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Abstract 
 

 
 
In this study, we investigated the role of B cells in the microenvironment of human PDAC, in a 

retrospective and consecutive cohort study involving a series of 104 PDAC patients and in PDAC 

preclinical models. Analysis of PDAC tissues by immunohistochemistry revealed two distinct 

patterns of B cell distribution, either as randomly infiltrating cells (CD20-TILs), or strategically 

located within organized tertiary lymphoid tissue (CD20-TLT). The two B cell components 

displayed divergent immune profiles and opposite prognostic relevance. Notably, high density of 

CD20-TLT associated to a germinal center immune signature, correlated with CD8-TIL infiltration, 

and empowered their favorable prognostic value. The presence of PD1+ follicular helper T cells 

(Tfh) within CD20-TLT correlated with increased density of TLT and the two immune variables 

together identified a subgroup of patients with better prognosis. Vaccination of KRasG12D/Cre mice 

with ENO1, a pancreatic tumor antigen, induced formation of intra-tumoral TLT with active germinal 

centers and correlated with increased recruitment of T cells, suggesting induction of TLT as a 

strategy to favor localization of immune cells in PDAC. In contrast, in an implanted tumor model 

devoid of TLT, depletion of diffuse B cells with an anti-CD20 antibody reinstated an antitumor 

immune response. Our results highlight B cells as an essential element of the microenvironment of 

PDAC, but with divergent roles according to their localization. A mindful evaluation of B cells in 

human PDAC could represent a powerful prognostic tool to identify patients with distinct clinical 

behaviors and responses to immunotherapeutic strategies. 
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INTRODUCTION 

 

Pancreatic ductal adenocarcinoma (PDAC) is the fifth cause of cancer worldwide (1). 

Approximately, only 20% of patients are eligible to surgery and standard-care therapies have 

limited impact on survival (2), fostering the efforts towards complementary anticancer strategies, 

including immunotherapy. PDAC-associated immune contexture has been described, both in 

genetic mouse models and human PDAC, as a desmoplastic stroma mainly composed of 

immunosuppressive cells (3), since the very early phases of the disease (4) and representing a 

barrier to both chemotherapeutic drugs (5) and effector T cells (6), as well as a target of 

immunotherapeutic approaches (7). This view has recently been challenged by studies revealing a 

positive effect of PDAC stroma to immunotherapeutic strategies (8, 9), thus reinforcing the 

hypothesis that a better definition of the immune environment of PDAC would help identifying 

patients who are more likely to benefit from immunotherapeutic approaches (4, 10, 11). 

In the era of personalized cancer medicine and innovative immunotherapeutic strategies, 

translational research has been challenged with the need of informative biomarkers to better 

stratify tumor patients and choose the optimal therapeutic treatment accordingly (12). Tumor 

profiles generated by standardized wide-scale analyses have highlighted a central position of 

immune variables in dictating tumor progression (12-14), suggesting that specific immune subsets 

should be included within currently available TNM staging in the determination of patient’s 

prognosis (15, 16). Despite the advent of innovative prognostic  tools, such as global molecular 

analyses, histo-pathological examination of immune infiltrates in tumor tissues still stands as one of 

the most powerful approaches to assess the relevance of the immune microenvironment. 

Within the tumor microenvironment, the spatial orientation of immune cells has emerged as 

important determinant of immune cell function (17). According to the localization and distribution of 

lymphocytes within tumors, various components of the intra-tumor lymphocytic reaction can be 

identified, including peri and intra-tumor infiltration, diffuse infiltration and, more recently defined, 

organization into ectopic lymph node structures (or tertiary lymphoid tissue, TLT) (16, 18-22). 
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Spatial compartmentalization of lymphocytes within TLT is crucial for recruitment of tumor 

infiltrating T lymphocytes (TILs) (16, 22, 23), T cell activation and germinal center reactions (24, 

25), and has been shown to coordinate with TIL infiltration in predicting better clinical outcome (16, 

26). Even though B cells represent an important component of the immune infiltrate in solid tumors 

(27-32) and a major cellular constituent of TLT, the role of tumor infiltrating B cells has been only 

marginally addressed, mainly because B cells infiltrate the tumor microenvironment in smaller 

numbers compared to T cells and other leukocyte populations. Thus, a definition of B-cell functions 

in the progression of human cancer is still object of intense study. B cell activation requires proper 

help from follicular helper T (Tfh) cells, the T cell subset residing in the B cell area of lymphoid 

tissue and deputed to induce B cell differentiation into immunoglobulin-producing cells (33, 34). Tfh 

home to B cell follicles within lymphoid organs to support antibody responses and are key 

regulators in germinal center (GC) reactions, regulating B cell survival and affinity maturation within 

GC (35-37). Compared to other CD4+ T cell subsets, Tfh cells distinctly express the transcription 

factor B cell lymphoma 6 (Bcl-6), co-stimulatory molecules including programmed cell death 1 

(PD1) and inducible costimulator (ICOS) and high levels of IL-21 and CXCL13, important 

molecules to shape B cell responses. Their role in anti-tumor immune responses has been recently 

proposed (38). 

 

In this work, with an accurate and systematic assessment of specific immune variables, we 

analyzed B cells infiltrating human PDAC. We found B cells in two histologically distinct 

components, either within tertiary lymphoid tissue (B-TLT) or interspersed at the tumor-stroma 

interface (B-TILs). In a large mono-institutional cohort of 104 surgically resected PDAC patients, 

the two B cell components identified subpopulations of PDAC patients with specific immune 

signatures and clinical behaviors. Our results highlight the central role of B cells in the progression 

of human PDAC and the importance of an accurate evaluation of the in situ immune reaction. 
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RESULTS 
 

Distinct histological patterns of B cells in human PDAC. Human pancreatic adenocarcinoma is 

conventionally considered non-immunogenic, due to immune exclusion and a prominent infiltration 

of T–regulatory and immunosuppressive myeloid cells (3, 7). Interestingly, immunohistochemistry 

analysis of human PDAC specimens with an anti-CD20 antibody revealed a considerable 

infiltration of B cells (Figure 1A). CD20+ cells localized not only as interspersed cells at the tumor-

stroma interface (CD20-TILs) (arrowheads in Figure 1A and Figure 1B), but also as a component 

of dense aggregates displaying a distinct structural organization and located in the tumor stroma 

