dirichlet twist operators is the three-point function with a plane wave, computed

in [78]:

〈einX1/R(s1)σND(s2)σND(s3)〉X
1

UHP =
2π2−2 n2

R2 e
ina
R

|s12s13|
n2

R2 |s23|
1
8
− n2

R2

, (7.2)

where the Dirichlet boundary condition is fixed to a position a along the circle and sij =

si − sj .
20

In light of earlier discussion, one immediate question about the proposed lump solution

is why it does not represent a marginal deformation. To understand this we must determine

the fate of the marginal operator (2.19):

V = σ∂σ. (7.3)

Finding V requires knowledge of the subleading structure of the σND-σND OPE. The lead-

ing term is proportional to the identity operator, and the next to leading term must be

proportional to the first cosine harmonic on the circle. The precise coefficients can be

derived from the 3-point function (7.2):21

σND(s)σND(0) =
1

s1/8
· 1
R

+
1

s1/8−1/R2 ·
2−2/R2+1

R
cos

(

X1 − a

R

)

(0)+ . . . , (s > 0). (7.4)

20When X1 has Neumann boundary conditions, we will normalize the disk partition function in the X1

BCFT to the spacetime volume 2πR. This means that when X1 has Dirichlet boundary conditions, the

disk partition function must be normalized to 2π to obtain the correct ratio of tensions. This is the origin

of the factor of 2π in (7.2).
21The OPEs (7.4), (7.5), and (7.6) are correct for R > 1/

√
2, otherwise the contribution from the first

cosine harmonic is subleading to descendents of the identity and i∂X0. In addition, (7.5) and (7.6) assume

R <
√
2 otherwise the contribution from i∂X0 is subleading to second or higher cosine harmonics.
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The bcc operators used in the solution must therefore have the OPE

σ(s)σ(0) =
1

R
+ s1/R

2 · 2
−2/R2+1

R
cos

(

X1 − a

R

)

(0) + s · i
4
∂X0(0) + . . . , (s > 0). (7.5)

The marginal operator is obtained by taking the derivative with respect to s and considering

the limit s → 0:

σ(s)∂σ(0) = s1/R
2−1 · −2−2/R2+1

R3
cos

(

X1 − a

R

)

(0)− i

4
∂X0(0) + . . . , (s > 0). (7.6)

The fate of the s → 0 limit depends on the compactification radius R:

• R > 1 (Relevant deformation): the “marginal operator” is infinite, or more specif-

ically, a divergent constant times the relevant matter operator cos
(

X1−a
R

)

. Since

the marginal operator does not exist, there is obviously no corresponding family of

conformal boundary conditions connecting BCFT0 and BCFT∗.

• R = 1 (Marginal deformation): in this case we have a marginal operator

V = −1

2

[

cos(X1 − a) +
i

2
∂X0

]

. (7.7)

Since this operator has regular self-OPE, it can be used to construct a solution for

nonsingular marginal deformations in Schnabl gauge [5, 6] or following KOS [14]. Ig-

noring the timelike Wilson line, this operator obviously represents the cosine marginal

deformation on the circle at self-dual radius [79]. In our conventions, the moduli space

of the cosine deformation λ cos(X1 − a) is periodic with the identification λ ∼ λ+ 1.

λ = 1/2 represents the critical value where the boundary condition becomes Dirichlet,

which is why an overall factor of 1/2 appears in V .

• R < 1 (Irrelevant deformation): in this case we have the marginal operator

V = − i

4
∂X0. (7.8)

This operator turns on a timelike Wilson line, but all information about the forma-

tion of the D(p− 1)-brane has been lost. In this case, the solution is more naturally

understood in the T -dual picture R → 1/R, where it represents the reverse process of

formation of a higher dimensional Dp-brane in the string field theory on a D(p− 1)-

brane. While we are able to construct a marginal operator, because it has singular

self-OPE the state e−(K+V ) assumed to exist in (2.20) is divergent. We could renor-

malize the boundary interaction to create the Wilson line, but the formal argument

of (2.21) connecting BCFT0 to BCFT∗ will no longer apply.

