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ABSTRACT  

 

Most of Anaplastic Large Cell Lymphoma (ALCL) cases carry the t(2;5; p23;q35) that 

produces the fusion protein NPM-ALK. NPM-ALK deregulated kinase activity drives 

several pathways that support malignant transformation of lymphoma cells. We found that 

in ALK-rearranged ALCL cell lines NPM-ALK was distributed in equal amounts between 

the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in 

both cell lines and primary ALCL, whereas the nuclear portion was inactive due to 

heterodimerization with NPM. Thus, about 50% of the NPM-ALK is not active and 

sequestered as NPM-ALK/NPM heterodimers in the nucleus. Overexpression or re-

localization of NPM-ALK to the cytoplasm by NPM genetic knock-out or knock-down 

caused ERK1/2 increased phosphorylation and cell death through the engagement of an 

ATM/Chk2 and γH2AX mediated DNA damage response. Remarkably, human NPM-ALK 

amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis 

upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these 

findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis 

via oncogenic stress responses. A “drug holiday” where the ALK TKI treatment is 

suspended could represent a therapeutic option in cells that become resistant by NPM-

ALK amplification. 

 

 

Keywords: Anaplastic Large Cell Lymphoma, NPM-ALK, TKI resistance, oncogenic 

stress. 
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INTRODUCTION 

Recurrent genetic alterations of the Anaplastic Lymphoma Kinase (ALK) gene on 

chromosome 2 have been reported in different hematological and solid tumors1, 2. The 

t(2;5) is by far the most frequent translocation in Anaplastic Large Cell Lymphoma (ALCL) 

involving the nucleophosmin (NPM1) gene as a partner of translocation1, 3. Several other 

partner genes have been described in ALCL and other tumors2. All ALK fusion partners 

contain domains that allow the dimerization of the fusion chimera and the activation of the 

ALK kinase. NPM-ALK spontaneously dimerizes through the NPM1 oligomerization 

domain, trans-phosphorylates the kinase domain and activates downstream pathways that 

sustain lymphoma cell proliferation and survival. Cellular localization of ALK fusions 

depends on the fusion partner and the majority of ALK chimeras are entirely cytoplasmic1, 

4. NPM-ALK is the only ALK chimera localized in both the cytoplasm and the nucleus. 

Previous works demonstrated that the cytoplasmic localization of ALK fusions is required 

for cellular transformation5, 6, but no precise role has been yet assigned to the nuclear 

NPM-ALK or to the balance between its nuclear and cytoplasmic fractions. Understanding 

the functions of the NPM-ALK cell fractions could be exploited in the development of new 

therapeutic strategies that interfere with the physiological balance of NPM-ALK 

cytoplasmic and nuclear fractions in ALCL. Indeed, drugs that inhibit nuclear-cytoplasmic 

transport, so called selective inhibitors of nuclear export (SINE), have shown strong anti-

tumoral activity in preclinical in vitro and in vivo studies and are currently in early-phase 

clinical trials for advanced hematological malignances and solid tumors7, 8. Moreover, 

previous studies demonstrated that in chronic myelogenous leukemia (CML) the combined 

use of imatinib, the selective inhibitor of the CML oncogenic driver kinase BCR-ABL, and 

leptomycin B, a “precursor” molecule of SINE, was more effective in killing cells than the 

inhibitor alone9.  
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The recent discovery of specific ALK tyrosine kinase inhibitors (TKIs) has dramatically 

changed the way patients bearing ALK-rearranged tumors are treated10, 11. In ALK-

rearranged non-small cell lung cancer (NSCLC) crizotinib, as well as next generation ALK 

TKI such as ceritinib, alectinib or brigatinib, have proven clinical efficacy12-14. 

Unfortunately, each TKI treatment is invariably associated with the development of TKI 

resistance and NSCLC relapse15-18. Similarly to NSCLC patients, crizotinib resistance 

occurs in a fraction of ALCL patients19. Understanding the mechanisms of ALK TKI 

resistance is critical to envision new treatment strategies to maximize the clinical benefits 

for ALK-rearranged ALCL patients. To date most of the data on the mechanisms of 

resistance to ALK TKI have been collected in NSCLC patients20-23, whereas very few data 

are available for ALCL. Mechanisms of acquired resistance to ALK TKI in ALK-rearranged 

ALCL have been described mainly in vitro by our group and others, including single point 

mutations of the TK domain and amplification of the ALK fusion gene24-28. Amplification of 

the ALK fusion gene has also been described in ALK-rearranged NSCLC and leads to 

increased expression of the oncogenic ALK fusion that requires increasing dosage of ALK 

TKI to be treated. Overexpression of a driver oncogene as a mechanism of resistance to 

TKI has been also reported in CML patients treated with imatinib29. Remarkably, acute 

over-activation following imatinib suspension in BCR-ABL amplified imatinib-resistant cells 

induces apoptosis of resistant cells29-31. In another notable example, melanoma cells 

develop resistance to B-RAF inhibitors, and B-RAF TKI suspension in resistant cells 

induces cell toxicity mediated by an excess of B-RAF oncogenic signaling32. Similar 

observations have been described in a few other cancer models33, 34. Overall, these data 

indicate that an intermitting administration of a TKI could represent a therapeutic approach 

designed to overcome TKI resistance in different tumors. 