(asterisks in Figure 1A and Figure 1C). These structures resembling tertiary lymphoid tissue 

(CD20-TLT) were not present in the normal pancreatic tissue (not shown), thus suggesting that 

their neo-genesis is related to tumor occurrence. Importantly, B cells infiltrating human PDAC were 

preferentially located within TLT (CD20-TLT); in fact, density of B cells in TLT was significantly 

higher compared to density of scattered CD20-TILs (P<0.0001; Figure 1D). A more detailed 

characterization of CD20-TLT aggregates revealed an organization similar to lymph-nodes, with B 

cells (Figure 1E) and T cells (Figure 1F) partitioned in topologically distinct areas, containing 

CD8+ lymphocytes (Figure 1G) and mature dendritic cells expressing DC-LAMP (Figure 1H). An 

organized network of specialized PNAd+ high endothelial venules (HEV) (arrowheads in Figure 1I) 

and lymphatics (arrowheads in Figure 1J) confirmed that they have features of tertiary lymphoid 

tissue (TLT). The presence within lymphoid tissue of the lymph-organogenic chemokines CXCL13 

(Figure 1K) and CCL21 (Figure 1L), involved in recruitment of B and T cells and in their 

topological segregation, suggests an immunological task for TLT in the microenvironment of 

human PDAC.  

 

Dichotomy of B cell prognostic impact in human PDAC. The dual histological distribution of B 

cells within pancreatic tissue suggests that they could have distinct functions. We then addressed 

the clinical significance of B cells in human PDAC considering CD20-TLT and CD20-TILs as 

peculiar populations. In a retrospective cohort study, we quantitatively evaluated the density of the 
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CD20-TLT and CD20-TILs at the tumor-stroma interface of 104 tissue specimens from 

consecutive, non-metastatic PDAC patients. Distributions of immune populations according to the 

patient histo-pathological characteristics are described in Supplementary Table 1. Considering 

the overall cohort, TLT immune-reactive area (IRA%) ranged from 0.00% to 23.49%, with a median 

value of 3.72% (second–third quartiles, 1.71%-5.71%) (Supplementary Table 1). We recorded 38 

events of disease specific death (DSS) in 104 PDAC patients. Cox multivariate analysis showed 

that nodal status and grade associated to prognosis; notably, among the immune variables 

analyzed, B cells were independently associated to prognosis, but their prognostic value diverged 

according to their distribution, since CD20-TLT associated with better prognosis (p=0.010, 3rd -4th 

versus 1st quartile; Table 1), while CD20-TILs associated to worse prognosis (P=0.040, 3rd versus 

1st quartile; Table 1). This result highlights B cells as prognostic variables in human PDAC and 

suggests that the influence of B cells on tumor progression changes whether they are confined 

within lymphoid tissue or are scattered at the tumor-stroma interface. In accordance, Kaplan-Meier 

survival analysis showed that while high density of CD20-TLT (1st versus 2nd-4th) correlated to 

better prognosis (P=0.0085; n=104; Figure 2A), CD20-TIL density (1st-2nd versus 3rd-4th) had a 

propensity to associate to worse prognosis albeit not significant (P=0.115; n=104; Figure 2B). 

Most importantly, the immune signature comprising CD20-TLThi /CD20-TILlo robustly predicted 

longer survival (P=0.0051; n=104; Figure 2C), confirming that the histological architecture of B 

cells dictates their prognostic behavior, with only B cells sequestered within a lymphoid tissue 

contrasting tumor progression.  

 

Confinement of B cells within TLT associates to a germinal center immune signature, 

correlates with CD8-TIL infiltration, and empowers their favorable prognostic value. To 

understand how B cells dually regulate tumor progression according to their distribution, we 

analyzed the immune signature of PDAC tumors from TLThi (4th quartile) patients compared to 

TLTlo (1st quartile) patients, by mRNA expression analysis of paraffin-embedded tissue specimens. 

Normal pancreatic tissue, adjacent to tumor region, was taken as control tissue. Hierarchical 

clustering analysis revealed stable groupings by type of immune infiltrate (Supplementary Figure 
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1), with TLThi versus TLTlo samples segregating together, suggesting that classification of tumor 

specimens according to the density of CD20-TLT identifies specific gene expression programs. 

Compared to normal pancreatic tissue, PDAC specimens with high density of TLT showed major 

changes in genes related to B-cell differentiation and proliferation (interleukin-7 (IL7)) and B-cell 

responses (IL4, IL5, IL13), germinal center reaction (activation-induced cytidine deaminase 

(AICDA), inducible T-cell costimulator ligand (ICOSL)), B-cell signaling (B-cell linker (BLNK), 

lymphocyte-specific protein tyrosine kinase (LCK)) and B cell recent activation (CD27) (Figure 3A). 

Surprisingly, TLThi PDAC samples exhibited a significant increase in genes related to T-cell 

infiltration (CD8A, CD8B and CD4) and activation (IL-12, IL12RB1, CD86, CD40L) 

(Supplementary Figure 1), suggesting that the presence of B cells within TLT was also regulating 

T cell recruitment and activation. Immunohistochemical analysis confirmed that B cells within TLT 

were often engaged in a germinal center reaction, as evidenced by Bcl-6 (arrowheads in Figure 

3B, upper panel) and Ki67 immunostaining (arrowhead in Figure 3B, lower panel).  

