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Abstract

Background The loss of muscle mass (sarcopenia) and the associated reduced muscle strength are key limiting factors for
elderly people’s quality of life. Improving muscle performance does not necessarily correlate with increasing muscle mass.
In fact, particularly in the elderly, the main explanation for muscle weakness is a reduction of muscle quality rather than a loss
of muscle mass, and the main goal to be achieved is to increase muscle strength. The effectiveness of Trimetazidine (TMZ) in
preventing muscle functional impairment during ageing was assessed in our laboratory.

Methods Aged mice received TMZ or vehicle for 12 consecutive days. Muscle function was evaluated at the end of the treat-
ment by a grip test as well as by an inverted screen test at 0, 5, 7 and 12 days of TMZ treatment. After sacrifice, muscles were
stored for myofiber cross-sectional area assessment and myosin heavy chain expression evaluation by western blotting.

Results Chronic TMZ treatment does not affect the mass of both gastrocnemius and tibialis anterior muscles, while it signif-
icantly increases muscle strength. Indeed, both latency to fall and grip force are markedly enhanced in TMZ-treated versus
untreated mice. In addition, TMZ administration results in higher expression of slow myosin heavy chain isoform and increased
number of small-sized myofibers.

Conclusions We report here some data showing that the modulation of skeletal muscle metabolism by TMZ increases
muscle strength in aged mice. Reprogramming metabolism might therefore be a strategy worth to be further investigated
in view of improving muscle performance in the elderly.
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Introduction

Ageing is an extremely complex biological phenomenon. In gen-
eral terms, aged individuals lose the capacity to maintain their
physiological homeostasis. Many vital organs undergo atrophy
or degeneration, in particular, those characterized by post-mitotic
cells such as the skeletal muscle. At the cellular level, ageing is
characterized by accumulation of damaging events such as geno-
mic instability and stem cell exhaustion (reviewed by Kroemer).1

The loss of muscle mass (often referred to as sarcopenia) is
one of the most relevant changes occurring in ageing. Indeed,

sarcopenia and the associated reduced muscle strength are
key limiting factors for elderly people’s quality of life,
resulting in reduced mobility, difficulties in ordinary daily ac-
tivities, loss of independence and increased risk of fractures.
It is estimated that by 2060 the percentage of elderly people
(over 65 years) in Europe will have increased by around 80%.2

Because of the growing number of elderly individuals, age-
related diseases and disabilities are rapidly becoming a major
health and social problem; indeed, the profound change of
family organization (most of the components are out of home
during the day) renders external assistance to the elderly
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unavoidable. It is therefore mandatory to develop strategies
aimed at increasing elderly people’s self-sufficiency, making
seniors able to perform the activities of daily living, such as
rising from a chair, carrying shopping bags and climbing
stairs.3,4 To achieve this goal, increased muscle strength and
improved cardio-respiratory capacity should be obtained.5

Muscle wasting in the elderly is not necessarily associated
with body weight loss or reduced body mass index; indeed, in-
creased fat mass (sarcopenic obesity) might hide muscle deple-
tion.6 In contrast, sarcopenia is very often associated with
reduced myofiber cross-sectional area (CSA; atrophy) and mus-
cle fibre loss (hypoplasia),7,8 which might be induced by the
age-related decrease in the levels of anabolic factors promoting
protein synthesis (e.g. Growth Hormone and Insulin Growth
Factor 1), by the increased expression of pro-inflammatory fac-
tors mediating protein degradation, by the loss of motoneurons
and by apoptosis.9 Basal protein breakdown and synthesis do
not changemuch in ageing,10 whereas it seems that aged adults
have a blunted response to anabolic stimuli such as nutrients,
insulin and resistance exercise, which likely contributes to the
loss of skeletal muscle mass in the elderly.9,11,12 Sarcopenia
has also been associated with reduced myogenic capacity; mus-
cles in aged individuals display a low reservoir of skeletal muscle
stem cells, these having impaired myogenic potential and ability
to self-renew and restore the reservoir.7,13–15

