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ABSTRACT  

 Amazonian rocks record one amongst the most complete and best-preserved 

Paleoproterozoic magmatic episodes on Earth. The present contribution documents 

the extremely well preserved paleoproterozoic architecture of a series of felsic rocks 

found in the Tapajós Mineral Province (TMP), located in the western part of Pará 

state, southern Amazon Craton, north of Brazil. These rocks are the first to be 

investigated to comprehend, based on their textural evidences, their emplacement 

mechanisms. Textural characterization allowed to identify three main facies with, as 

following reported, 1) chaotic (“Breccia”) group, 2) eutaxitic (“Eutax”) group and 3) 

parataxitic (“Paratax”) group vitrophyric texture. Given the superb preservation of our 

samples, the investigated rocks are grouped, according to their grade of welding, into 

a wide variety of lithofacies from very low-grade to high-grade and rheomorphic 

ignimbrites. In the "paratax group" strong similarities with banding in lava flows are 

observed. Based on the presented data we discuss the effusive or explosive origin of 

the observed flow mechanisms. 

 

1. Introduction 

 The study area is located in the southwestern part of the Pará State, north of 

Brazil and is known as Tapajós Mineral Province (TMP). The southern part of the 

TMP (fig. 1) is poorly known and difficult to access mainly due to the dense forest 

cover. Besides the geological mapping (at 1:100000 scale) performed by the Brazilian 
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Geological Survey (CPRM), no detailed fieldwork has been carried out to date. Our 

field campaign found that granitoid felsic bodies are the prevailing lithotypes, 

although several volcanic felsic lava flows and volcaniclastic deposits are present. 

The observed features are consistent with those observed in various other regions in 

the Amazon Craton also characterized by an ancient volcanism of intermediate to 

felsic in composition. Rhyolitic lavas, ignimbrites of different welding and 

rheomorphic grade and rhyolitic breccias are reported by previous authors (Lamarão 

et al., 2002; Juliani et al., 2005; Lamarão et al., 2005; Juliani and Fernandez, 2010; 

Fernandez et al., 2011; Vasquez & Dreher 2011; Silva Simões et al., 2014). The 

present study is motivated by the fact that many of the silicic volcanic products have 

been interpreted either as lava flows or as densely welded/rheomorphic ignimbrites. 

Due to the occurrence of the process of rheomorphism and welding of volcanic 

materials that could potentially obliterate the original deposit structure and sample 

texture, distinguishing the fragmental or coherent nature of certain deposits, felsic or 

not, is sometime controversial and require a careful investigation (e.g. Branney at al., 

1992; Smith and Cole, 1997; Pioli and Rosi, 2005; Quane et al., 2009; Andrews and 

Branney, 2011). Ancient volcanic regions represent a challenge for the understanding 

of emplacement dynamics especially when the stratigraphic relationships of the 

deposits are difficult to decipher or blurred by erosion or vegetation cover. We aim 

here to improve the current knowledge of felsic volcanics investigated in the Amazon 

Craton by adding new textural and petrographic data useful to better constrain this 

still poorly known rhyolitic volcanism. This contribution aims to shed light into some 

of the volcanic processes that occurred in the TMP in order to better constrain the 

geological features of the Amazon craton.  

 

2. Geological and tectonic setting  

The Amazonian craton (Almeida et al., 1981) is one of the largest Precambrian 

terrains in the world, occupying approximately half of the Brazilian territory. It is a 

large Archean platform reworked and reactivated during the ca. 2100 Ma Trans-

Amazonian event (Amaral 1974, Costa and Hasui, 1997, Hasui et al. 1993). All 

volcanic/plutonic rocks forming the craton are attributed to the Uatumã Supergroup 

that extends to an area larger than 1,200,000 km2. These rocks were attributed, by 

previous authors, to a single magmatic pulse generated by a large scale extensional 

event of the Amazonian craton (Santos, 1984). However, according to Dall’Agnol et 
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al. (1994, 1999) and Lamarão et al. (1999) this supergroup is heterogeneous and 

includes not only one but several volcanic units. Based on geochronological data, 