CD8+ T cells are a essential constituent of the antitumor immune response in the 

microenvironment. In light of the association between TLThi and CD8 in gene expression analysis, 

we assessed the density of tumor-infiltrating CD8+ T-cells (CD8-TILs) in the 104 PDAC patients 

(Supplementary Figure 2). Notably, whole tissue visualization of CD8+ infiltrating cells evidenced 

a higher density of CD8-TILs in tissues with a high density of TLT (arrowheads in Figure 3C). In 

fact, density of CD20-TLT linearly correlated with the density of CD8-TILs (r=0.29, p=0.009, n=104) 

(Figure 3D), consistent with the ability of TLT to mediate recruitment of lymphocytes (16). Most 

important, while CD8-TILs were not associated to prognosis on their own (P=0.254, n=104) (Table 

1 and Figure 3E), concomitant high density of CD8-TILs (2nd-4th quartiles) and high density of TLT 

(2nd-4th quartiles) identified a subgroup of patients with better outcome compared to other patients 

(p=0.031, n=104) (Figure 3F), suggesting that the presence of tertiary lymphoid tissue empowers 

the prognostic function of CD8+ T cells. 

 

PD-1+ follicular helper T cells within TLT germinal centers regulate the balance between B-

cell protumor and antitumor prognostic value. We then moved on to investigate specific 
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elements inside TLT could have a role in B cell dual function. Within the B-cell zone of TLT (Figure 

4A), it was often possible to distinguish a distinct structure resembling a germinal center (GC), 

characterized by the presence of PD-1+ cells (Figure 4B). This suggests that they could be T-

helper follicular cells (Figure 4C), an important subset of T cells with a key role in the germinal 

center reaction and B cell activation (33, 34). To investigate whether the presence of this particular 

subset within the germinal center of TLT could have an impact on B cell prognostic function, we 

systematically quantified the germinal centers expressing PD-1 (PD1-GC) in the cohort of 104 

PDAC patients. PD-1-GC cells were present in 32 out of 104 patients (30.8%). Notably, comparing 

PDAC specimens with and without PD1-GC cells, the number of patients with high density of TLT 

was significantly higher in the PD1-GC group compared to specimens with low density of TLT 

(p<0.0001), suggesting that the presence of this subset is key to the formation of TLT within the 

tumor microenvironment (Figure 4D). Surprisingly, in patients with PD-1-GC there was no 

correlation of CD20-TLT with CD20-TILs (r=-0.001, P=0.559, n=32) (Figure 4E), while the two B 

cell components correlated in specimens without PD1-GC (r=0.39, P=0.001, n=70) (Figure 4F), 

suggesting that the presence of PD1-GC cells could be an important factor favoring B cell 

aggregation in TLT and preventing B cell scattering within the tissue. Interestingly, multiple linear 

regression analysis revealed that the density of CD20-TLT did not linearly correlate with the 

density of CD20-TILs among PDAC patients with good prognosis (r=0.31, p=0.109, n=66), while 

the two B-cell variables correlated among patients with poor prognosis (r=0.47, p=0.035, N=38) 

(Supplementary Figure 3), suggesting that only B cells sequestered within TLT critically inhibit 

tumor progression, while the presence of B cells within the tumor tissue seems detrimental to the 

disease.  

Importantly, a concomitant presence of PD1-GC cells and high TLT (2nd-4th quartiles) (Figure 4G) 

identified a subgroup of patients with a significantly better prognosis (p=0.027, n=102). This data 

suggests that Tfh cells are decisive determinants of TLT formation and B cell retention within TLT, 

and that PD-1-GC cells could strongly contribute to the organization of an antitumor immune 

response in human PDAC. 
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Antigen-specific immunotherapeutic vaccination induces neogenesis of intratumor TLT 

with PD-1+ germinal centers in a preclinical model of PDAC. The presence of immunological 

active TLT could be of remarkable importance in the perspective of inducing a local antitumor 

humoral immune response. Several immunotherapeutic approaches are under study in human 

PDAC, including vaccination protocols directed against PDAC antigens, which would benefit from a 

microenvironment favorable for TLT induction. We therefore investigated whether a DNA 

vaccination could induce formation of TLT in a genetic preclinical model of PDAC. Vaccination of 

tumor-bearing mice with a vector encoding α-enolase (ENO1) has been shown to have a 

protective effect in KrasG12D/Cre mice (39). Immunohistochemical analysis of PDAC tumors 

confirmed the sporadic occurrence of TLT in PDAC tumors. However, mice injected with ENO1-

vaccine had a significant increase of number and area of TLT, compared to both untreated and 

mice injected with empty vector (Figure 5A-B), suggesting that boosting the immune response 

with vaccination induces recruitment and organization of lymphocytes in the microenvironment. 

Remarkably, analysis of PD1-GC highlighted a robust increase in ENO1 mice compared to control 

(Figure 5C-D), demonstrating that vaccination is able to break the immunosuppressive barrier, 

inducing a specific in situ immune reaction .The increase was paralleled by an increase in CD3-

TILs, suggesting that induction of TLT by immunotherapeutic approaches could be a strategy to 

increase recruitment of T cells (Figure 5E-F). Importantly, vaccination resulted in long-lived 

systemic protective immunity, as evidenced by a rise of circulating rENO1-specific antibodies in 

ENO1-vaccinated mice compared to mice vaccinated with the empty vector (Figure 5G). 

 

Targeting tumor infiltrating B cells unleashes the antitumor immune response in murine 

PDAC. For their key role in the pathogenesis of immune diseases, including cancer, B cells 

represent feasible therapeutic targets to inhibit harmful humoral immune responses (30). However, 

our data showing the dual role of B cells in human PDAC raises some concern for the targeting of 

B cells in solid tumors. To clarify this point, we tested the effect of a mouse anti-mouse CD20 

antibody targeting B cells (clone 5D2, Genentech) in an implantable model of PDAC, by injecting 

the antibody 3 days post tumor injection. We did not observe formation of B-TLT in any of the 
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orthotopically implanted mice (Supplementary Figure 4), likely due to the rapid tumor growth (21 

days) and absence of chronic inflammatory reaction. In contrast, scattered B cells (B-TILs) 

infiltrated the tumor tissue (Supplementary Figure 4), confirming in this preclinical model that B-

TILs act independently from B-TLT. Circulating B cells were dramatically depleted by a single 

injection of the antibody (Figure 6A), and the effect persisted until the end of the experiment 

(Figure 6B), while the number of other circulating leukocytes (including CD3+ T cells and CD11b+ 

myeloid cells) was not significantly affected (Supplementary Figure 5). Consistent with the 

reduction of circulating B cells, the number of B220-TILs scattered in the tumor microenvironment 

was significantly reduced by the treatment (Figure 6C-E), suggesting that B220-TILs are recruited 

from a circulating pool of B cells. Notably, single injection of anti-CD20 slightly reduced the tumor 

size, albeit not significantly, suggesting a protumor function of B-TILs in PDAC (Figure 6F).  