In this study we show that NPM-ALK is equally distributed between the cytoplasm and the 

nuclear fractions, where nuclear NPM-ALK is inactive. This nuclear sequestration is critical 
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for optimal survival of ALCL cells because an excess of NPM-ALK signaling causes 

oncogenic toxicity by activation of the DNA damage response pathway. Consistently, 

NPM-ALK amplified ALCL cells that developed resistance to the TKI brigatinib underwent 

massive apoptosis upon TKI suspension because of an excess of NPM-ALK activation. 

Thus, periodic ALK TKI suspension, a so-called “drug holiday”, may represent an effective 

treatment for ALCL patients developing TKI resistance by ALK amplification. 

 

RESULTS 

NPM-ALK is equally localized in the cytoplasm and the nucleus of ALCL cells, but it 

is phosphorylated only in the cytoplasm.  

NPM-ALK is by far the most frequent fusion in ALK-rearranged ALCL, yet the only one 

localized both in the cytoplasm and in the nucleus1, 2. Previous works demonstrated that 

the cytoplasmic localization of ALK fusions is needed for cell transformation, but never fully 

elucidated the role of the nuclear fraction5, 6. Therefore, we first analyzed NPM-ALK 

subcellular localization to better investigate the role of its nuclear fraction. We found that in 

all ALK-rearranged ALCL cell lines, NPM-ALK fusion is equally distributed between 

cytoplasm and nucleus, as previously reported in one cell line5, but, surprisingly, only the 

cytoplasmic fraction is phosphorylated and thereby kinetically active (Fig. 1A). 

Consistently, a phospho-ALK (Y1604) antibody stained only the cytoplasm in primary ALK-

rearranged ALCL indicating that the NPM-ALK nuclear fraction is not active (Fig. 1B). 

Thus, despite NPM-ALK is expressed in equal amounts in the cytoplasm and in the 

nucleus in ALCL cells, only the half cytoplasmic fraction of the total NPM-ALK protein is 

catalytically active. 

 

Enforced expression of NPM-ALK in the nucleus does not transform cells.  
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In the NPM-ALK fusion, NPM1 is truncated by the t(2;5) translocation before the nuclear 

(NLS) and the nucleolar localization signals (NuLS)(Fig 1C). Thus, we reasoned that NPM-

ALK can enter the nucleus only as a heterodimer with WT NPM1, and that these nuclear 

heterodimers are inactive because of lack of trans-phosphorylation. To test this hypothesis 

we first generated a fusion NPM-ALK construct containing the total NPM1 protein (NPMtot-

ALK) (Fig 1C). When expressed in 293T cells, NPMtot-ALK localized entirely to the nucleus 

and the nucleolus due to the now conserved NPM1 NLS and NuLS, whereas NPM-ALK 

localized both in the cytoplasm and in the nucleus (Fig. 1D and Supplementary Fig. 1A-B). 

Next we tested the cell transformation potential of NPMtot-ALK in two independent assays. 

First, we stably transduced NPM-ALK, the kinase dead mutant K210R (NPM-ALKKD) and 

NPMtot-ALK constructs into NIH3T3 cells and performed an anchorage-independent cell 

growth assay. NIH3T3 cells expressing the NPMtot-ALK showed limited anchorage-

independent growth with few colonies growing in soft-agar similar to the inactive NPM-

ALKKD, strikingly less than NIH3T3 cells expressing oncogenic NPM-ALK (Fig. 1E-F). 

Second, we used the murine interleukin-3 (IL-3) dependent pro-B cell line Ba/F3. In this 

assay, the ectopic expression of NPM-ALK enabled Ba/F3 cells to grow in absence of IL-3, 

whereas neither NPM-ALKKD nor NPMtot-ALK did (Fig. 1G-H). Overall, these results 

indicate that NPM-ALK is sequestered by WT NPM1 in the nucleus in an inactive, non 

phosphorylated form. However, should active NPM-ALK homodimers form in the nucleus 

by release of heterodimers, they would be still unable to transform cells because of a lack 

of signaling as the experiments with the NPMtot-ALK fusion indicate.    

 

In the absence of WT NPM1, NPM-ALK expression is localized to the cytoplasm but 

induces cell death.  

To further elucidate the role of WT NPM1 in NPM-ALK oncogenic signaling, we transduced 

mouse embryonic fibroblasts (MEFs) that lack NPM1 (NPM-/- MEF) with retroviruses 
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expressing NPM-ALK, NPM-ALKKD or NPMtot-ALK. Because NPM-/- cells do not proliferate 

in vitro and acquire a senescent phenotype in the presence of p53, we used NPM-/-/p53-/- 

double-deficient MEFs and p53-/- MEFs as controls for NPM1 expression35. In contrast to 

NIH3T3 cells and p53-/- MEFs, in NPM-/-/p53-/- MEFs, NPM-ALK and the kinase dead 

NPM-ALKKD were now localized only in the cytoplasm further confirming that, without 

NPM1, NPM-ALK homodimers cannot enter the nucleus and are localized to the 

cytoplasm (Fig. 2A-B). In NPM-/-/p53-/- MEFs, cytoplasmic NPM-ALK was catalytically 

active (Fig. 2A right-top panels). NPM-ALK expression was well tolerated in p53-/- MEFs 

whereas, quite surprisingly, it induced apoptosis in NPM-/-/p53-/- MEFs with elevated 

activation of Caspase 3/7 (Fig. 2C-D). On the contrary, NPMtot-ALK was largely nuclear in 

both NPM-/-/p53-/- and p53-/- MEFs (Fig. 2A), but well tolerated as the NPM-ALKKD (Fig. 2C-

D). Cell localization experiments of NPM-ALK in NPM-/-/p53-/- MEFs was not doable 

because of the massive apoptosis of the cells.  