Cordani and Brito Neves (1982), Teixeira et al. (1989), Tassinari and Macambira 

(1999) and Santos et al. (2000), divided the craton into several, predominantly NW-

oriented, provinces, which have been interpreted as successive continental 

accretionary events, granitic magmatism and tectonic reworking. Following the ideas 

of Tassinari and Macambira (1999), the craton can be divided into six 

geochronological provinces, whereas Vasquez et al. (2008), based on Santos (2003), 

proposed to divide the craton in eight geochronological provinces (Fig. 1a). TMP is 

situated mostly in the Tapajós-Parima (Santos et al., 2000) geochronological/tectonic 

province with the eastern part belonging to the Amazónia Central 

geochronological/tectonic province (Fig. 1a). Based on Sm-Nd data and U-Pb ages 

(2.1-1.87 Ga), Santos et al. (2001, 2004) and Vasquez et al. (2008), identified several 

different domains for the Tapajós-Parima geochronological province and consider the 

TMP as constituted by a sequence of continental magmatic arcs (Cuiú-Cuiú (ca. 2.01 

G), Jamanxim, Creporizão (1.98-1.97 Ga), Tropas (ca. 1.9 Ga) and Parauari (ca. 1.9-

1.88 Ga) followed by the Maloquinha anorogenic alkaline magmatism (Santos et al., 

2000, 2001, 2004) (fig. 1b). These units are progressively younger from southwest 

toward northeast pointing to a subduction zone in the Serra do Cachimbo Graben 

region and a continental zone in the São Félix do Xingu area within a flat-subduction 

scenario with continental arc migration from the Tapajos province to the Xingu region 

(Juliani et al., 2009). 

 

2.1 Peleoproterozoic volcanism of the TMP 

Late Paleoproterozoic volcanism of the Tapajos domain in represented by the Iriri 

group (fig. 1b) which is divided in Salustiano and Aruri formations consisting of 

rhyolites, dacites and their pyroclastic and epiclastic derivatives (Pessoa et al., 1977) 

and Bom Jardim formation (Almeida et al., 2000). The latter formation is 

characterized by mafic to intermediate high-K to shoshonitic calc-alkaline rocks 

(1898 ±5 Ma, Santos et al., 2001). Juliani et al. (2005) considered the Bom Jardim 

volcanism as a preliminary step of the Iriri event representing pre-caldera volcanism 

followed by the Salustiano and Aruri caldera-related felsic activity. Intense 

hydrothermal alteration induced by epithermal high-sulfidation Au-mineralization 

characterizes the area (Juliani et al., 2005). Post-caldera volcanism is characterized by 
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ring-felsic volcanic structures that produced A-type alkaline (Vasquez & Dreher 

2011) rhyolitic lavas and volcaniclastic flows. Lamarão et al. (2002, 2005) also 

described the felsic A-type alkaline volcanism (named as Moraes Almeida volcanic 

sequence) represented by lavas and ignimbrites as part of the Iriri group. They 

described the latter products as “reddish brown, strongly welded and oxidized, rich in 

crystals fragments and mm- to cm-sized lithic fragments” (Lamarão et al., 2002) 

without an in depth textural analysis of the rocks. These authors dated zircons of the 

investigated rocks and found ages in the interval between 1875±4 and 1890±6 Ma. 

Further investigation on the felsic A-type volcanism of the Iriri group from Juliani et 

al. (2014) also establish a relationship between this and the Santa Rosa Formation 

(1.87 Ga) in the Xingu region. This formation is characterized by felsic A-type 

alkaline volcanism which is considered to be related to a fissure-fed evolutionary 

model and caldera-related systems (Juliani and Fernandes, 2010, Fernades et al., 

2011).  

 

3. Ignimbritic textures: a review 

 Explosively generated fragmental deposits may weld, under certain 

conditions, and start to flow viscously (e.g. Heap et al., 2014; Kolzenburg and 

Russell, 2014; Wadsworth et al., 2014). Manly (1996) suggested that vitric fragments 

such as shards and pumices begin to distort and stretch up to the volcaniclastic flow 

becomes completely layered/banded in a viscous manner (Andrews and Branney, 

2011; Castro et al., 2014). Since the discovery of welded ignimbrites during 1960s 