As for the mechanisms underlying the pathogenesis of
sarcopenia, various hypotheses have been proposed. Ageing
is characterized by chronic inflammation, with enhanced pro-
duction of pro-inflammatory cytokines such as interleukin-6
(IL-6) and tumor necrosis factor α, well-known mediators of
muscle protein catabolism.16,17 Moreover, neuroendocrine
changes and increased mitochondrial production of reactive
oxygen species contribute to the neuromuscular junction
(NMJ) degeneration and to the muscle denervation occurring
in the elderly.18–22 Finally, muscles of aged individuals fre-
quently show accumulation of adipose and connective tissue
within the muscles, respectively resulting in lipodystrophy
and fibrosis.13 In addition to these features, also profound
metabolic changes occur in myofibers during ageing—above
all, reduced mitochondrial mass and function, this likely
resulting in low ATP production.21,23,24 This would compro-
mise cell functions and reduce contractile force generation,
so leading to loss of muscle mass and strength.25 In the el-
derly, type II (glycolitic) myofibers are more prone to atrophy
than type I (oxidative) fibres8,26,27, and a switch from type II
to type I fibres has often been reported.7,28–31 NMJ degener-
ation has also been associated with mitochondrial dysfunc-
tions.21 Therefore, forcing myofiber metabolism to optimize
energy production might be an interesting route to improve
muscle function.

The metabolic modulator trimetazidine (TMZ) optimizes
heart metabolism by impinging on myocardial substrate utili-
zation.32,33 As a result of its action, oxidation is shifted from
free fatty acids to glucose, so glycolysis to glucose oxidation

coupling is improved (Figure 1).34 Based on these premises,
it is conceivable that the metabolic switch triggered by TMZ
in the heart might also occur in the skeletal muscle, this likely
improving muscle performance. Such a hypothesis is sup-
ported by previous observations showing that TMZ also
improves exercise capacity in patients with angina.35,36 Fur-
thermore, recent observations showed for the first time that
TMZ directly acts on skeletal muscle cells in culture
protecting them from hypotrophy induced by different
agents.37 In the current study, we treated elderly mice with
TMZ in order to analyse the effect of this metabolic modulator
on skeletal muscle force and mass. The results obtained show
that TMZ administration is indeed able to improve skeletal mus-
cle strength, without significantly impinging on muscle mass.

Methods

Animals and experimental design

Aged (22months old) C57BL6/J male mice were used. They
were maintained on a regular dark-light cycle (light from
08:00 to 20:00), with free access to food (Piccioni, Brescia,
Italy) and water during the whole experimental period, in-
cluding the night before sacrifice. Experimental animals were
cared for in compliance with the Italian Ministry of Health
Guidelines (n° 86609 EEC, permit number 106/2007-B) and
the Policy on Humane Care and Use of Laboratory Animals
(NIH 1996). Sample size has been calculated on the basis of
previous results showing that 5–6 animals aged 22months
are necessary to detect a significant reduction of gastrocne-
mius (GSN) and tibialis anterior (TA) mass.38

The animals were divided into two groups (n = 6 each) ran-
domized according to their body weight on the day before
the beginning of TMZ administration; one group received
TMZ 5mg/kg intraperitoneal (i.p.) injection twice a day for
12 consecutive days, the other group (Ctrl) received i.p. injec-
tions with vehicle only (PBS). Twelve days after the beginning
of TMZ treatment, the animals were weighed and anesthe-
tized by isoflurane inhalation. The blood was collected by car-
diac puncture from anesthetized animals and monitored for
glucose concentration by using the Glucocard G-sensor strips
and apparatus (Menarini Diagnostics). Mice were then
sacrificed by cervical dislocation, TA or GSN muscles were
rapidly excised, weighed and frozen in liquid N2-cooled
isopentane and finally stored at �80°C.