Therefore, the fact that the tachyon lump is not a marginal deformation does not pose a

contradiction for the solution. As a consistency check on this picture, we verify the σ-σ

OPE using the four-point function of Neumann-Dirichlet twist fields in appendix A.
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One important thing to compute from the solution is the position space profile of

the tachyon field. This gives a concrete (but gauge dependent) spacetime picture of the

solitonic lump describing the lower dimensional D-brane. To construct the tachyon profile,

we expand the solution in the Fock space basis and focus on the tachyon state |T 〉, which
can be further expanded in plane wave harmonics on the circle

|T 〉 =
∑

n∈Z
tn|Tn〉, |Tn〉 ≡ c einX

1/R(0)|0〉, (7.9)

where tn are Fourier coefficients. The tachyon profile is defined by the function

t(x) =
∑

n∈Z
tn e

inx
R . (7.10)

Define a “test state” |T̃n〉 dual to the nth tachyon harmonic:22

|T̃n〉 = − 1

2πR
c∂c e−inX1/R(0)|0〉. (7.11)

By construction, this satisfies 〈T̃m, Tn〉 = δmn. The tachyon coefficients tn can be computed

from the contraction

tn = 〈T̃n,Ψ〉,

= − 1

2πR

(

2

π

)−1+n2/R2

Tr
[√

Ω(c∂ce−inX1/R)
√
ΩΨ
]

. (7.12)

In the last step we mapped the test vertex operator to the sliver coordinate frame (using

fS(z) =
2
π tan−1(z) [1, 42]) where we can compute the contraction as a correlation function

on the cylinder. To have simpler formulas we will use the non-real form on the solution

(3.19), which eliminates the square roots and places the “security strip” 1
1+K completely

to the right of operator insertions. Furthermore, it is convenient to rewrite the solution in

a form which isolates the zero momentum contribution:

Ψ =

(

R− 1

R
c(1 +K)Bc

1

1 +K

)

−
(

c∂σ
B

1 +K
σ(1 +K)c

1

1 +K

)

. (7.13)

We recover the solution expressed in (3.14) by substituting ∂σ = [1 + K,σ] and using

σσ = 1
R . The first term gives the sole contribution at zero momentum, and is proportional

the the “simple” tachyon vacuum, while the second term is the KOS solution (3.15). Note

that when the lump is marginal at R = 1, the tachyon vacuum term disappears and we

are left with the KOS solution, as expected. Since the tachyon coefficient of the “simple”

tachyon vacuum was already computed in [3], we immediately obtain

t0 ≈
R− 1

R
× 0.2844. (7.14)

22For the purposes of this computation, we will compactify all directions besides X1 on circles of unit

circumference, so that the norm of the SL(2,R) vacuum is 2πR. Strictly speaking, the time direction is

noncompact so the vacuum should be delta function normalized. Then the dual test state |T̃n〉 should

include a superposition of plane waves in the time direction which creates an eigenstate of the zero mode

of X0. The tachyon coefficients computed in this way turn out to be the same as when compactifying time.
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The remaining tachyon coefficients come from the KOS solution. In [14], KOS gave the

general form of the contraction of the solution with any state of the form φ = −c∂cφm,

with φm a matter primary of weight h:

〈φ,Ψ〉 = Cφ × g(h). (7.15)

Here Cφ is the 3-point function of φm with the two bcc operators:

Cφ ≡ 〈σ(∞)φm(1)σ(0)〉matter
UHP , (7.16)

and g(h) is a universal function which depends only on the weight h of φm, and not on

the details of the boundary conformal field theories in question. For us, the function g(h)

takes a somewhat different form than originally written by KOS since we use the non-real

solution, and most importantly, the formulas written in [14] assume the existence of a

marginal operator V = σ∂σ which turns out to be divergent for relevant deformations.

After some computation we find23

g(h) = g1(h) + g2(h), (7.18)

where

g1(h) = −h

∫ ∞

0
ds e−s

(

4

L
cot θ 1

2

)h−1( 1

L
− 1

π
sin 2θs

)

, (L = s+ 1); (7.19)

g2(h) = 2h

∫ ∞

0
ds

∫ ∞

1/2
dy

e−L+1 sin θs+ 1
2

L sin2 θ 1
2

(

2 sin θs
L sin θ 1

2
sin θs+ 1

2

)h−1

(θ 1
2
cos θs+ 1

2
− cos θs sin θ 1

2
),

(

L =
1

2
+ s+ y

)

. (7.20)

The angular parameters in these integrals are defined

θℓ ≡
πℓ

L
, (7.21)

where L appears in parentheses accompanying the respective integral. Therefore when

n 6= 0 the tachyon coefficients can be computed

tn =
2−2n2/R2

R
g(n2/R2), (7.22)

where we substituted

CT̃n
=

〈

σ(∞)
1

2πR
e−inX1/R(1)σ(0)

〉matter

UHP

=
2−2n2/R2

R
, (7.23)

which follows immediately from (7.2). We center the lump at the origin by taking the

constant a in (7.2) to be zero. With this definition, the tachyon coefficients satisfy t−n = tn.