Thus, lack of NPM-ALK sequestration by WT NPM1 induces NPM-ALK accumulation in 

the cytoplasm resulting in cell apoptosis rather than transformation. 

We next investigated the effects of knocking-down the endogenous WT NPM1 in ALK-

rearranged ALCL cell lines. We transduced ALK-rearranged ALCL cell lines (SU-DHL-1, 

COST, TS and KARPAS 299) with two different shRNA targeting NPM1 (Fig. 3A and 

Supplementary Fig. 2A). The ALK-negative ALCL cell line, FEPD, was used as control. 

When NPM1 was knocked-down NPM-ALK phosphorylation increased compared to 

control cells, as we observed in NPM-/-/p53-/- MEFs, likely due to the accumulation of NPM-

ALK homodimers in the cytoplasm (Fig. 3A and Supplementary Fig. 2A). The accumulation 

of NPM-ALK in the cytoplasm led to apoptosis of ALK-rearranged ALCL cells (Fig 3B-D 

and Supplementary Fig. 2B). No apoptosis was observed after NPM1 silencing in control 

ALK- cell line FEPD (Fig. 3E).  
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These results indicate that in the absence of WT NPM1 the amount of phosphorylated 

NPM-ALK increases and that the excess of NPM-ALK signaling could be responsible for 

ALCL apoptosis. 

 

Overexpression of NPM-ALK in the cytoplasm of ALCL cells induces apoptosis of 

lymphoma cells. 

Prompted by these results, we investigated in more details the effects of NPM-ALK 

overexpression in ALK-rearranged ALCL cells. Four different ALK-rearranged ALCL cell 

lines (SU-DHL-1, COST, TS and KARPAS 299) and, as control, one ALK-negative 

lymphoma cell line (MAC-1) were first transduced with a TetON lentivirus and then with 

lentiviruses containing NPM-ALK or NPM-ALKKD to create a doxycycline-inducible system 

to overexpress NPM-ALK or NPM-ALKKD upon doxycycline addition (Fig. 4A and 

Supplementary Fig. 3A and 4A). Overexpression of NPM-ALK in ALK-rearranged cells was 

mainly localized to the cytoplasm and caused a marked increase in the amount of 

phosphorylated NPM-ALK (Fig. 4B). Although ALK-rearranged ALCL cells are strongly 

dependent on ALK kinase activity and signaling for their viability and proliferation, 

overexpression of NPM-ALK caused a significant increase in apoptosis and activation of 

caspases 3 and 7 within 48-72 hours after doxycycline induction (Fig. 4C-F and 

Supplementary Fig. 3B-C). Similar effects were observed by ectopic expression of NPM-

ALK in ALK-negative lymphoma cells (Supplementary Fig. 4B).  

Consistent with the in vitro results, overexpression of NPM-ALK in ALK-rearranged ALCL 

cells completely impaired cell growth in vivo. Indeed, no tumors were detected in s.c. 

xenografts of SU-DHL-1 and COST after overexpression of NPM-ALK (Fig. 4G-H). 

Overall, these data indicate that higher expression levels of NPM-ALK in ALCL induce a 

relative increase of the cytoplasmic portion likely because the stoichiometric balance 

between NPM1 and NPM-ALK is altered. The increased cytoplasmic NPM-ALK results in 
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apoptosis and lymphoma growth impairment. Thus, sequestration of about 50% of the 

NPM-ALK fusion is necessary to maintain the proper amount of ALK signaling.  

 

Overexpression of NPM-ALK causes DNA damage and accumulation of γH2AX 

microfoci through activation of the MAPK pathway. 

Because oncogenes can induce apoptosis or senescence in response to DNA damage 

through replicative stress36, 37, we asked whether an excess of NPM-ALK signaling would 

activate an oncogene-induced DNA damage response. We observed that ALK-rearranged 

ALCL cells overexpressing NPM-ALK displayed increased phosphorylation of the H2A 

histone family member X (γH2AX), a key protein in the DNA repair pathway, and 

accumulation of γH2AX microfoci in the nuclei at DNA double-strand breaks (DSBs) (Fig. 

5A-C and Supplementary Fig. 5A-B and 6A). Overexpression of the NPM-ALKKD did not 

cause formation of γH2AX microfoci (Fig. 5B-C and Supplementary Fig. 5A). Along with the 

accumulation of γH2AX, overexpression of NPM-ALK caused the localization of the p53 

binding protein 1 (53BP1), another key player of the DNA damage response pathway, at 

foci overtime (Supplementary Fig. 7A-B). 