Skeletal muscle function analysis

The hanging grid test (or inverted grip-hanging test),39–42 able
to measure muscle force of the four limbs, was performed on
a 22months old C57BL6/J male mice treated or not with TMZ
at 0, 5, 7 and 12 days; untrained mice were individually
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placed at the centre of a wire mesh screen (10 × 14 cm; wire
thickness, 2mm), then the grid was inverted upside-down
with the mouse’s head declining first, and latency to fall off
was recorded. The screen was held steadily 40–50 cm above
a padded surface to protect the mouse from injuring itself.
Each day of testing, the latency for the mouse to release
the grid, was recorded in three independent trials conducted
approximately 15min apart, and data from all three trials
were averaged together. In addition, a forelimb grip strenght
test was performed after 12 days of TMZ treatment by using a
grip strength metre (Columbus Instruments). Mice held by

the tail were gently allowed to grasp a wire grid with the fore
paws. Mice were then gently pulled by the tail until they
released their grip. The force achieved by the mouse was
recorded during three trials and averaged.

Protein isolation and western blotting

Tissue samples from GSN muscles were homogenized and
lysed in ice cold Cosper and Leinwand Myosin Extraction
Buffer (300mM NaCl, 0.1M NaH2PO4, 0.05M Na2HPO4,

Figure 1 Mechanism of action of trimetazidine (TMZ). (a) Free fatty acids (FFA) are taken up by the cells either via diffusion or via transporters such as
CD36. Inside the cytosol, FFA are esterified to fatty acyl-CoA (FFA-CoA) which might be catalized by β-oxidation, this producing acetyl-CoA. In order to
cross, the outer and inner membranes (OM and IM) of mitochondria where FFA-CoA undergo β-oxidation, the acyl group of FFA-CoA must be trans-
ferred to carnitine via carnitine palmitoyltransferase1. The acylcarnitine is then shuttled into the mitochondria, where it is converted back to FFA-CoA
by CPT2 (CPT1 and 2 are generically indicated in this figure as CPT). (b) Fatty acid β-oxidation involves four enzymes (Acyl-CoA dehydrogenase, Enoyl-
CoA hydratase, 3-OH Acyl-CoA dehydrogenase and 3-Ketotacyl-CoA thiolase). Upon each cycle of the β-oxidation, a molecule of acetyl-CoA and a FFA-
CoA two carbons shorter than the one entering the cycle are produced. The acetyl-CoA produced enters the TCA cycle. The acetyl-CoA necessary to
feed the TCA cycle derives also from glycolysis, and in particular, from the conversion of pyruvate by the pyruvate dehydrogenase (PDH) complex. The
metabolic modulator TMZ inhibits one the four enzymes of the β-oxidation cycle, the 3-Ketotacyl-CoA thiolase (b), this partially inhibiting β-oxidation
(a). (c) As consequence, to obtain acetyl-CoA needed to feed the TCA cycle and to allow ATP production by respiratory chain, the cells necessarily use
more glucose.
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0.01M Na4P2O7, 1mM MgCl2, 10mM EDTA, 1mM DTT
pH 6.5)43 supplemented with a protease inhibitor cocktail
(Roche) and a phosphatase inhibitor cocktail (Sigma-Aldrich).
As for myosin heavy chain (MyHC), low ionic strength lysis
buffers were reported as not adequate for MyHC analysis be-
cause they do not solubilize myosin from thick filaments,
resulting in low MyHC levels in the lysate supernatant.44 In
order to achieve an accurate extraction of MyHC, we homog-
enized muscles in a high-salt buffer (see preceding text).43 A
clear supernatant was obtained by centrifugation of lysates at
13 000 g for 20min at 4°C. Protein concentration in the super-
natant was determined by Bradford protein assay (Bio-Rad).
Aliquots of total cell lysates were then separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis, and pro-
teins were transferred to nitrocellulose membranes
(Hybond-C Extra; Amersham Biosciences). Membranes were
blocked overnight at 4°C with 5% non-fat milk in T-TBS
(Tris-Buffered Saline with 0.05% Tween 20) and then probed
using the following antibodies directed against: slow MyHC
(myosin heavy chain) (M8421), desmin (D1033), fast MyHC
(M4276) and α-tubulin (T5168), all obtained from Sigma-
Aldrich. We also used the monoclonal MF20 antibody (Devel-
opmental Studies Hybridoma Bank at the University of Iowa),
which recognizes all isoforms of sarcomeric MyHC. The ap-
propriate secondary horseradish peroxidase-conjugated anti-
bodies from Jackson Immunoresearch were used in blocking
solution for 1 h at room temperature. Immunoreactive bands
were visualized by SuperSignal West Pico Chemioluminescent
substrate kit (Pierce). Equal loading of samples was con-
firmed by α-tubulin normalization and quantified by
densitometry using the ImageQuant TL software from GE
Healthcare Life Sciences.