23The two terms come from further reexpressing the KOS solution in the form

ΨKOS = −c∂σ
B

1 +K
cσ − c∂σ

B

1 +K
σ∂c

1

1 +K
. (7.17)
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Figure 2. Lump profiles plotted, starting from the top left, for radii R = 2
√
3,
√
3,
√
2, 1,

1
√

2
, 1
√

3
, 2

3
√

3
and 1

2
√

3
.

Now we are ready to plot the tachyon profile, which we show for various values of

the compactification radius R in figure 2. For R ≫ 1, the profile takes a fixed form with

negligible differences for different values of R. Similar behavior was observed for Siegel

gauge lumps in [72]. The largest radius shown in figure 2 is R = 2
√
3 ≈ 3.5, which is

already representative of the profile at larger radius. As R approaches 1 from above, the

tail of the lump begins to feel the finite size of the box, but the core is mostly unaffected.

As we cross the marginal threshold R = 1 we enter uncharted territory since (at the time

of writing) no solution has been identified in level truncation. We find that for R < 1

the depth of the lump rapidly decreases, while its spatial average falls to negative values.

The smallest radius shown in figure 2 is R = 1
2
√
3
, where the profile is almost completely
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flat with t(x) ≈ −.7. This behavior can also be seen in the explicit form of the tachyon

coefficients, as shown in table 1.

Curiously, negative values of the tachyon correspond to falling down the unbounded

side of the tachyon effective potential, which should contribute negatively to the energy.

This makes it difficult to understand where the positive energy of the lower dimensional

D-brane comes from when R < 1. Currently we cannot provide insight into this question,

as it may require a (possibly high level) analysis of the solution in level truncation. The

first positive energy solution in string field theory was identified in level truncation quite

recently [80], in the context of a systematic study of classical solutions describing Ising

model boundary conditions. This result provides evidence that positive energy solutions

can be understood in a controlled manner in level truncation.24

Since we have exact formulas, there are many features of the tachyon profile that

can in principle be studied analytically. One particularly interesting property is the fact

that the profile is basically fixed for sufficiently large radius. From the perspective of the

coefficients tn this is quite surprising, since they vary substantially with R well past the

point where the profile is stable. Since the profile rapidly decays away from the core, one

way to understand this phenomenon is that the profile at finite (but sufficiently large)

radius is approximately equal to a periodic sum of the profiles at infinite radius. In fact,

we claim that this property is exact: the profile at finite radius t(x,R) can be written in

terms of the profile at infinite radius t(x,∞) with the formula

t(x,R) = t0(∞) +
∑

n∈Z

(

t(x+ 2πRn,∞)− t0(∞)
)

, (7.24)

where t0(∞) is the zero mode coefficient (7.14) evaluated at R = ∞. We give a proof in

appendix B. Note that this is a special feature of the solution we have been working with,

and does not hold in a more general gauge.

8 Multiple D-brane solutions

In this section we will discuss the construction of backgrounds involving more than one

D-brane. We will first describe a solution representing multiple D(p − 1)-branes in the

string field theory of a single Dp-brane. Then we generalize to find a solution describing

multiple copies of the perturbative vacuum.

In the last section we found a solution for a single D(p− 1)-brane on a circle of radius

R. This automatically gives a solution for a pair of D(p − 1)-branes on a circle of radius

2R, one located at X1 = 0 and the other located at X1 = 2πR. Due to the remarkable

property (7.24), the “double lump” profile for this two D-brane system is simply the sum

of the “single lump” profiles centered at 0 and at 2πR:

tdouble lump(x, 2R) = t(x,R),

= t(x, 2R) + t(x+ 2πR, 2R)− t0(2R). (8.1)

24The σ-brane solution constructed in [80] has positive tachyon coefficient ≈ .1454. This result runs

counter to the expectation derived from (3.14), which always produces a negative tachyon coefficient for

higher energy solutions. We thank M. Schnabl for sharing this piece of numerical data.
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R +t0 −t1 −t2 −t3 −t4