To analyze the impact of B-TIL depletion, we compared the immune signature of the leukocyte 

population isolated from PDAC tumors from control and α-CD20 treated mice. Interestingly, 

depletion of tumor infiltrating B cells resulted in a significant increase in genes related to T cell and 

NK cell infiltration (CD4, CD8, NCR1), activation (GMZ-A, GMZ-B, IL-12, IFN-g, and TNF-alpha) 

and recruitment (CXCR3) (Figure 6G). These results show that, in an implanted tumor model 

devoid of B220-TLT, depletion of tumor infiltrating B cells (B-TILs) increases the recruitment of 

important components of the antitumor immune response. This was not ascribable to a 

compensatory increase of circulating T cells, which were not significantly affected by the α-CD20 

treatment (Supplementary Figure 5). 

To gain more insights on the biological relevance of the signature obtained, we interrogated the set 

of genes by a systems biology approach based on Ingenuity Pathway Analysis (IPA). Surprisingly, 

within the panel of genes analyzed (Supplementary Figure 6), depletion of B cells with α-CD20 

induced significant functional enrichment of genes involved in lymphoid tissue structure and 

development, CD8+ T cell infiltration and maintenance and differentiation of T cells (Figure 6H), 

confirming that B-TILs are detrimental to an effective antitumor immune response. 
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DISCUSSION 

 

In the last decade, the immune microenvironment has gained attention as a source of novel 

biomarkers of clinical outcome and targets of therapeutic intervention (12-14, 40). However, the 

lack of adequate systematic approaches to evaluate immune cells has hindered the introduction of 

immune variables into clinical practice. In this context, the spatial orientation regulating immune 

cell function within the tumor tissue has only recently begun to be taken into consideration. We and 

others have demonstrated that the organized distribution of B and T lymphocytes into tertiary 

lymphoid tissue favors the recruitment of T cells and associates to an anti tumor immune response, 

predicting better patient outcome in human cancer patients (16, 22, 41, 42).  

In the present work, we moved on to analyzing the B cell component in human PDAC, in the 

prospect of identifying specific immune variables indicating clinically relevant immune responses. 

Unexpectedly, our analysis evidenced a dual prognostic behavior of B cells, which is tightly linked 

to their topological distribution within the microenvironment. Rather than scattered in the tumor 

tissue, the majority of B cells was found strategically located in association with T cells, within 

highly organized lymphoid tissue, possibly reflecting how B and T cells interact during the 

organization of a local immune response. Only when confined within a lymphoid site equipped with 

a germinal center B cells predicted better prognosis, suggesting that they might be involved in an 

ongoing follicular immune response with a protective antitumor role, while presence of B cells 

outside the germinal center is not essential to their antitumor function. This is in sharp opposition to 

what observed for T cells, whose localization at the tumor invasive margin is critical to predict 

better prognosis (16). In contrast, the correlation of TLT with B cells among patients with worse 

prognosis further suggests that the egress of B cells into the tissue is detrimental to an effective 

antitumor response and might reflect a non-specific protumor inflammatory reaction. The role of B 

cells in the progression of solid tumors has fostered studies concerning their targeting by anti-

CD20 antibodies. Based on our data, the design of anticancer strategies envisaging the depletion 

of B cells should take into account the possibility to selectively target CD20-TILs but not CD20-

TLT. Interestingly, in non–tumor conditions, anti-CD20 therapy has resulted ineffective in depleting 
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CD20+ cells in tertiary lymphoid organs (43), suggesting that B cells might receive survival signals 

within TLT. The differential sensitivity of the distinct B cell components to anti-CD20 treatment 

could be exploited to design tailored approaches, assuming that a rigorous evaluation of B cells is 

performed. 

 

Specific activated immune cell subsets within TLT have been shown to be associated to patient 

prognosis (26). In our analysis, we identified PD1 expressing Tfh cells as a critical subset of T cells 

within TLT, likely involved in the immune function and identifying a subgroup of patients with 

favorable outcome. Tfh cells take part in various steps leading to germinal center reaction and 

differentiation of memory B cells and plasmacells (36, 44). Our data suggest that TLT able to 

successfully enclose B cells into Tfh-containing germinal centers correlate to better prognosis as 

they more effectively contribute to a protective immune response. The PD-1/PD-1L network is 

emerging as a major inhibitory pathway associated with T cell exhaustion in the tumor 

microenvironment (45, 46); our data that PD-1 expression correlates with better prognosis is 

counterintuitive considering the ongoing efforts aimed at targeting this inhibitory pathway in human 

cancers. However, while PD-1 expression in peripheral tissues associates to immunosuppressive 

function, PD-1 upregulation in lymphoid tissues is an early event of T cell activation and identifies 

clonally expanded tumor reactive T cells (47). Therefore, PD1 expression in germinal centers 

within TLT could indicate the functional competence of the lymphoid aggregates and T cell recent 

activation, irrespective of its immunosuppressive role when engaged by the ligand, eventually 

suggesting that immunotherapeutic strategies targeting PD-1 could concomitantly act on 

exhausted T cells as well as enhance recently activated T cells. As for B cells, our data suggest 

that a careful evaluation of immune cells within the microenvironment is required in order to 

allocate the best therapeutic treatment. 

Immunotherapeutic approaches for PDAC are a promising alternative option to the scarcely 

effectual available treatments, but still far from being successfully adopted in the clinic (48). The 

immunosuppressive nature of the tumor microenvironment (49) and the defective localization of 

adoptively transferred immune cells at the tumor site (40) have blunted the efficacy of 
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immunotherapy, favoring T-cell exclusion and immune ignorance. The presence of an ectopic 

lymphoid site as TLT could overcome these obstacles by providing a local immune site favoring 

antigen presentation and sustaining lymphocyte traffic. Moreover, the association of TLT with 

better prognosis suggests that the immune response induced could be protective overtime. 