As DNA damage generated by oncogenic stress results from the activation of one of two 

main DNA-damage checkpoint pathways, the ATM-Chk2 and the ATR-Chk138-40, we 

investigated whether the overexpression of NPM-ALK was associated with the activation 

of ATM/ATR/Chk pathway. We found that overexpression of NPM-ALK led mainly to the 

phosphorylation of Chk2 more than Chk1 or RPA32 (Fig.5D and Supplementary Fig. 5C, 

6B and 8A). We also observed that excessive NPM-ALK signaling caused marked 

increase in the phosphorylation of the MAPK-ERK1/2 pathway, that has been described to 

mediate oncogenic stress (Fig. 5E and Supplementary Fig. 5B and 6A)41. To test whether 

hyper stimulation of cells through MAPK pathway was responsible for the DNA damage 

and phosphorylation of H2AX, we treated cells with a specific MEK inhibitor, CI-1040 
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(PD184352). SU-DHL-1 and COST cells were induced with doxycycline for 24h and 

concomitantly treated with CI-1040. In cells overexpressing NPM-ALK, the inhibition of 

MEK resulted in marked dephosphorylation of H2AX (Fig. 5E). Similarly, the ectopic 

expression of NPM-ALK in MAC-1 cells caused a strong activation of the MEK/ERK1/2 

pathway and a marked increase in the phosphorylation of H2AX (Supplementary Fig. 8B). 

Inhibition of the MEK/ERK1/2 pathway decreased H2AX phosphorylation (Supplementary 

Fig. 8B). Thus, these data indicate that excess of NPM-ALK signaling induces a DNA 

damage response that is mediated by the MEK/ERK1/2 pathway. 

 

KARPAS 299 resistant to the ALK TKI brigatinib (AP26113) overexpress NPM-ALK 

and are TKI dependent. 

We and others recently described genomic amplification of the ALK locus as a mechanism 

of ALK TKI resistance 26, 28. We reported three ALK-rearranged cell lines (K299AR300A, 

K299AR300B, K299AR300C) whose resistance to the ALK inhibitor brigatinib was 

mediated by genomic amplification that caused NPM-ALK overexpression (Fig. 6A)26. 

Interestingly, in all resistant cell lines overexpressed NPM-ALK was mainly localized in the 

cytoplasm both in presence and in absence of the inhibitor, a finding in line with our data 

on ectopic overexpression of NPM-ALK (Fig. 4 and 6B). Surprisingly, these cell lines 

showed the highest proliferative rate not in the absence of ALK TKI, but in the presence of 

low doses (40nM) of brigatinib. Indeed, inhibitor dose-response curves showed an 

abnormal proliferative peak around 40nM brigatinib in NPM-ALK amplified ALCL but not in 

parental cells (Fig. 6C). The cells showed the same abnormal dose-response curves upon 

inhibition with other ALK TKIs (crizotinib, alectinib, ceritinib and ASP3026) or with a HSP90 

inhibitor (17-AAG) that causes NPM-ALK down-regulation (Supplementary Fig. 9). Thus, 

these cell lines with amplified NPM-ALK not only were TKI resistant but also showed TKI 

dependency. Interestingly, in the presence of 40nM brigatinib, NPM-ALK phosphorylation 
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levels and downstream signaling, including ERK1/2 phosphorylation, were comparable to 

parental cell lines (Fig. 6B and D). Remarkably, upon drug withdrawal the cytoplasmic 

fraction of NPM-ALK in ALK amplified cell lines became highly phosphorylated, caused 

hyper-activation of ERK1/2 and led to oncogenic stress through phosphorylation of H2AX, 

in keeping with the data in ALK-rearranged ALCL cell lines overexpressing NPM-ALK (Fig. 

6B and 6D). As a consequence apoptosis was induced dramatically after 72h of drug 

suspension (Fig. 6E). The same effect was observed in another ALK-rearranged cell line 

resistant to the ALK inhibitor ASP3026, SUPM2R1. We recently demonstrated that in this 

cell line TKI resistance was mediated by both ALK amplification and an ALK point mutation 

25. Also in this cell line, TKI withdrawal was followed by increased cell death 

(Supplementary Fig. 10). Overall these data indicate that in NPM-ALK amplified resistant 

ALCL cells the increased expression of NPM-ALK fusion results in accumulation of 

cytoplasmic NPM-ALK. In this condition, the excess ALK signaling is partially abrogated by 

low doses of ALK TKI resulting in ALK phosphorylation and ERK1/2 signaling comparable 

to the parental cells. However, upon ALK TKI suspension, the excess NPM-ALK signaling 

secondary to the ALK amplification induces an oncogenic stress response with DNA 

damage and apoptosis.  

 

Long-term suspension of ALK TKI selects cells with restored sensitivity.  

Based on these results, we envisioned a therapeutic approach to overcome resistance 

mediated by ALK amplification in ALCL. We grew parental KARPAS 299 and resistant 

cells in the presence or in the absence of brigatinib for five weeks. As expected, parental 

KARPAS 299 did not grow in presence of the drug (Fig. 7A, left-top panel). Of the three 

resistant cell lines, K299AR300B never grew in absence of the TKI, possibly consistent 

with their higher apoptosis and DNA damage response (Fig. 7A, left-bottom and Fig. 6D-

E). In contrast, K299AR300A and K299AR300C, after an initial apoptotic response, 
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recovered in absence of the TKI (Fig7A. right panels). Remarkably, sensitivity to brigatinib 

was restored in these cells that recovered after TKI suspension (K299AR300A- and 

K299AR300C-; Fig. 7B-C). IC50 values for brigatinib of K299AR300A- and K299AR300C- 

were similar to the original for parental cells (6 and 7nM versus 3nM, Fig. 7C). 