3
√
3 0.229663 0.0566884 0.0604255 0.0617708 0.0581978

2
√
3 0.202297 0.0878951 0.0926562 0.0818861 0.0592841

√
3 0.120199 0.185312 0.118568 0.0381503 0.00775386

√
2 0.0832971 0.220203 0.0936014 0.0165937 0.00174037

1.2 0.047399 0.242197 0.0643166 0.00615465 0.000323713

1.1 0.025854 0.248766 0.0485287 0.0031664 0.00010647

1 0 0.250000 0.0330126 0.00134221 2.53129× 10−5

1/1.1 −0.0284394 0.243616 0.0205228 0.000485494 4.57246× 10−6

1/1.2 −0.0568788 0.230414 0.0121757 0.000162893 7.18534× 10−7

1/
√
2 −0.1178 0.187203 0.00348075 0.0000121516 8.48188× 10−9

1/
√
3 −0.208191 0.114451 0.000404475 1.33399× 10−7 3.50603× 10−12

1/2
√
3 −0.700776 0.000808949 7.01207× 10−12 1.82338× 10−24 1.12733× 10−41

1/3
√
3 −1.19336 4.00196× 10−7 2.73507× 10−24 7.5909× 10−52 6.925739× 10−90

Table 1. List of tachyon coefficients t0, . . . , t4 for various values of the compactification radius.

Note that for R < 1 the coefficients for the nonzero harmonics rapidly become negligibly small,

while the zeroth harmonic becomes increasingly negative. Note also that at R = 1 we obtain

t1 = − 1

4
, which means that the coefficient of the marginal operator cos(X1/R) in the solution is

−1/2. For solutions describing nonsingular marginal deformations, the coefficient of the marginal

operator in the Fock space expansion is equal to the marginal parameter describing the background

in BCFT. Thus we consistently find that the solution describes the cosine marginal deformation at

the critical value λ = − 1

2
where the boundary condition is Dirichlet.

One might guess that if the D-branes are at positions a and b, we should likewise sum the

lump profiles centered at a and b. This immediately suggests that the solution (around the

tachyon vacuum) is simply the sum of the solutions creating a D(p− 1)-brane at position

a and a D(p− 1)-brane at position b:

Φ = −ΣaΨtvΣa − ΣbΨtvΣb. (8.2)

Remarkably, this turns out to be correct. To see this, it is convenient to assemble the bcc

operators at a and b into row and column vectors

σ ≡
(

σa σb
)

; σ ≡
(

σa

σb

)

. (8.3)

The row and column have the obvious interpretation of “creating” Chan-Paton factors out

of a boundary condition where they are absent. Building Σ and Σ from σ and σ, we can

write the solution as

Φ = −ΣΨtvΣ. (8.4)

For this to satisfy the equations of motion, σσ must be equal to the 2× 2 identity matrix.

Computing we find

σσ =

(

1 σaσb
σbσa 1

)

. (8.5)
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The diagonals work correctly because σaσa = σbσb = 1. To understand what happens

with the off-diagonal elements, note that the leading term in the OPE between σND,a

and σND,b must be proportional to a bcc operator which shifts the Dirichlet boundary

condition from a to b. If a 6= b (modulo the circumference of the circle), this operator must

have positive conformal weight, which means that the leading singularity in the σND,a-

σND,b OPE must be less severe than s−1/8. But the Neumann-Dirichlet twist operators

are always accompanied by the timelike Wilson line, and the OPE of these bcc operators

vanishes as s1/8. Therefore, σaσb = 0 and

σσ =

(

1 0

0 1

)

. (8.6)

Therefore (8.4) is a solution. It is clear that this generalizes to any number of non-coincident

D(p− 1)-branes by simply adding more entries into the row and column vectors.