(Ross and Smith, 1961; Schmincke and Swanson, 1967; Smith, 1960; Walker and 

Swanson, 1968) there has been lot of controversy related to recognition, origin, 

transport and emplacement mechanisms of intensely welded to rheomorphic 

ignimbrites. The absence of unequivocal vitroclastic textures complicates the 

distinction between volcaniclastic and layered lava flows. Walker (1983) introduced 

the concept of “grade of welding” that refers to the amount of welding and 

compaction exhibited by ignimbrites. A wide variety of ignimbrite lithofacies ranging 

from very low-grade slightly welded to very high-grade “lava-like”, through intensely 

welded to rheomorphic. Andrews and Branney (2011) highlight that welding and 

rheomorphism are favored by low-viscosity pyroclasts (Russel and Quane, 2005; 

Quane and Russell, 2005) that are strongly promoted by high emplacement 
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temperature (Russel et al., 2003), strongly peralkaline composition (Wolff and 

Wright, 1981; Dingwell and Romano, 1998), porosity and dissolved water (Robert et 

al., 2008; Bierwirth, 1982; Grunder et al., 2005; Grunder and Russell, 2005; Guest 

and Rogers, 1967; Heap et al 2014.; Kolzenburg and Russell, 2014; Wadsworth 

2014.). An emplacement condition that minimizes cooling of the magma such as 

voluminous eruptions (Bachmann et al., 2000) with low pyroclastic fountaining (e.g., 

minimal air ingestion and cooling) also favors low viscosities. Several authors 

suggested that welding and rheomorphism occur as flow and post-depositional 

processes. Ragan and Sheridan (1972) found that the rotated lithic clasts and rotated 

segments of broken fiamme might be the results of post emplacement loading. Wolff 

and Wright (1981) further proposed that lineation of high-grade ignimbrites are 

diagnostic of post-depositional “re-flowing” in contrast to the idea of Chapin and 

Lowell (1979) and Reedman at al. (1987) that consider these features as formed 

during initial deposition. Moreover, the idea that welding and rheomorphism are not 

always a mere post-depositional processes has been recently supported by different 

authors that provided evidence that welding of pyroclasts occurs syn-depositionally 

within the flow due to the sticking of, commonly, low viscosity particles (Branney 

and Kokelaar, 1992; Branney at al., 1992; Smith and Cole, 1997; Pioli and Rosi, 

2005; Andrews at al., 2008). Rheomorphism, such as banding in lavas, can be, in fact, 

characterized by ductile folds generated during and independently of the main flow. 

In the case of ignimbrites these features are associated with prolate, elongated fiamme 

and vesicles (Schmincke and Swanson, 1967; Chapin and Lowell, 1979; Wolff and 

Wright, 1981; Branney at al., 1992; Summer and Branney, 2002; Pioli and Rosi, 

2005; Andrews and Branney, 2011; Brow and Bell, 2013). When the coalescence of 

“soft” pyroclasts reaches very high grades and the rheomorphism develops deeply in 

the ignimbrite the original clast features are totally obliterated and the deposit appears 

as a flow-banded lava-like (Andrews and Branney, 2011) that complicate the 

discrimination with a lava flow.  

4. Textural analyses 

 In the following section we present the volcanic rocks (Fig. 2) studied in the 

field close to the Novo Progresso and Castelo dos sonhos villages (fig. 1b). Details of 

macroscopic and microscopic textures of our samples are given in figure 3 and 4, 

respectively. We divided macroscopically our samples in three main textural groups 
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that display chaotic (“Breccia”) group (fig. 3a), eutaxitic (“Eutax”) group (3b, c, d) 

and parataxitic (“Paratax”) group (fig. 3e) vitrophyric textures as described below.  

 4.1 The Breccia group 

The Breccia group is characterized by matrix-supported texture with sub-rounded to 

angular clasts and deformed fragments of different lithologies. Lithologies vary from 

reddish and dark massive lava lithics, to welded-tuff lithics, banded rhyolite 

fragments, ehuedral, subhedral and broken crystals, shards and scattered low- to 

medium/high deformed devitrified fiamme (fig. 3a; fig. 4a�4g). Several, and often 

all, of these lithotypes can be found in a single rock sample of the breccia group.  

 4.2 The Eutax group   

The Eutax group shows moderately to strongly flattened glassy fragments (fiamme) 

that form discontinuous and non-homogeneous layering. Eutaxitic texture is shown in 

figures 3b, 3c and 3d. Figure 3c displays well-stretched fiamme, varying from 

millimetric to 3-4 cm in size, immersed in a homogeneous reddish matrix; no lithics 

are present. The sample in figure 3d is polylithologic in composition. Fiamme and 

lithics as well as glassy fragments slightly- to well-stretched are observed in this rock. 