Interestingly, in these cells, NPM-ALK overexpression was lost as its expression levels 

were again similar to the parental cell line (Fig. 7D). These results are in accordance with 

recent data reported by Amin et al on regression in mice of NPM-ALK amplified ALCL 

xenografts upon TKI treatment suspension 28. These results suggest that ALK TKI 

resistance mediated by ALK amplification could be tamed by cycles of drug suspension, a 

so-called “drug holiday” where ALK amplified cells would die under an oncogenic stress-

mediated DNA damage. 

 

DISCUSSION 

In the present work we demonstrated that the amount of cytoplasmic NPM-ALK in ALCL is 

critical for optimal lymphoma growth and survival. We showed that only half of the total 

NPM-ALK in ALCL is active in the cytoplasm in the form of homodimers, whereas WT 

NPM1 sequesters the other half in the form of inactive heterodimers. Therefore in NPM-

ALK rearranged ALCL a critical stoichiometric equilibrium is reached between WT NPM1 

and oncogenic NPM-ALK, and a perturbation of such equilibrium in either directions results 

in diminished cell growth and viability. A decrease of NPM-ALK expression or activity 

results in lymphoma cell cycle arrest and apoptosis, as it has now been demonstrated in 

preclinical models and in clinical trials with ALK TKI19, 42-44. In the present study we 

demonstrate that also an excess of NPM-ALK signaling is detrimental to ALCL growth by 

triggering an oncogene-induced stress response and apoptosis, and that nuclear 

sequestration of NPM-ALK is essential to maintain the optimal levels and to prevent an 

excess of ALK signaling. 
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Oncogenes trigger growth-promoting and anti-apoptotic signals for malignant 

transformation and outgrowth, but under certain conditions they can also initiate cellular 

programs that lead to apoptosis or senescence36. This phenomenon known as oncogenic 

stress is a common response to a cell replicative stress and DNA damage induced by the 

enforced proliferation caused by the deregulated oncogenic activity. Oncogenes activate 

an ATR/ATM-regulated DNA damage response network that delays or prevents cancer 

progression in early phase until this checkpoint is compromised by genetic alterations that 

often result in modification of the ATM-Chk2-p53 pathway36, 38. In ALCL, the p53 pathway 

is rarely inactivated by mutations45, but it has been suggested that its activity is partially 

inactivated in an MDM2 and JNK-dependent manner46. Our data show that ALCL are still 

susceptible to apoptosis induced by an oncogenic stress generated by an excess of NPM-

ALK signaling. When NPM-ALK was overexpressed or redirected to the cytoplasm after 

elimination of the nuclear sequestration by NPM1 knock-out, a DNA damage response 

was readily demonstrated by phosphorylation of Chk2 and formation of γH2AX and 53BP1 

nuclear foci. Similarly to other oncogenes, the NPM-ALK oncogenic stress response was 

mediated by hyperactivation of MEK/ERK1/2 signaling36, 47, 48.  

In the present work we also asked whether these findings could be exploited for 

therapeutic purposes. Exciting advancements in the therapy of ALCL are seemingly at 

hand after the development of ALK TKI. Our group was the first to show that the first 

generation ALK TKI crizotinib is potently active in ALCL patients relapsed after standard 

cytotoxic therapy19, 43. However, a fraction of patients relapse under therapy for the 

development of resistance to ALK TKI.  

Studies in few patients so far confirmed that mechanisms of resistance in ALCL are similar 

to those that occur in ALK-rearranged NSCLC. Most cases of resistance are mediated by 

point mutations in the ALK tyrosine kinase domain that affect the binding of the ALK TKI19, 

24, 27. As an alternative mechanism, we recently demonstrated that resistance to the ALK 
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TKI brigatinib can also originate from amplification of the NPM-ALK gene so that an 

increased amount of NPM-ALK is produced by the resistant cells26. In these amplified 

ALCL cells, the stoichiometric balance between NPM-ALK and WT NPM1 is altered by an 

excess of NPM-ALK expression due to gene amplification. In these conditions, we 

demonstrated that releasing ALK inhibition by brigatinib suspension induces a rebound 

excess of ALK signaling identical to ALCL where NPM-ALK is overexpressed. This 

signaling includes hyperphosphorylation of ERK1/2 and γH2AX and results in cell 

apoptosis. Long-term culture of resistant KARPAS 299 cells in the absence of the ALK TKI 

resulted in the selection and outgrowth of cells that showed restored sensitivity to 

brigatinib. In those cell lines NPM-ALK overexpression was abrogated, consistently with 

data shown. Thus, in line with other cases of resistance, such as B-Raf, BCR-ABL, and 

others31-34, 49, our data suggest that patients that have developed resistance to ALK TKI 

mediated by NPM-ALK amplification might benefit from cycles of administration and 

suspension of TKI treatment, the so called “drug holiday” therapy50, 51. Remarkably, while 

our manuscript was in preparation, a drug holiday approach for NPM-ALK amplified ALCL 

was also proposed by Amin et al. with experiments in xenograft mouse models28. 

However, they did not provide any molecular mechanisms to explain their findings, which 

we now provide in our work.   

A second possible therapeutic application of our findings would involve the use of drugs 

that alter the nuclear import-export, thereby creating an unbalance between the amounts 

of nuclear and cytoplasmic NPM-ALK. In the case of NPM-ALK accumulation in the 

cytoplasm an oncogenic stress response would be activated. In contrast, should NPM-ALK 

nuclear sequestration increase, the active cytoplasmic fraction would decrease. In either 

cases cell viability would be affected as we showed in this study. To test this hypothesis, in 

preliminary experiments we tested the nuclear export inhibitor KPT330 on ALCL cells. 