Immunohistochemistry and cross-sectional area
evaluation

Myofiber CSA measurement was performed on TA. Serial
muscle sections (9μm) were obtained from the mid-belly re-
gion of the TA muscles, which had been embedded in OCT. A
CM1900 cryostat (Leica, Wetzlar, Germany) at �20°C was
used. Sections were fixed in 4% PFA (paraformaldehyde)
and stained with an anti-laminin (L9393) antibody from
Sigma-Aldrich. The Alexa Fluor 488 anti rabbit IgG (A11008)
from Life Technologies was used as secondary antibody.
Nuclei were visualized with the DNA dye 40,6-diamidino-2-
phenylindole, and the samples were mounted in SlowFade
Gold mounting media (Life Technologies). The images were
acquired with a Leica TCS SP5 confocal microscope. In the
stained muscle sections, automated CSA determination along
the laminin-stained border of each fibre was evaluated by
using Image J.45 Because errors in fibre border recognition
might occur (i.e. either the fibres might not be recognized
or several fibres/non-fibre regions might be interpreted as a

single fibre), a manual correction of myofiber border misin-
terpretation was performed.

Statistical analysis

Data are presented as mean ± standard error of the mean
(SEM). Statistical differences between groups were verified
by Student’s t-test (2-tailed). P< 0.05 was considered
significant.

Results

Effect of TMZ administration on glycemia, muscle
mass and myofiber CSA

A slight reduction of blood glucose concentrations was ob-
served in TMZ-treated animals (Figure 2a), consistently with
previous data showing that this drug enhanced cell glucose up-
take.37 However, the difference between TMZ-treated and un-
treated aged mice did not reach significance, likely due to the
low sample size. Skeletal muscle mass measured in both the
TA and the GSN of mice treated with TMZ for 12days was
not different from that of untreated age-matched controls
(Figure 2b). Myofiber CSA was also evaluated in both TMZ-
administered and control mice. Transverse sections of TA mus-
cles were stained with an antibody against laminin, a major
component of the basal lamina, and counterstained with
40,6-diamidino-2-phenylindole to detect nuclei. Frequency
histograms revealed that, in comparison to untreated controls,
the muscle of TMZ-treated mice displayed a shift towards
myofibers with small CSA (Figure 2c and 2d). Consistently, we
also found that TMZ treatment triggered an increase of
centronucleated fibres as reported in Figure 2c and 2e.

Muscle strength increased upon TMZ treatment

To test TMZ effectiveness in preventing the functional impair-
ment associated with sarcopenia, muscle strength was mea-
sured by the inverted grip-hanging test in 22months old
TMZ-treated C57BL6/J male mice at 0, 5, 7 and 12 days of
treatment. As shown in Figure 3, chronic TMZ treatment (that
did not exert detectable evidence of toxicity) significantly in-
creased muscle strength. Indeed, TMZ-treated mice were
able to grip the screen almost three times longer than un-
treated mice. Latency to fall down increased already after
5 days of TMZ treatment (Figure 3a and 3b). This difference
was still present after 7 days of treatment, while it ceased
to be significant as of day 12, although the tendency to
increase was quite clear (Figure 3a and 3b). Of interest, grip
force of both untreated and TMZ-treated mice progressively
increased over time (Figure 3a). In untreated mice, however,
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Figure 2 Effect of TMZ administration on glycemia, muscle mass and myofiber CSA. (a) Blood glucose concentration measured before sacrifice in old
mice treated with TMZ. Blood was collected by cardiac puncture from anesthetized animals. Data were presented as percentage of untreated mice
(Ctrl). (b) Average weight of gastrocnemius (GSN) and tibialis anterior (TA) muscles after 12 days of TMZ treatment, reported as a percentage of
the untreated mice weight (Ctrl). (c) Representative images of TA muscle sections stained with antibody to Laminin and 40,6-diamidino-2-phenylindole
to detect nuclei are shown. TA sections from 3 untreated (Ctrl) mice and 3 TMZ-treated mice were stained. Scale bar: 100 μm. (d) Frequency histogram
showing the distribution of myofiber CSA measured on transversal sections of TA muscles from TMZ-treated and untreated (Ctrl) mice. CSA of at least
7000 myofibers from 3 untreated mice and at least 7000 myofibers from 3 TMZ-treated mice was measured. (e) Histograms show the percentage of
centronucleated myofibers with respect to the total number of fibres counted in transversal sections of TA muscles from TMZ-reated and untreated
(Ctrl) mice. On the left panel, centronucleated myofibers with 1, 2 and 3 nuclei per fibre were counted. On the right panel, centronucleated myofibers
showing 1 or 2 or 3 nuclei were counted separately. Each value indicates the mean±S.E.M. (reported as fold-change of Ctrl) of the percentages calcu-
lated evaluating a total of at least 7000 myofibers from 3 untreated mice and at least 7000 myofibers from 3 TMZ-treated mice *P ≤ 0.05 with respect
to Ctrl. Scale bar: 10 μm.
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strength increase was slower than in TMZ-treated mice
(Figure 3a).