However, this misses the important case when the D-branes are coincident. We cannot

use the same bcc operators to describe all D-branes in this case, since then σσ will be

a matrix of “ones” rather than the identity matrix. However, there are many choices of

σ, σ which implement the same change of boundary condition. In the examples discussed

so far, we have chosen σ, σ in such a way that the spacelike factor has the lowest possible

conformal weight. But we can also consider “excited” bcc operators. For example, we can

build the lump solution using

σ′(s) =
i√
2
∂X2 σNDe

i
√

17/16X0
(s); σ′(s) =

i√
2
∂X2 σNDe

−i
√

17/16X0
(s), (8.7)

where X2 is a free boson orthogonal to X1. The computation of observables indicates that

the lump solution built from σ′, σ′ is physically identical to the previous lump solution built

from σ, σ in (7.1).25 In fact, these two sets of bcc operators have vanishing OPE, which

means that the row and column vectors

σ =
(

σ σ′); σ =

(

σ

σ′

)

, (8.8)

define a solution for a coincident pair of D(p− 1)-branes.

By the same mechanism, we can construct a “double brane” solution describing two

copies of the perturbative vacuum. Here there is no change of boundary condition, so we

simply construct σ,σ using the primaries of BCFT0. For example, if BCFT0 is made from

free bosons, we can define two sets of “bcc operators”:

σ1(s) =
i√
2
∂X1eiX

0
(s); σ1(s) =

i√
2
∂X1e−iX0

(s);

σ2(s) =
i√
2
∂X2eiX

0
(s); σ2(s) =

i√
2
∂X2e−iX0

(s). (8.9)

25In principle, the lump solutions built from (8.7) and (7.1) should be gauge equivalent. Since they are

already in the same gauge, this indicates that the gauge condition does not define the solution uniquely.

This phenomenon was already observed in [1], where a 1-parameter family of solutions for the perturbative

vacuum was found in Schnabl gauge. We thank M. Schnabl for discussions on this point.
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Defining row and column vectors

σ =
(

σ1 σ2
)

; σ =

(

σ1

σ2

)

, (8.10)

we have σσ = I2×2, and the solution creates two copies of the perturbative vacuum.

Actually, this is probably the simplest nontrivial solution discussed so far. The n-point

functions of σ and σ can be computed by elementary means, and even the Schnabl-gauge

solution (6.5) can plausibly be studied in a fairly explicit manner. Note that, contrary to

some expectations, this multibrane solution is not formulated within the universal sector.

A different approach to multibrane solutions, advanced in [71] and further explored in [81–

88], requires only universal states generated by K,B and c. However, the solution is quite

singular and an adequate regularization has not been found. Also, it is unclear in this

approach how non-abelian gauge bosons emerge in the spectrum of excitations.

Having discussed a few explicit examples, let us outline the general construction. Sup-

pose that, starting from BCFT0, we want to describe a system of N D-branes described

by boundary conformal field theories BCFTi for i = 1, . . . , N . We need N bcc operators

σi(s) = σ∗,i e
i
√
hiX

0
(s); σi(s) = σ∗,i e

−i
√
hiX

0
(s), (8.11)

where σ∗,i, σ∗,i are primaries of weight hi which act as the identity operator in the time

direction and change the boundary condition from BCFT0 to BCFTi in the spatial (c = 25)

directions. If the bcc operators satisfy

lim
s→0

σi(s)σj(0) = δij , (s > 0), (8.12)

then row and column vectors

σ =
(

σ1 . . . σN
)

; σ =







σ1
...

σN






, (8.13)

define a solution for the desired multiple D-brane system. The orthogonality condition

(8.12) is nontrivial. In general the σ∗,i-σ∗,j OPE takes the form

σ∗,i(s)σ∗,j(0) =
1

shi+hj−hij
σ∗,ij(0) + less singular, (s > 0), (8.14)

where the leading term is proportional to a boundary condition changing operator σ∗,ij
relating BCFTi with BCFTj with dimension hij . The orthogonality condition is satisfied

provided the conformal weights of the operators in this OPE satisfy the bound

|
√

hi −
√

hj | <
√

hij , (i 6= j). (8.15)

We are not certain whether this inequality poses a limitation on the possible multiple

D-brane systems that can be constructed by our method. In the case where the c = 25

theory is described by free bosons, we have confirmed that it is possible to create an
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arbitrarily large number of copies of the perturbative vacuum by choosing σis consistent

with this bound.26

In noncommutative field theories [89] and vacuum string field theory [41, 90–92], there

is a close relation between multiple D-brane systems and higher rank projectors. While

the solution (3.14) is not a star algebra projector, there is a natural way to associate a

star algebra projector to any classical solution in open string field theory [25, 29]. The

construction goes as follows. Consider a “singular” gauge transformation defined by the

string field27

U = QΨ

(

B

1 +K

)

,

= 1−Σ
1

1 +K
Σ. (8.16)

Formally, U is a gauge parameter defining a (reducible) gauge transformation from the

solution to itself:

Ψ = U−1(Q+Ψ)U, (formally). (8.17)

But in reality this gauge transformation is singular. To see why, note that the definition

of U together with the (presumed) existence of U−1 implies that the identity string field

is trivial in the QΨ cohomology:

1 = QΨ

(

U−1 B

1 +K

)

, (8.18)

which would mean that the solution supports no open string excitations. Therefore, if the

solution is not the tachyon vacuum, we are forced to conclude that U is not invertible.