The microphotographs of the eutax group in figure 4h/i/j/k/l show the eutaxitic fabric 

with viscously deformed fiamme and shards immersed in a microcrystalline matrix. 

Note that sample represented in figure 3b show both eutaxitic and parataxitic fabric. 

Wispy shard-like fragments are present (fig. 4i) and are found in pressure shadows 

adjacent to crystals or lithics.  Fiamme, shards and glass matrix are completely 

devitrified. Feldspar crystallites form distinct bundles, many of which display 

spherulitic growth (fig. 4r) around a central nucleus of feldspar, whereas others 

display axiolitic growth characterized by crystals radiating from the walls toward the 

inner part of the glassy fragments (fig.4r).  

 4.3 The Paratax group 

The Paratax group (fig. 3e) comprises elongate, thin, dark and light bands and 

boudinaged fiamme. The original vitrous fragments are in most cases approaching 

homogenization; fig. 3e shows some clastic glassy fragments whit abrupt 

terminations. Parataxitic fabric typically displays subhorizontal bands (fig. 4m), 

although, in places, intricate small-scale intrafolial folds are present (fig. 4q). The 

bands are deformed and flattened around lithic fragments and crystals (fig. 4n/o/p), 
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some of them being rotated (fig. 4p). All the vitrofiric components of this group are 

completely devitrified and display features described above for the Eutax group.  

 

5. Composition and petrology  

 Whole rock analyses (Table 1) exhibit mainly alkali-rhyolite to rhyolite 

compositions with SiO2 content ranging from 65 to 76 wt% and an alkali content of 9-

10 wt% with an average K2O/Na2O ratio of 1.23 (Fig. 5). Our samples display an 

original crystal content ranging from ca. 5 to 45 vol%, a minor lithic clast population 

constituted of lavas and devitrified fragments immersed in a fine groundmass 

composed of quartz, potassic feldspar, cloritized biotite and sericite. The phenocryst 

assemblage consists of plagioclase, potassic feldspar and a small amount of Fe-Mg-

phases and quartz. Plagioclase crystals range from subhedral to anhedral, are 

commonly fragmented and show moderate to intense resorption and sieve texture 

indicating non-equilibrium conditions during magma transport. A few of them show 

distortion probably developed during flow and jigsaw-fit fractures.  Potassic feldspar 

crystals are anhedral and present mainly in the matrix associated with sericite. Rare 

phenocrysts of quartz present bipyramidal habit or display rounded edges due to the 

reabsorption processes with matrix. The microcristallinity of the groundmass (visible 

in cross-polarized light), which we define as “pepper-salt”, is a micro-granophiric-like 

devitrification texture characterized by crystallization of amorphous quartz 

(cristobalite) and alkali feldspar. Samples are generally affected by variable intensity 

of hydrothermal alteration. Plagioclase phenocrysts present diffuse potassic and less 

propylictic alterations. Groundmass is affected by sericitic alteration. 

 

6. Discussion and conclusive remarks 

 The detailed description and classification of textural features allows us to 

distinguish between different transport and emplacement mechanisms associated to 

effusive and explosive eruptive styles. Under certain conditions (i.e. intense welding 

or rheomorphism) the differences between the flow mechanisms are frequently not 

clearly distinguishable; being particularly complex in strongly altered or poorly 

exposed volcanic successions as those described above. This work allowed us to 

establish, based on variations in textural facies, the distinction of three main 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 

 

typologies of felsic volcanic rocks. The Breccia group is characterized by the 

presence of material of fragmental origin. Vitric fragments (although devitrified and 

altered), lithics and broken crystals suggest the explosive nature of these deposits. 

Juvenile fragments are deformed around lithic clasts and crystals or compacted in the 

matrix implying welding likely promoted by hot sedimentation. Some of our 

specimens display both deformed fiamme with wispy or ragged terminations and 

discontinuous streaks that may be related to different grades of agglutination 

(dynamic process requiring transport) of hot fragments. The variation in welding 

characters and gradation of eutaxitic/parataxitic flow-laminated (reomorphic) tuffs 

from the more particulate flow deposits strongly suggests that the rhyolites are 

pyroclastic in origin. Strongly layered and folded rocks with no univocal clastic 

character are the most complex to interpret, as a clear distinction between lavas and 

particulate flows (fig. 2d and 3e) was not possible. Eruption dynamic associated to 

middle- to high-grade rheomorphism of silicic volcanics and rhyolitic-banded lava 

flows are both favored by low viscosity high temperature condition emplacement. 