KPT330 is currently in clinical trial for the treatment of acute leukemia 8, 52. Treatment with 
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KPT330 resulted in a marked apoptosis of ALCL cells (Supplementary Fig. 11A). 

Remarkably, KTP330 synergized with crizotinib in the induction of apoptosis 

(Supplementary Fig. 11B-E). Increased sensitivity to crizotinib suggests that KPT330 might 

decrease the amount of active cytoplasmic NPM-ALK by impeding the nuclear export. 

More detailed studies on this combination therapy are currently under way in our 

laboratory. 

In conclusion, our findings establish a novel concept of a critical balance of NPM-ALK 

signaling in ALCL cells. Exploiting the unbalance created by NPM-ALK amplification in TKI 

resistant ALCL by a period “drug holiday’ could represent an additional therapeutic 

strategy for the treatment of ALK-rearranged ALCL.  

 
 

MATERIALS AND METHODS  

Cell lines and reagents 

Human ALK-rearranged (TS, SU-DHL1, SUP-M2, KARPAS 299, JB6, SR-786 and DEL) 

and ALK negative (MAC-1) ALCL cell lines were obtained from the DSMZ (German 

collection of Microorganisms and Cell Cultures) collection. COST and FEPD cell lines were 

kindly provided by Dr. Lamant. Resistant cell lines KARPAS 299, K299AR300A, 

K299AR300B and K299AR300C, were selected and grown in the presence of brigatinib 

(AP26113) as previously described26. MEF NPM-/-p53-/- and MEF p53-/- were kindly 

provided by Dr. Colombo.  

The ALK TKI brigatinib (AP26113) was kindly provided by Ariad Pharmaceutical.  

Crizotinib was kindly provided by Pfizer, ceritinib (LDK-378) by Novartis, ASP3026 by 

Astellas, while alectinib (CH5424802), 17-AAG, CI-1040 (PD184352) and KPT330 were 

purchased from Selleck Chemicals. Idarubicin (IDA_HCl) and Puromycin were purchased 

by Sigma-Aldrich.  
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NPM-ALK constructs, virus preparation, cell infection and cell sorting. 

Pallino vector expressing NPM-ALK or NPM-ALKK210R were previously described53. 

NPMtot-ALK construct was generated by PCR. The PCR product was cloned into PCRII 

vector using the T/A cloning technology (Invitrogen) and then cloned into pallino retroviral 

vector at HINDIII/XhoI sites. 

For the TetON system, NPM-ALK and NPM-ALKK210R were cloned into a modified pCCL 

vector containing the coding sequence of the EGFP-1 and the inducible bidirectional PBI-1 

promoter that co-express the cloned gene and EGFP-1, as reporter.  

Lentiviral shRNA clones targeting NPM were obtained from Sigma.  

Retroviruses and lentiviruses were generated and cells were infected as previously 

described53.  

For the lentiviral-mediated inducible gene expression, cells were co-infected with pCCL 

lentiviruses and the rtTA regulator plasmid, according to the TetON strategy54. 

For cell sorting enrichment, cells were induced with 1ug/ml doxycycline hyciclate for 12h 

and sorted for GFP expression on a MoFlo High-Performance Cell Sorter (DAKO 

Cytomation). Cells were analyzed for GFP content on a FACSCalibur flow cytometer 

(Becton Dickinson) and the CELLQuest (tm) software (BD) was used for the data 

acquisition and analysis. 

 

Cell apoptosis, caspase, proliferation and soft-agar assays 

Apoptosis was measured by flow cytometry after staining with 200nM tetrametylrodamine 

methyl-ester (TMRM) or with annexin V-propidium iodide (PI) apoptosis detection kit (BD 

Biosciences), as previously described53. For caspase assay, the activity of caspase-3 and 

-7 was measured using Caspase-Glo® 3/7 Assay (Promega) and the multi-detection 
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system Glomax (Promega). Proliferation and soft-agar assays were performed as 

previously described24. 

 

Protein subcellular fractionation and immunoblotting 

Cells were processed for the cytoplasm-nuclear fractionation by sequential step of lysis 

following NE-PER kit (Thermo Scientific) protocol. Total cell lysates were extracted as 

previoulsy described53.  

 

Immunohistochemistry and immunofluorescence  

Immunohistochemical and immunofluorescence stainings were performed as previously 

described53. Coverslips were viewed using a Leica TCS SP2 laser-scanning confocal 

microscope driven by the Leica Confocal Software; the images were acquired at room 

temperature, by means of a 63X PL APO objective, numerical aperture 1.32. Brightfield 

images were acquired on a Leica DM IRE2 microscope using a DC300F camera and 

analyzed with the IM 50 software.  

 

Immunoblotting and immunofluorescence antibodies 

Primary antibodies used: anti-ALK (Zymed); anti-phospo-ALK (Y1604), anti-phospho-

H2AX (S139), anti-phospho-p44/42 (T202/Y2049), anti-p44/42, anti-phospho-Chk1 (S345), 

anti-phospho-Chk2 (T68), anti-RPA32 (Cell Signaling Technology); anti-Chk1 

(Novocastra); anti-Chk2 (Upstate); anti-phospho-RPA32 (S4/S8, Bethyl Laboratories); anti-

βTubulin (Sigma); anti-actin (Sigma); anti-hnRNP A2/B1 (Abcam); anti-NPM (Invitrogen).  