If we think of U as an operator on the space of half string functionals [91, 92], it should

have a kernel. The projector onto the kernel is called the characteristic projector, and if

U = 1−X we can compute the characteristic projector from the limit

X∞ = lim
N→∞

XN . (8.19)

Plugging in (8.16) we find

X∞ = ΣΩ∞Σ,

= Σ1Ω
∞Σ1 + . . . +ΣN Ω∞ΣN , (8.20)

where Ω∞ is the sliver state [40, 93], and in the second step we expanded Σ,Σ out into

components Σi,Σi creating the boundary condition of each constituent D-brane. The

sliver state factorizes into a wavefunctional on the left and right halves of the open string,

and therefore can be interpreted as a rank one projector [91, 92]. Therefore, X∞ is a

26One of many possible choices is σj,∗ = σj,∗ = i√
2
∂X2p

(1)

j2
where p

(1)

j2
are the (properly normalized) zero

momentum primaries in the X1 BCFT of weight j2.
27We can in principle compute a projector given U = QΨb for any ghost number −1 state b, but the

choice (8.16) simplifies the calculation.
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sum of rank one projectors carrying the boundary condition of each constituent D-brane.

Moreover, since

ΣiΣj = δij , (8.21)

the projectors are ∗-orthogonal. Therefore, for a system of N D-branes, the characteristic

projector (formally) has rankN . The picture that emerges strongly resembles the boundary

conformal field theory construction of D-branes in vacuum string field theory [41], where

the equations of motion are solved by adding sliver states with appropriately deformed

boundary conditions. There are interesting differences, however. In [41] the projectors

are rendered ∗-orthogonal by the nontrivial conformal weight of the boundary condition

changing insertions, which under star multiplication produce a vanishing factor due to

a singular conformal transformation. In our construction, the matter insertions carry

vanishing conformal weight, and the singular multiplication of sliver states is not essential.

Rather, the projectors are ∗-orthogonal because the boundary insertions themselves are

already ∗-orthogonal.

9 Conclusion

To summarize, the solution takes the form

Ψtv − ΣΨtvΣ, (9.1)

where Ψtv is the tachyon vacuum (3.1) and Σ and Σ string fields which change the open

string boundary condition between the perturbative vacuum and the D-brane system we

wish to describe. The form of the solution is easy to grasp. To find a new background,

we first condense to the tachyon vacuum (the first term), then we “reverse” the process

of tachyon condensation to create the new D-brane system (the second term). Note, in

particular, that ΣΨtvΣ is the tachyon vacuum of the new D-brane system reexpressed (via

Σ and Σ) in the variables of the reference boundary conformal field theory. The solution

reproduces the physics of the new background in the sense that:

• The action evaluated on the solution describes the difference in tension between the

perturbative vacuum and the target D-brane system.

• The solution implies the correct coupling between the new background and closed

string states.

• The action expanded around the solution, after a trivial field redefinition, is identical

to the string field theory formulated in the new background. In this sense, the

background independence of open string field theory is manifest.

These results depend very little on the detailed form of the solution. They follow quite

generally from the relations

ΣΣ = 1; QΨtvΣ = QΨtvΣ = 0, (9.2)
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together with the fact that Ψtv is a solution for the tachyon vacuum. This suggests that

there may be other solutions which share the same basic structure and transcend some

limitations in our approach.28 Our implementation assumes the existence of boundary

condition changing operators of vanishing conformal weight, which for time-independent

backgrounds we construct by tensoring the background shift with a timelike Wilson line

of specific magnitude. This construction does not work for time-dependent backgrounds.

Moreover, this construction excites primaries in BCFT0 which are irrelevant to describing

the physics of the new background. This can hide symmetries — such as Lorentz invariance

— which we might prefer to be manifest.