 

The identification of histologically distinct immune components, i.e. PD1-GC and CD20-TLT, which 

concur in classifying PDAC patients according to clinical behavior is expected to have important 

implications in the design of clinical trials aimed at testing innovative immunotherapeutic 

approaches. Moreover, the objective and compartment-specific evaluation of immune populations 

we provided allows envisaging TLT as a promising prognostic tool in clinical practice for PDAC 

patients. Our analysis brings to light the critical duality displayed by immune cells according to their 

spatial orientation in the tumor microenvironment, raising criticism about studies addressing the 

prognostic role of immune cells obtained by gene expression-based or FACS-based analyses and 

underlines the need of an integrated analysis of the immune microenvironment.  

From a clinical perspective, the assessment of TLT might represent a potential approach to better 

allocate patients to immunotherapy (50). In this regard, our data diverges from the general view 

that the PDAC microenvironment is mostly devoid of infiltrating lymphocytes and from recent 

evidence showing that an immunotherapeutic protocol induced TLT in human PDAC patients, 

otherwise devoid of TLT (51). In our considerable cohort, TLT occurrence was observed in a high 

percentage of patients, to variable extents, suggesting that the microenvironment of human PDAC 

is in fact permissive to the infiltration of lymphocytes and that strategies either enhancing their 

formation or activation status should be encouraged.  
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MATERIALS and METHODS 

Patients and study design 
The cohort study included 104 patients aged older than 18 years, diagnosed with pancreatic ductal 
adenocarcinoma (PDAC) and who consecutively underwent surgery with curative intent at 
Humanitas Clinical and Research Center, from February 2010 to December 2012. Investigators 
were blinded to the results of the analysis and assembled a clinical retrospective database by 
collecting patient demographics, clinical, and histopathological data from the institutional intranet, 
as detailed in Supplementary Table S1. Patients with metastases at surgery (n=7) were excluded 
from the analysis. Detection of postsurgical local and distant tumor recurrences included a baseline 
thoracic and abdominal computed tomography (CT) and CA19-9 evaluation. CT was repeated 
every 3 months during the first 2 years after surgery, and every 6 months afterward. CA19.9 
assessment was repeated on a monthly basis during chemotherapy and concomitantly to CT scan 
afterward. As outcome variable we considered disease-specific survival (DSS), defined as any 
PDAC-related death detected in the observational period started immediately after surgery. 
Patients who died from causes other than PDAC were considered as negative outcome. The time 
of DSS was calculated from the date of surgery until date of death. The mean follow-up period of 
the cohort studied was 563.4 days (Standard Deviation = 320.8 days). 
 
Immunohistochemistry  
Human FFPE-PDAC tissues were provided as tissue blocks, by the anatomical pathology division 
of the Humanitas Clinical and Research Center. 2µm thick consecutive tissue slides were obtained 
from each block and stained as previously described (16). Slides were autostained (IntelliPATH 
FLX; Biocare Medical) with primary antibodies raised against CD20 (DAKO, L26), CD8 (DAKO, 
C8/144B), PD-1 (Abcam NAT105), or manually stained using CD3 (DAKO, F7.2.38), DC-Lamp 
(Dendritics, 1010E1.01), PNAd (BD Pharmingen, MECA-79), Lyve-1 (Abcam, polyclonal), CXCL13 
(R&D, polyclonal), CCL21 (R&D, polyclonal), IL-10 (R&D Systems, polyclonal), Ki67 (DAKO, MIB-
1), Bcl-6 (DAKO, PG-B6p) as primary antibodies. Immunohistochemistry was performed with the 
same protocol on FFPE tissues from mouse pancreata. Primary antibodies used were: B220 
(ebioscience, RA3-6B2), PD-1 (Novus Biologicals, polyclonal), CD3 (ebioscience, 145-2C11). 
 
Image analysis 
After staining procedure, tissue slides were digitalized using dotSlide (Olympus dotSlide). At least 
two independent operators blinded to any patient clinical data randomly selected three non-
contiguous microscopic areas comprising of approximately 50% of tumor and 50% of stromal 
tissue and including CD20-TILs and CD8-TILs. For CD20-TLT analysis, 3 non-contiguous fields 
were chosen representing the entire CD20 positive area within the TLT, regardless of the location 
in the tumor or in the stroma. The dimension of the microscopic area was maintained fixed 
throughout the analysis of all mentioned variables. Selected areas were quantified by computer-
assisted image analysis, with ad hoc created software, to obtain the percentage of immune 
reactive areas (IRA%) of the digitalized tissue surface. Mean values, obtained for each variable 
analyzed in the three different regions were calculated. The variable PD1-GC was expressed as a 
dichotomous value, assigning a positive value when PD1 positive cells were present in the 
germinal center of previously assessed CD20-TLT. The extent of the overall distribution of CD20-
TLT, CD20-TIL, CD8-TIL IRA%, expressed as continuous variables, and PD1-GC score were used 
to perform statistical analyses. For each immune variable with continuous values (CD20-TLT, 
CD20-TILs, CD8-TILs), we first stratified patients by grouping into quartiles, which were further 
combined to achieve statistically significant groups. By this way, the 1st quartile group and the 2nd-
4th quartile group identified two distinct outcome-based groups for CD20-TLT and CD8-TILs, while 
for CD20-TILs 1st-2nd versus 3rd-4th quartiles were grouped.  
 