This promotes the high flow-mobility and could explain the presence of silicic large 

volcanic areas characteristic of the ancient Amazonian volcanism. The Uatumá 

Supergroup, both plutonic and extrusive magmatism, has an extension of more than 

1,200,000 Km2 constituted in part by volcanic deposits ranging from andesitic to 

rhyolitic in composition. The real extension of the felsic volcanism is still poorly 

known as well as its origin. Previous authors mentioned that the felsic products 

present in the Amazon Craton could be related to caldera-type systems (Lamarão et 

al., 2002; 2005; Juliani et al., 2005; Pierosan et al., 2011). Later, Juliani and 

Fernandez (2010), inspired by the model of Aguirre et al. (2003), suggested a fissure-

fed evolutionary model for the felsic Santa Rosa formation in the Xingu region. The 

model for fissure ignimbrites used by Aguirre et al. (2003) to explain the “Sierra 

Madre Occidental” formation is similar to those proposed for calderas; “the main 

differences are the batholithic size of the magma chamber(s) to account for the 

impressively large volume of the ignimbrite package of the Sierra Madre Occidental 

and the fissure-type vent and/or vents aligned along a normal fault instead of forming 

an arcuate structure”. We still cannot fully support any specific model due to the lack 

of strong data. Nonetheless, inspired by the work of Juliani and Fernandez (2010), we 

propose that a fissure-fed volcanism, similar to that proposed by these authors for the 

nearby Xingu region, could be used to explain the features of the TMP volcanic rocks 
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object of the present contribution. Although a more detailed field campaign and 

detailed mapping of the area will be necessary in order to reconstruct the previous 

volcanic landscapes (e.g. paleo-vents, feeding-systems) and their distribution. 

Additional textural studies will have to be carried out to describe more in depth flow 

features of volcanic structures and samples. 

 

Acknowledgments 

This work was supported by the project CAPES/CNPq 402564/2012-0 (Programa 
Ciências sem Fronteiras) to Caetano Juliani and Matteo Roverato. M. Roverato 
acknowledges the grant of the Brasilian CAPES/CNPq Programa Ciências Sem 
Fronteiras, Atração de Jovem Talento 402564/2012-0. We acknowledge the 
CNPq/CT-Mineral (Proc. 550.342/2011-7) and the INCT-Geociam (573733/2008-2) – 
CNPq/MCT/FAPESPA/PETROBRAS). D. Giordano acknowledges financial support 
for this research from the CAPES project (proposal 302827) of the Ciências Sem 
Fronteiras program (Brazil) and the local research funds (2012, 2013, 2014) of the 
University of Turin. We would like to acknowledge Stephan Kolzenburg for 
thoughtful comments and suggestions and Joan Marti and an anonymous reviewer for 
improving manuscript.  
 

Figure caption:  

Fig. 1: (a) Location map of the Amazonian Craton divided in eight 

geochronological/tectonic provinces in according with Santos et al. (2003); G = 

Guyana, GF = French Guyana, S = Suriname. (b) Geological map of the Southern 

Tapajos Mineral Province (simplified from Juliani et al., 2014); TMP = Tapajós 

Mineral Province. 

 

Fig. 2: Photographs of four outcrops showing the transition between (a) slightly 

welded, (b) moderate-grade welded, (c) rheomorphic and (d) lava-like felsic bodies. 

Pictures (a and b) clearly show the particulate nature of the deposit while the clastic 

character of the outcrop in the picture (c) is slightly visible blurred by the 

rheomorphic process. Picture (d) display strong lineations and convolute folds, 

features shared both by high-grade rheomorphic ignimbrites and banded-lavas that 

makes difficult their discrimination. 

Fig. 3: Scanned images of the polished hand-scale samples collected in the field 

showing the different grades of welding. Picture (a) shows a rhyolitic ignimbritic 
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breccia, (b, c and d) display different grades of the eutaxitic fabric, (e and f) show the 

parataxitic texture. 