FISH analysis 

FISH analysis on K299AR300A, AR300B and AR300C cell lines was previously 

described26. Amplified NPM-ALK quantification was performed using the Metafer Slide 

Scanning System (MetaSystems Hard & Software GmbH). The image acquisition and the 
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analysis of the cells were performed automatically by using the Metafer Slide Scanning 

System (MetaSystems Hard & Software GmbH), connected to the motorized microscope 

ZEISS Axio Imager.Z2 (Carl Zeiss). 3-channels images of a predefined area of the 

samples were acquired at a magnification of 40x. A “Z-stack” acquisition mode was used 

for the Red and Aqua channels, in order to provide a tridimensional evaluation of the 

corresponding FISH signals. The Red and Aqua FISH signals that resided inside the DAPI 

counterstain contour of the selected cells were identified and counted by a sophisticated 

spot-counting algorithm (based on Horn-Schunck algorithm). The ratio between the Red 

and Aqua values was calculated for every cell, and a medium overall ratio for all the 

analyzed cells was then calculated and graphically reported by the software.  

 

In vivo tumor challenge  

NOD-SCID mice (Charles River Laboratories Italia S.p.A) were inoculated s.c and 

measured as previously described55. Mice were handled and treated in accordance with 

European Community guidelines.  

 

Statistical Analysis 

Dose–response curves were analyzed using GraphPad Prism 5 software. IC50 indicates 

the concentration of inhibitor that gives half-maximal inhibition. Statistical significance was 

calculated with T-Student test. P values of <0.05 were considered significant. Unless 

otherwise noted, data are presented as means ± sd. 
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Figure Legends 
 
 
Figure 1. In ALCL cells NPM-ALK is equally distributed between the cytoplasm and 

the nucleus, but it is phosphorylated only in the cytoplasm. A) ALK-rearranged ALCL 

cells were collected and total cell lysates were processed for the cytoplasm-nuclear 

fractionation. Cytoplasmic and nuclear fractions were blotted with the indicated antibodies. 

B) Immunohistochemistry on ALCL tissue samples with anti-ALK or anti-pALK(Y1604) 

antibody (top panels). Immunofluorescence staining with anti-ALK or anti-pALK(Y1604) 

antibody in TS cells (red fluorescence) (bottom panels). C) NPM-ALK constructs. The 

different constructs were cloned in a retroviral vector, pallino, with the reporter gene GFP. 

NPM-ALK fusion protein and the kinase dead mutant (K210R) NPM-ALKKD are indicated. 

The translocated counterpart of NPM contains the oligomerization domain (OD) at the N-

terminal, but it looses the nuclear (NLS) and nucleolar localization signals (NuLS) at the C-

terminal, as indicated. NPMtot-ALK construct was created by PCR amplification in order to 

force NPM-ALK expression in the nucleus. In this construct the entire NPM coding 

sequence is fused to the C-terminal of ALK. D) Human 293T cells were transfected with 

the indicated DNA constructs and harvested after 24h. Immunohistochemistry with a 

specific anti-ALK antibody was performed on formalin-fixed and paraffin-embedded cells 

(D). E-F) NPMtot-ALK does not transform cells. NIH3T3 cells were infected with pallino-

NPM-ALK, NPM-ALKKD or NPMtot-ALK. Total cell lysates were blotted with the indicated 

antibodies (E). NIH3T3 cells infected with the indicated constructs were plated in soft agar 

and cultured for 3 weeks. Histograms represent the average numbers of colonies grown in 

soft agar (F). Data are from one of three independent experiments. G-H) Nuclear NPMtot-

ALK does not support a cytokine independent growth. IL-3 dependent Ba/F3 cells were 

stably transfected with NPM-ALK, NPM-ALKKD or NPMtot-ALK. Ba/F3 cells were collected 

in presence of IL-3 and blotted with the indicated antibodies (G). Three days after infection 
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Ba/F3 cells were grown in absence of IL-3 and the percentage of viable cells was checked 

by FACS analysis at the indicated time points (H) Data are from one of two independent 

experiments. Statistical significance was calculated by Student’s t-test where ***P 

<0.0005.  

Figure 2. In the absence of WT NPM1, NPM-ALK is entirely localized in the 

cytoplasm and causes cell death. NPM-/-/p53-/- MEF and p53-/- MEF cells were infected 

with pallino-NPM-ALK, NPM-ALKKD or NPMtot-ALK retrovirus. The percentage of GFP+ 

cells was checked by FACS analysis. A) Immunofluorescence staining with a specific anti-

ALK antibody or anti-pALK(Y1604)  was performed (red fluorescence). Green fluorescence 

is the EGFP reporter protein encoded by transduced cells. Nuclei were stained with DAPI. 

Images were taken with the Leica Confocal microscope. B) Cells were collected and 

processed for the cytoplasm-nuclear fractionation. Cytoplasmic and nuclear fractions were 

blotted with the indicated antibodies. C-D) The percentage of apoptosis in NPM-/-/p53-/- 

MEF and p53-/- MEF cells was measured by TMRM staining and FACS analysis (C). The 

activation of the caspase 3/7 was analysed using Caspase-Glo® 3/7 Assay (Promega) and 

the Glomax multi-detection system (D). Statistical significance was calculated by Student’s 

t-test where **P <0.005; ****P <0.0001.  