Statistical analysis 
The associations between values of CD20-TLT, CD20-TILs, CD8-TILs, PD-1-GC and other 
features concerning patient clinical conditions were estimated by Pearson simple linear regression 
analysis. A multivariate Cox proportional hazards model was developed to assess the role of 
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immune variable density and demographic, clinical, and histopathologic features, in predicting the 
outcome of disease specific survival. To assess for confounders, COX multivariate analysis was 
performed by the enter approach, entering only variables and their significant interactions with a P 
value less than 0.05 at Cox univariate analysis. Kaplan–Meier curves of DSS were plotted and the 
log-rank test was used to compare the curves of each subgroup of patients with pancreatic cancer. 
For each test, only two-sided P values lower than 0.05 were considered statistically significant. All 
the analyses were done using SPSS (Version 22.0) and GraphPad Prism software (Version 4.1). 
To study the prognostic value of immune variables, we adhered to “Reporting Recommendations 
for Tumor Marker Prognostic Studies (REMARK)” (52) for high quality of tumor marker studies.  
 
Gene expression analysis  
Patients were divided into TLThi (4th quartile) and TLTlo (1st quartile), according to CD20-TLT 
IRA% values and RNA extracted from formalin-fixed paraffin embedded (FFPE) tissues using the 
RNeasy FFPE kit (QIAGEN). RNA from Panc02 tumors was extracted after collagenase (Sigma 
Aldrich) digestion of tumor fragments and isolation of the leukocyte fraction by gradient 
centrifugation (Percoll (GE Healthcare life sciences)). Cells were resuspended with PureZOL (Bio-
Rad), and RNA was purified using RNeasy Plus Mini kit (QIAGEN) following manufacturer 
instructions. In both cases, cDNA was obtained after a 8 cycles pre-amplification step, followed by 
reverse transcription with the RT2 PreAMP cDNA synthesis kit (Qiagen). Real-Time PCR was 
performed using commercially available PCR Arrays (RT2 ProfilerTM PCR Array System, Qiagen), 
on a ViiA™ 7 Real-Time PCR (Life Technologies). Differences in gene expression were analyzed 
by the comparative threshold cycle (Ct) method with DataAssistTM, after global normalization. 5 
samples of PDAC tumors from TLThi (4th quartile) patients and 4 samples of PDAC tumors from 
TLTlo (1st quartile) patients were analyzed. Within a specific group, samples with the lowest Ct 
variability (n=3) were selected for analysis (Supplementary Figure 7). Adjacent normal pancreatic 
tissue (n=3) was used as a control. Hierarchical clustering was performed with the Cluster 3.0 
software, including the whole gene-list available in the Array. The normalized signal value was 
adjusted to log transform data and “median” was selected to center genes. Clustering was 
performed using the euclidian distance function with Java Tree View and exported to heatmap 
images. For the network analysis, uploading control and aCD20-treated data set, containing gene 
identifiers and corresponding expression values, into the Ingenuity Pathways Analysis application 
generated significant pathways and molecular networks. The resulting Network Eligible molecules 
were overlaid onto a global molecular network based on the in Ingenuity’s Knowledge Base 
(Ingenuity® Systems, www.ingenuity.com). The Functional Analysis of the network identified the 
biological functions most significant to the molecules in the network. 
 
PDAC murine models 
All mice used for the orthotopic implantation of Panc02 cells were 8-week-old C57BL/6J females 
purchased from Charles River (Calco, Italy) and housed in a specific pathogen–free animal facility 
of the Humanitas Clinical and Research Center, in individually ventilated cages. Procedures 
involving animals and their care were conformed to EU and Institutional Guidelines. Murine Panc02 
cell line was kindly provided by Dr. Piemonti (San Raffaele Hospital, Milan) and cultured in RPMI 
1640 medium (Lonza) supplemented with 10% FBS, 2 mM l-Glutamine. Cells were cultured in a 
humidified incubator with 5% CO2, for one passage before in vivo injection. Mice were kept 
anesthetized during all surgical operation by intraperitoneal administration of a ketamine and 
xylazine solution. The stomach and the adherent pancreas were exteriorized to expose the head of 
the pancreas, in which 30µl of 106 Panc02 cells suspension was injected using a 30 gauge insulin 
needle. All the organs were then returned to their original position and peritoneum and skin 
sutured. Animals were randomized after surgery into two treatment groups, the first receiving 
250µg of α–CD20 antibody (Genentech, clone 5D2), the second receiving 250µg of the isotype-
matched (IgG2a) irrelevant immunoglobulin (BioXCell C1.18.4), both with i.p. injection 3 days after 
surgery. After 3 weeks from surgery, mice were sacrificed and tumor masses collected. Single cell 
suspensions were obtained by incubating fragmented tumors with 0.5 mg/ml of clostridium 
histolyticum derived collagenase (Sigma Aldrich) for 30 minutes at 37°C. Cells were then washed 
and tumor infiltrating leukocytes purified by a 44%/66% Percoll (GE Healthcare life sciences) 
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gradient centrifugation. The purified leukocytes were washed and aliquoted for multicolor FACS 
analysis or RNA extraction. Alternatively, tissues were fixed for immunohistochemical analysis. 
Pancreatic cancer–prone Pdx-Cre- KrasG12D mice (KC mice) were bred, maintained and treated at 
the saprophytic and pathogen-free animal facility of the Center for Experimental Research and 
Medical Studies (Torino, Italy), as previously described (39). Briefly KC mice were vaccinated at 36 
weeks of age and every 3 weeks for a total of 3 rounds of vaccination. Vaccination was achieved 
by electroporation with 50 µg of plasmid (either mock vector or the human Enolase (ENO-1) 
encoding vector), as previously described (39). Mice of the same age were randomly assigned to 
control and treatment groups, and all groups were specifically treated concurrently. Mice were 
sacrificed 8 weeks after the last vaccination to perform histologic or immunohistochemical 
analyses. 
 