Fig. 4: Photomicrographs showing the different textures present in the collected 

samples. (a and d) “Panoramic” images of the “breccia group” showing the population 

of lithics, banded-rhyolite fragments, ehuedral/subhedral and broken plagioclase 

crystals, “glassy” deformed and (c) fluidal fragments immersed in a microcrystalline 

matrix. (a and b) Some flattened fiammes display a thin parallel layering that 

represent the compaction of pumice vesicle-walls. (e and h) Compacted and stretched 

devitrified fragment displaying spherulites and a broken plg crystal that shows 

displacement and pull-apart structure (e- white circle). (f) Some “glassy” clasts 

present non-flattened. (g and i) Other characteristic of compaction of hot pyroclasts is 

the presence of micrometer shards stretched and deformed around lithics and crystals. 

The subhedral pyroxene in figure (g) displays a chlorite (green aspect) and titan 

(light-brown stains) that substitute the original composition of the crystal. The 

eutaxitic fabric in well represented by the microphotographs (j),  (k) and (l). The 

flattened fiammes and shards organize in sub-parallel bedding and deform around 

crystals due to the compaction of hot low-viscous pyroclasts. (l) X-nicols image 

evidences the “pepper-salt” microcrystalline matrix formed mainly by K-fld and 

quartz. (m) “Panoramic” image of the parataxitic fabric showing continuum bedding 

of “glassy” streaks deformed around crystals (n and o). Some indicators can suggest 

the flowing direction such as imbricated (m- top-right arrow, n, o) and rotated crystals 

(m- central arrow, p). Some streaks present abrupt termination as indicated in figure 

(m) (white circle) that could be an indicator of the particulate nature of the deposit. 

Figure (q) shows micrometric folds related to ductile shearing. (o and r) X-nicols 

images showing the devitrified character of the deposits represented by spherulites 

and axiolitic texture.  

Fig. 5: Classification diagram R1 vs. R2 (De La Roche et al., 1980) for the studied 

rock samples. 

 

Table 1: Major element composition of collected samples  
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Figure 4(i) 
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Figure 4(ii) 
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Table 1 

Sample  39B 79 84A 101 156B 173 176 178B 179 180 183A 184 C0-67 

SiO2 65.32 71.8 68.15 72.22 71.59 75.58 75.93 70.86 72.53 69.73 71.25 70.99 70.81 

TiO2 0.86 0.34 0.48 0.32 0.36 0.2 0.2 0.39 0.37 0.44 0.41 0.37 0.40 
Al 2O4 16.62 14.17 15.44 14.29 14.28 12.97 12.72 14.63 14.45 15.3 14.66 14.55 14.77 

Fe2O3 3.63 1.57 2.25 1.49 1.54 1.1 0.87 1.74 1.86 2.26 1.74 1.94 1.7 

MnO 0.09 0.04 0.09 0.04 0.04 0.07 0.06 0.07 0.09 0.09 0.09 0.08 0.09 
MgO 0.51 0.32 0.54 0.25 0.19 0.19 0.16 0.29 0.3 0.36 0.24 0.3 0.35 

CaO 2.07 1.04 0.98 0.59 0.5 0.72 0.34 0.88 0.65 0.88 0.56 0.68 0.91 

Na2O 4.99 3.75 4.56 4.12 3.63 3.21 3.46 4.7 4.38 4.49 4.54 4.97 4.42 

K2O 3.88 5.73 5.63 5.6 5.6 5.18 5.11 5.11 5.56 5.64 5.57 4.87 5.71 

P2O5 0.22 0.04 0.09 0.04 0.04 0.02 0.01 0.06 0.06 0.07 0.05 0.06 0.07 

LOI 1.5 0.99 1.34 0.82 1.28 1.49 0.88 1.28 0.85 1.0 0.81 1.07 1.03 
Total 99.87 99.88 99.82 99.94 99.19 100.78 99.79 100.22 101.19 100.28 100.01 100.16 100.51 
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Highlights Roverato Matteo 

 

> The superb preservation of the Paleoproterozoic fabric of felsic volcanics 

investigated in the Tapajos Region, southern Brazilian Amazonia, allowed us to 

analyzed in detail the fabric of these ancient rocks 

> We divided our rocks in three groups: chaotic “Breccia” group, eutaxitic 

“Eutax” group and parataxitic “Paratax” group depending on the grade of 

welding  

> We propose that a fissure-fed volcanism could be used to explain the features of the 
volcanic rocks object of the present contribution 

 

 