One important question we have not addressed is the behavior of the solution in level

truncation. This question poses a technical challenge, both because the solution is some-

what exotic from the perspective of level truncation — due to the excitation of X0 pri-

maries and the existence of higher energy configurations — and because the gauge condition

B 1√
1+K

, 1√
1+K

= 0 produces solutions which are close to being singular from the perspective

of the identity string field [66]. Indeed, even the tachyon vacuum (3.1) gives a divergent

series for the energy in level truncation, though the series can be resummed to give the

expected result within less than a percent [3]. The Schnabl gauge solution (6.5) in theory

should be a safer starting point for level truncation studies, but the evaluation of 2n-point

functions of bcc operators presents a substantial technical obstacle.

In this paper we have focused on the bosonic string, but clearly it would be interesting

to generalize these results to the superstring. Given the central role of the tachyon vacuum

(3.1) in our construction, we expect that the tachyon vacuum of Berkovits superstring field

theory, recently found in [4], will likewise play a central role for the superstring. We hope

to return to this question soon.

The solution we have found appears to solve several longstanding and fundamental

problems in string field theory, and, with remarkable simplicity, demonstrates the power of

string field theory to provide a unified description of the multitude of backgrounds of first

quantized string theory. We hope to see exciting developments in the near future.
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A Four point function of twist fields

In this appendix we discuss the 4-point function of Neumann-Dirichlet twist operators for a

free boson X1 compactified on a circle of radius R. Most computations in this paper do not

require this correlator, but it implicitly appears (for example) in the computation of the

quadratic term in the equations of motion and the kinetic term in the action. (The cubic

term implicitly requires the six point function). Our main interest in the 4-point function

is as a cross-check on the OPE (7.4), and as an illustration of the algebraic structure of the

solution in the context of a correlator which is not completely fixed by conformal invariance.

The complete 4-point function of Neumann-Dirichlet twist fields, including instanton

corrections from the compactification, was computed in [76] and takes the form

〈

I ◦ σND(0)σND(1)σND(s)σND(0)
〉X1

UHP
=

2π

|s(1− s)|1/8G(s,R), (A.1)

where29

G(s,R) =
1

√

2
πK
(√

s
)

ϑ3

(

0, q
(√

s
)R2
)

. (A.2)

Here ϑ3(0, q) is the Jacobi theta function, K(k) the complete elliptic integral of the first

kind, and q(k) the nome

q(k) = e
−π

K(
√

1−k2)
K(k) . (A.3)

Tensoring σND, σND with the timelike Wilson line removes the singular factor |s(1−s)|−1/8:

〈

σ(∞)σ(1)σ(s)σ(0)
〉matter

UHP
= 2πG(s,R). (A.4)

We plot this for s ∈ [0, 1] in figure 3. Note that the modular property of the theta function,

ϑ3(0, e
iπ(−1/τ)) = (−iτ)1/2ϑ3(0, e

iπτ ), (A.5)

implies that the 4-point function satisfies

G(1− s,R) =
1

R
G

(

s,
1

R

)

. (A.6)

This is obviously related to T-duality. The correlator at radius R and 1/R are related by

a switch of Neumann and Dirichlet boundary conditions, which in effect interchanges σND

and σND. At the self dual radius, G(s,R) is constant:

G(s, 1) = 1. (A.7)

Note that the points s = 0 and s = 1 represent a collision between σ and σ, where the

4-point function reduces to a 2-point function. At these points we find

G(0, R) = 1; G(1, R) =
1

R
. (A.8)

This is confirms the OPE

lim
s→0

σ(s)σ(0) = 1; lim
s→0

σ(s)σ(0) =
1

R
. (A.9)
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Figure 3. The first plot shows the correlator (A.4) as a function of s ∈ [0, 1] when R = 2. Note

that the correlator is non-differentiable at s = 1, and the value is half that at s = 0. For illustrative

purposes, in the second plot we show the 4-point function of bcc operators for the 2-brane solution

(8.9). Here the value at x = 1 is twice that at x = 0, which represents the doubling of energy.

Thus the “associativity anomaly” can be seen explicitly in the 4-point function.