Flow-cytometry 
Absolute numbers of CD19+, CD3+, CD11b+ cells were assessed by flow cytometry on peripheral 
blood leukocytes at day 0, 3, 7, 14 and 21 days from antibody injection. Trucount kit (BD 
Biosciences) was used to obtain absolute numbers. The following fluorophore-conjugated primary 
antibodies were used: anti-CD45 (BD Pharmingen 30-F11), anti-CD19 (eBiosciences eBio1D3), 
anti-CD3(eBiosciences 145-2C11), anti-CD11b (BioLegend M1/70). Sample acquisition was 
performed on a BD LSRFORTESSA (BD Biosciences) and data analyzed with FlowJo software.  
FACS staining was performed as previously described for blood samples, with the following 
antibodies: CD8 (BioLegend 53-6.7), CD4 (BioLegend RM4-5), NK1.1 (eBiosciences PK136), 
CD44 (eBiosciences IM7), CD62L (eBiosciences MEL-14); and CD45, CD11b, Ly6G (BD 
Pharmingen 1A8), F4/80 (Serotech Cl: A3-1), B220 (BD Pharmingen RA3-6B2).  
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Table 1. Predictors of post-surgical disease specific survival in 104 patients with pancreatic 
ductal adenocarcinoma  

 
Univariate  
Analysis a 

Multivariate  
Analysis a 

 
H.R. (95%C.I.) P H.R. (95%C.I.) P 

       
      Patient Demographics      

              < 50 yrs 1.00 ref.    
50-70 yrs 2.13 (0.49-9.29) 0.312   Age  
≥ 70 yrs 4.22 (0.98-18.13) 0.053   

              Female 1.00 ref.    
Gender 

Male 1.09 (0.58-2.07) 0.782   
       Tumor Features      

       No 1.00 ref.  1.00 ref. 
Yes 2.13(1.03-4.41) 0.020 2.63 (1.17-5.90) 0.019  Nodal 

involvement 
na     

       G1/G2 1.00 ref.  1.00 ref.  Grade c 

G3/G4 2.74 (1.37-5.49) 0.004 2.50 (1.20-5.24) 0.015 
 
 
 
 
 

na     
       No 1.96 (0.93-4.14) 0.078   

Yes 1.00 ref    Radical 
surgery 

na     
              Chemotherapy (CTX)      
       No 1.00 ref    Adjuvant 
treatment Yes 1.03 (0.52-2.04) 0.942   
        Tumor Immune features       
        1st (0-1.71) 1.00 ref.  1.00 ref.  

2nd (1.71-3.72) 0.40 (0.16-0.98) 0.045 0.41 (0.15-1.09) 0.075 
3rd (3.72-5.71) 0.38 (0.16-0.94) 0.035 0.25 (0.09-0.72) 0.011 

CD20-TLT 
(quartiles)b 

4th (5.71-23.49) 0.40 (0.16-0.98) 0.044 0.26 (0.09-0.72) 0.010 
    

(0.2
0-
0.94
) 

  1st (0-0.26) 1.00 ref.  1.00 ref.  
2nd (0.26-0.41) 1.30 (0.50-3.36) 0.594 1.49 (0.53-4.19) 0.449 
3rd (0.41-0.69) 2.88 (1.18-7.03) 0.020 2.85 (1.05-7.78) 0.040 

CD20-TILs 
(quartiles)b 

4th (0.69-1.89) 1.23 (0.46-3.30) 0.674 1.88 (0.58-6.03) 0.289 
    

(1.10
-
5.90) 

  1st (0.0-0.34) 1.00 ref.    
2nd (0.34-0.61) 0.51 (0.22-1.23) 0.135   
3rd (0.61-1.15) 0.89 (0.39-2.07) 0.797   

CD8-TILs 
(quartiles) b 
 

4th (1.15-3.42) 0.69 (0.27-1.77) 0.445   

      Yes 1.00 ref.    
PD-1 GC No 1.47 (0.72-2.99) 0.285   

  