Grip strength has also been measured at 12 days of TMZ-
treatment with a commercial digital grip strength metre
(Figure 2c; 20% increase in TMZ-treated vs untreated mice,
P< 0.005), supporting the results obtained by the inverted
screen test. These data were allowed to conclude that TMZ
administration resulted in a significant increase of muscle
strength in aged mice, likely because of its action as a meta-
bolic modulator.

Slow MyHC isoform over-expression upon TMZ
treatment

Muscle atrophy might be associated with a fibre type shift,
which also occurred during ageing. On this line, the expres-
sion levels of MyHC isoforms were evaluated by western blot-
ting (Figure 4a). The results showed that total levels of the
structural proteins MyHC, fast MyHC and desmin did not sig-
nificantly change upon TMZ treatment, whereas the levels of
MyHC slow isoform increased (Figure 4a).

Discussion

The purpose of this study was to investigate the effect of TMZ
treatment on skeletal muscle mass and strength in aged
mice. We revealed that chronic TMZ treatment in ageing sig-
nificantly increases muscle strength. Our experiments show
that grip force of untreated and TMZ-treated mice progres-
sively increases over time. However, in untreated mice,
strength increase is slower than in TMZ-treated mice. Such
a progressive increase likely depends on an adaptation to ex-
ercise; in this regard, TMZ appears to facilitate force improve-
ment, somehow mimicking and anticipating exercise effects.

It is noteworthy that, contrarily to force, there was no cor-
responding increase of muscle mass and myofiber CSA in
aged animals upon TMZ treatment (Figure 2a, 2b and 2c).
This is inconsistent with the finding that the drug counteracts
hypotrophy in C2C12 myotube cultures induced by TNF-α and
serum starvation.37 However, it is in line with several studies
reporting that improved muscle force does not necessarily
correlate with muscle hypertrophy; this is particularly evident
upon endurance exercise. In addition, strength decrease in
the elderly does not parallel muscle depletion, being about
four-fold greater.9 Indeed, muscle weakness in the elderly
mainly derives from impaired muscle quality rather than from
loss of muscle mass; this has been associated with decreased
fibre specific tension and with other factors such as the loss
of motor units, NMJ degeneration, reduction of excitation-
contraction coupling and decreased transmission of lateral
force.9,46,47 Taking these observations into consideration, it

Figure 3 Trimetazidine (TMZ) increases grip strength in aged mice. (a) An
inverted grip-hanging test was performed on 22 months old C57BL6/J male
mice treated or not with TMZ. Mice were injected with TMZ for consecutive
12 days. Latency to fall off was recorded at 0, 5, 7 and 12 days of TMZ treat-
ment. The latency to fall from the screen is significantly higher in TMZ-treated
aged mice (TMZ) compared with PBS-injected aged mice (Ctrl). (b) The same
data as (a) are reported as a percentage of control. n = 6 animals were tested
for each treatment (Ctrl and TMZ). Each day of testing, for each mouse, three
independent trials were conducted 15 min apart. Data are reported as the
mean±S.D. (c) Fore grip strength was measured after 12 days of TMZ treat-
ment by using a grip strenght metre. The force achieved by the mouse was
recorded for three trials and averaged. *P ≤ 0.05, ***P ≤ 0.005 with respect
to Ctrl by student t-test.
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is conceivable that strategies able to increase muscle force in
the elderly are more relevant than those aimed at obtaining a
mere restoration of muscle mass.