Let us take a closer look at the behavior of the 4-point function in the limit s → 1,

where we should be able to extract the σND-σND OPE computed in (7.4). To make the

expansion somewhat easier, it is convenient to use T-duality (A.6) to map from s = 1 to

s = 0. Then using the power series

ϑ3(0, q) = 1 + 2q +O(q4); (A.10)

2

π
K(k) = 1 +

k2

4
+

9k4

64
+O(k6); (A.11)

q(k) =
k2

16
+

k4

32
+O(k6), (A.12)

we obtain

〈

I ◦ σND(0)σND(1)σND(1− s)σND(0)
〉X1

UHP

=
1

s1/8
2π

R
+

1

s1/8−1/R2

2π · 2−4/R2+1

R
+ . . . , (R > 1/

√
2). (A.13)

The first and second terms represent the contribution from the identity operator and the

first cosine harmonic, respectively, in the OPE between σND and σND. The restriction

R > 1/
√
2 is assumed otherwise the second term is subleading to terms of the order s15/8,

which arise from the first Virasoro descendent of the identity. Alternatively, we should be

able to compute (A.13) by substituting the OPE (7.4) directly into the correlator:

〈

I ◦ σND(0)σND(1)σND(1− s)σND(0)
〉X1

UHP

=
1

s1/8
1

R

〈

I ◦ σND(0)σND(0)
〉X1

UHP

+
1

s1/8−1/R2

2−2/R2+1

R

〈

I ◦ σND(0) cos

(

X1 − a

R

)

(1)σND(0)

〉X1

UHP

+ . . . ,

(R > 1/
√
2). (A.14)

29Our notation for elliptic functions follows Gradshteyn and Ryzhik [94].
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Using the 3-point function (7.2)

〈

I ◦ σND(0)e
inX1/R(1)σ(0)

〉X1

UHP
= 2π2−2n2/R2

eina/R, (A.15)

we find agreement between (A.13) and (A.14).

B Additivity of the lump profile

In this appendix, we prove that the lump profile for the solution (3.14) compactified on

a circle of radius R is a periodic sum of the uncompactified lump profile. The profile at

radius R is given by

t(x,R) = t0(R) +
∑

n∈Z−{0}

1

R
2−2n2/R2

g(n2/R2)einx/R, (B.1)

where t0(R) is given by (7.14). In the limit R → ∞, the sum turns into an integral

t(x,∞) = t0(∞) +

∫ ∞

−∞
dk 2−2k2g(k2)eikx. (B.2)

Our goal is to establish

t(x,R) = t0(∞) +
∑

n∈Z

(

t(x+ 2πRn,∞)− t0(∞)
)

. (B.3)

Substituting (B.2), we should have

t(x,R) = t0(∞) +
∑

n∈Z

∫ ∞

−∞
dk 2−2k2g(k2)eik(x+2πRn). (B.4)

Performing the sum over Fourier harmonics gives a “Dirac comb” of delta functions:

∑

n∈Z
eik(x+2πRn) =

∑

n∈Z

1

R
δ(k − n/R). (B.5)

Evaluating the integral then gives

t(x,R) = t0(∞) +
1

R
lim
h→0

g(h) +
∑

n∈Z−{0}

1

R
2−2n2/R2

g(n2/R2)einx/R. (B.6)

This is almost the expected lump profile. All we have to do is show that the zero mode

works correctly. This requires

lim
h→0

g(h) = −t0(∞) ≈ −.2844. (B.7)

From the form of g(h) given in equations (7.19) and (7.20), it is clear that the h → 0 limit

is determined by the formula

lim
h→0

hf(s)h−1 =
1

f ′(0)
δ(s), (B.8)
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where f(s) is a function that vanishes at s = 0 and f ′ is the first derivative. Plugging

into (7.19) and (7.20), the integration over s disappears against the delta function, and

the remaining expression turns out to be (minus) the tachyon coefficient of the tachyon

vacuum, as required by (B.7). There is a schematic way to understand why this works. The

integration variable s in equations (7.19) and (7.20) represents the Schwinger parameter

for the factor

∂σ
1

1 +K
σ, (B.9)

which appears in the KOS solution. The formula (B.8) effectively says that this factor is

replaced by the identity string field in the h → 0 limit. Thus the KOS solution becomes

(minus) the tachyon vacuum:

− c∂σ
B

1 +K
σ(1 +K)c

1

1 +K
−→ −c(1 +K)Bc

1

1 +K
, (B.10)

and the tachyon coefficient is correspondingly that of the tachyon vacuum.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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