a COX regression analysis  
b Densities as percent immunoreactive area at the tumor-stroma interface 
c G1/G2, well-to moderately differentiated; G3, G4 poorly differentiated  
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Figure 1. B cells strategically localize in tertiary lymphoid tissue in human pancreatic 
adenocarcinoma. (A-C) Histological sections of human PDAC, stained for CD20+ B cells. A 
representative image obtained from a virtual digital slide of a human PDAC specimen; staining with 
an anti-CD20 antibody shows few B cells distributed at the tumor margin (arrowheads in A and B) 
and the majority of B cells located within dense aggregates (asterisks in A and C). (D) Quantitative 
evaluation of the density of B cells according to their localization within CD20-TLT or as CD20-TILs 
in tissue specimens from 104 PDAC patients. Density of B cells in TLT (CD20-TLT IRA%) was 
significantly higher compared to density of scattered CD20-TILs (CD20-TILs IRA%) (****: P<0.0001 
by Student’s t test). (E-L) Lymph-node like aggregates (dotted lines) in human PDAC specimens 
are composed of CD20+ B cells (E), CD3+ T cells (F) and mature dendritic cells expressing DC-
LAMP (G). Sections in E and F panels are consecutive and show the topological 
compartmentalization of B and T cells. An organized network of specialized PNAd+ high endothelial 
venules (HEV) (H) and Lyve-1+ lymphatics (J) confirms that the aggregates have features of 
tertiary lymphoid tissue (TLT). The lymphoid chemokines CXCL13 (K) and CCL21 (L) are present 
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inside lymphoid aggregates. Dotted lines indicate follicle contour. Bars: (A) 500 µm, (B-G) 200 µm, 
(H-L) 100 µm.  
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Figure 2. Clinical relevance of B cells according to their distribution in human PDAC. (A-C) 
Distinct spatial localization of B cells in the tumor microenvironment dictates their prognostic 
behavior. Kaplan-Meier survival analyses shows correlation of high density of CD20-TLT (2nd-4th 
quartiles) with longer disease specific survival (P=0.0085; n=104) (A), while high density of CD20-
TILs (3rd-4th quartiles) shows a tendency to associate to worse prognosis (P=0.115; n=104) (B). 
The immune signature comprising CD20- TLThi /CD20- TILlo robustly predicts longer survival 
(P=0.0051; n=104) (C). P value by Wilcoxon-Mantle Cox test. 
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Figure 3. Confinement of B cells within TLT associates to a specific immune signature, 
correlates with CD8-TIL infiltration, and empowers the favourable prognostic value of CD8-
TILs. (A) Heatmap analysis showing the immune signature of human PDAC specimens with 
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different CD20-TLT density. RNA was extracted from paraffin embedded tissue specimens of 
human PDAC, categorized as TLThi (n=3) or TLTlo(n=3) after immunohistochemical evaluation with 
an anti CD20 antibody. RNA from normal pancreata (n=3) was obtained as a control. Stable 
grouping followed the pattern of B cell distribution (i.e. TLThi versus TLTlo samples segregating 
together), suggesting that B cell infiltration identifies specific gene expression programs. (B) 
Presence of germinal center in CD20-TLT. B cells within TLT are engaged in a germinal center 
reaction, as evidenced by Bcl-6 (arrowheads in upper right panel) and Ki-67 (arrowhead in lower 
right panel) staining within CD20-TLT (left panel). Left and right sections are consecutive sections. 
(C-F) CD20-TLT correlates with density of CD8+ T cells in human PDAC and empowers their 
prognostic function. Representative images obtained from virtual digital slides of human PDAC 
specimens stained with an anti-CD8 antibody show a high density of CD8+ cells (C). Density of 
CD20-TLT (IRA%) linearly correlates with density of CD8-TILs (IRA%) (r=0.29, p=0.009, n=104) 
(D). (E) Kaplan-Meier curve showing that while high density of CD8-TILs (2nd-4th quartiles) is not 
significantly associated to prognosis (P=0.254, n=104), concomitant high density of CD8-TILs (2nd-
4th quartiles) and high density of CD20-TLT (2nd-4th quartiles) identifies a subgroup of patients with 
longer disease-specific survival (P=0.031; n=104) (F). P value by Pearson’s simple linear 
regression analysis in (D) and by Wilcoxon-Mantle Cox test in (E-F). Bars: 200 µm (B); 500 µm 
(C). 
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Figure 4. PD-1+ follicular helper T cells within TLT germinal centers regulate the balance 
between B-cell protumor and antitumor prognostic value. (A-C) Presence of PD-1+ cells within 
germinal centers of CD20-TLT in human PDAC. Within the B-cell zone of TLT (A), there are PD-1+ 
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cells (B), some of which distributed in the germinal center, suggesting they could be T-helper 
follicular cells (C). (D) The number of patients with high density of TLT is significantly higher in the 
PD1-GC group compared to specimens with low density of TLT (p<0.0001). (E-F) Lack of 
correlation of CD20-TLT and CD20-TILs in patients with PD-1-GC (r=-0.001, P=0.559, n=32) (E), 
while the two B cell components correlate in specimens without PD1-GC (r=0.39, P=0.001, n=70) 
(F), suggesting that the presence of PD1-GC cells could be an important factor favoring B cell 
aggregation in TLT and preventing B cell scattering within the tissue. (G) A concomitant presence 
of PD1-GC cells and high TLT (2nd-4th quartiles) identified a subgroup of patients with a 
significantly better prognosis (p=0.027, n=102). P value by Chi-square in (D), Pearson’s simple 
linear regression analysis in (E-F) and by Wilcoxon-Mantle Cox test in (G). Bars: 200 µm (A-B); 50 
µm (C). 
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Figure 5. An immunotherapeutic DNA-vaccine induces neogenesis of intratumor TLT with 
active germinal centers in a preclinical model of PDAC. (A-F) Induction of TLT by an antitumor 
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vaccination in Pdx-Cre- KrasG12D mice. Histological sections of murine PDAC from non treated mice 
(NT) or mice vaccinated with empty vector (empty) or a vector encoding ENO1 (ENO1) stained 
with hematoxylin-eosin (A), PD-1 (C), CD3 (E). Dotted line indicates an intratumor TLT (A) or PD1-
GC (C). Number and area of TLT (B), IRA% of PD1-GC (D) and CD3-TILs (F) are significantly 
increased by vaccination compared to untreated mice. (G) ENO1 vaccination induces humoral 
response. Spleen cells from empty plasmid (white bars) or ENO1 plasmid-vaccinated (squared 
bars) mice were stimulated on an enzyme-linked immunosorbent spot plate with rENO1. Anti-
ENO1 antibodies are significantly induced in ENO1-vaccinated KC mice, but not in mice 
vaccinated with the empty vector. Numbers in the graph represent the mean number of specific 
spots subtracted from that of background. All conditions were in quadruplicate. P value by 
Students’ t test. *: P<0.05; **:P<0.01. Scale bar 500 µm. 
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Figure 6. Targeting tumor infiltrating B cells unleashes immune response in murine PDAC. 
(A-F) Depletion of B cells by an anti-CD20 antibody in a murine implantable PDAC model. Mice 
were orthotopically injected with the PDAC cell line Panc02 and administered either irrelevant 
antibody (IgG2A) or a-CD20 on day 3 post injection. (A) Exemplificative facs plot showing 
depletion of circulating blood CD19+ B cells. (B) B cell depletion started at day 3 and lasted until 
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the end of the experiment. One independent experiment repeated 3 times is shown (n = 3 mice, 
IgG2A; n = 4 mice a-CD20; bars represent SEM; *:P<0.05; **:P<0.01). (C) Exemplificative facs plot 
showing depletion of tumor infiltrating CD19+ B cells. (D) Percentage of CD19+ B cells infiltrating 
PDAC tumors is reduced by a-CD20 treatment. One exemplificative of three experiments 
performed is shown (n = 3 mice, IgG2A; n = 4 mice a-CD20; bars represent SEM; P=0.084 by 
Students’ t test. (E) Immunohistochemical evaluation of B cells in PDAC. Representative pictures 
showing reduction of B-TILs in the pancreas of a-CD20 treated mice. (F) Tumor growth was slightly 
but not significantly reduced by a-CD20 treatment. (G-H) Immune signature after a-CD20 
treatment. RNA from leukocytes isolated from PDAC of mice treated with IgG2A or a-CD20 shows 
induction of genes related to T cell infiltration and activation (G). Systems biology analysis of the 
genes modulated after depletion of B cells highlights significant enrichment of biological functions 
related to lymphoid tissue structure and development, CD8+ T cell infiltration and maintenance and 
differentiation of T cells (H). 
 