MyHC is the core of the contractile apparatus, while des-
min forms a scaffold around the Z-disc of the sarcomere,
connecting it to the cell cytoskeleton and maintaining the
structural integrity of myofibers. At variance with the expres-
sion levels of the structural proteins MyHC and desmin,
which do not seem to vary upon TMZ administration in aged
mice, the slow MyHC isoform is definitively up-regulated by
TMZ-treatment. Interestingly, endurance exercise has been
associated with marked modifications of myofiber contractile
properties due to a fibre type shift towards the slow-twitch
contractile apparatus.48,49 Exercise triggers both a metabolic
and structural remodelling in the skeletal muscle in order to

reduce muscle fatigue; indeed, the shift towards long-twitch
and slow MyHC isoforms contributes to improve the ener-
getic efficiency.50 The increased expression of slow MyHC in-
duced by TMZ might suggest that the drug could trigger some
effects similar to those induced by exercise, thus acting like
other pharmacological compounds defined as ‘exercise mi-
metics’, although this point still needs to be demonstrated.
Notably, also the exercise mimetics GW1516 and AICAR are
metabolic remodelling agents that recapitulate some exercise
effects aimed at achieving the best metabolic energetic effi-
ciency. Similarly, TMZ modulates cell metabolism through a
mechanism, which might be beneficial during exercise where
there is a high oxygen expenditure. In this regard, the choice
of glucose as a substrate triggered by TMZ induces a more ef-
ficient utilization of the oxygen available; this could increase

Figure 4 Trimetazidine (TMZ) triggers slow MyHC isoform over-expression. Gastrocnemius extracts from untreated (Ctrl) and TMZ-treated mice were
assayed for slow MyHC, fast MyHC, total MyHC and desmin protein levels. Protein levels of representative 5 out of 6 untreated mice (1–5) and 5 out of
6 TMZ-treated mice (7–;11) are shown. α-Tubulin was used as loading control. Density of immunoreactive bands was calculated using the ImageQuant
TL software from GE Healthcare Life normalized for α-tubulin. Each value indicates the mean± S.E.M. (reported as percentage of Ctrl) of the densito-
metric analysis on three independent immunoblots. *P ≤ 0.05 with respect to Ctrl.
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skeletal muscle metabolism efficiency and contractile perfor-
mance, as already observed for cardiac muscle function un-
der transitory hypoxia.34

Finally, our experiments demonstrate that, in aged mice,
TMZ triggers a shift towards myofiber characterized by a low
CSA. Notably, it has been shown that the CSA of type I (slow)
myofibers is smaller than that of type II (fast) fibres, and this
strongly correlates with our finding that TMZ-treatment
enhances the expression of the slow MyHC isoform. In
addition, we found that TMZ enhances the number of
centronucleated fibres (Figure 2c and 2e), which strongly sug-
gests an increase of newly formed myofibers in vivo. This might
contribute to explaining the increased number of small-sized
myofibers we found upon TMZ treatment of agedmice. Further
studies are in progress to better investigate this point.

The data here reported suggest that the positive effects of
TMZ on muscle force might be directly exerted acting on
myofibers and might derive from metabolic modulations. How-
ever, we cannot exclude that such effects could be secondary
to effects on other organs—such as improved cardiac function
(often impaired in the elderly)—and which might result in in-
creased nutrient and oxygen availability to the skeletal muscle.
On the whole, because TMZ appears to clearly improve muscle
function in aged animals, this drug appears appealing for a pos-
sible reappraisal for the increase of muscle force in the elderly,
and further experiments would be welcome and helpful in order
to explore the molecular mechanism underlying such effects.
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