Figure 3. Knocking-down wild-type NPM1 increases apoptosis in ALK-rearranged 

ALCL cells. A) ALK-rearranged ALCL cell lines (SU-DHL-1, COST, TS) and the ALK 

negative cell line, FEPD, were infected with two shRNA targeting NPM. Infected cells were 

grown in presence of 1ug/ml puromycin for selection, then harvested and analysed by 

Western blot with the indicated antibodies. Total cell lysates were blotted with the indicated 

antibodies. B-E) The percentage of apoptosis cells was measured by TMRM staining and 

FACS analysis. Data are from one of two independent experiments. Statistical significance 

was calculated by Student’s t-test where * P <0.05; ***P <0.0005. 
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Figure 4. In ALK-rearranged ALCL overexpression of NPM-ALK causes excess of 

NPM-ALK signaling and cell death in vitro and impairs cell growth in vivo. A) ALK-

rearranged ALCL cells (SU-DHL-1 and COST) were infected with a doxycycline-inducible 

lentivirus espressing NPM-ALK or the kinase dead, NPM-ALKKD. The percentage of GFP+ 

cells was checked by FACS analysis. Cells were cultured in absence/presence of 

doxycycline (1μg/ml) for 24h to induce the expression of the indicated constructs and total 

cell lysates were collected for Western blot analysis with the indicated antibodies. B) SU-

DHL-1 and COST inducible cell lines were collected and processed for the cytoplasm-

nuclear fractionation. Cytoplasmic and nuclear fractions were blotted with the indicated 

antibodies. C-F) Cells were cultured in presence/absence of doxycycline for 48h. Cell 

death was analysed by TMRM staining and FACS analysis (C-D) and caspase 3/7 

activation was analysed using Caspase-Glo® 3/7 Assay (Promega) and the Glomax multi-

detection system . Data are from one of three independent experiments.  G-H) NOD-SCID 

mice were inoculated s.c in both flanks with  106 ALK-rearranged ALCL inducible cell lines 

(SU-DHL-1 and COST). Tumor growth was measured at the indicated time points. 

Statistical significance was calculated by Student’s t-test where *P <0.05; **P <0.005; **** 

P <0.0001. 

 

Figure 5.  NPM-ALK overexpression leads to ATM-Chk2 pathway activation and 

causes DNA damage and γH2AX microfoci accumulation in the nuclei at DNA 

double-strand breaks  through the MAPK pathway. SU-DHL-1 and COST were infected 

with a doxycycline-inducible lentivirus expressing NPM-ALK or NPM-ALKKD and grown in 

presence of doxycycline (1μg/ml). A) Immunofluorescence staining with a specific anti-

γH2AX (S139) antibody (red fluorescence) was performed. Nuclei were stained with DAPI. 



 

 34

Green fluorescence is the EGFP reporter protein encoded by the retrovirally transduced 

cells. B-C) Histograms represent the % of γH2AX positive microfoci in SU-DHL-1 (B) and 

COST (C) at 48h from induction with doxycycline. D) Cells were induced with doxycycline, 

harvested at the indicated time points and blotted with the indicated antibodies. E) SU-

DHL-1 and COST inducible cell lines (NPM-ALK and NPM-ALKKD) were grown in presence 

of doxycycline for 48h and treated with the MEK inhibitor CI-1040 (1μM) for 24h. Total cell 

lysates were immunoblotted with the indicated antibodies. Statistical significance was 

calculated by Student’s t-test where **P <0.05; ****P<0.0001. 

 

Figure 6. Resistant KARPAS 299 cell lines resistant to brigatinib overexpress NPM-

ALK and are TKI dependent. Resistant cell lines K299AR300A, K299AR300B and 

K299AR300C were obtained as reported in Methods. A) Quantification of NPM-ALK 

genomic amplification was performed by using the Metafer Slide Scanning System. Values 

are normalized on the probe specific for centromere of chromosome 2. B) KARPAS 299 

TetOn were induced with doxycycline for 48h and collected for the cytoplasm-nuclear 

fractionation. K299AR300A, K299AR300B and K299AR300C were collected after 48h of 

brigatinib suspension and processed for the cytoplasm-nuclear fractionation. Cytoplasmic 

and nuclear fractions were blotted with the indicated antibodies. C) A dose-response curve 

in the presence of brigatinib was performed on K299AR300A, K299AR300B and 

K299AR300C cell lines. Cells were incubated for three days in the presence of the 

indicated brigatinib concentration, then they were incubated for 8 hours with 3H-

radiolabeled thymidine. Radioactive incorporation was evaluated and normalized on the 

untreated wells. D) Cells were plated in absence or in presence of 40nM brigatinib for 24 

or 48 hours then harvested and blotted with the indicated antibodies. E) Cells were 

incubated for 72 hours with or w/o brigatinib [40nM]. Apoptosis was evaluated by 

annexinV-PI staining. Histograms represent the percentage of apoptotic (annV+, PI+) cells 
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for each analysed cell population.  Statistical significance was calculated by Student’s t-

test where **P <0.005. 

Figure 7. Long-term suspension of ALK TKI selects cells with restored sensitivity to 

brigatinib. K299AR300A, K299AR300B and K299AR300C and parental K299 cells were 

cultured in the presence or in the absence of 300nM brigatinib for five weeks. A) Cell 

viability was measured in the presence of 300nM brigatinib (black squared), upon drug 

withdrawal (white rhombi), or after a new administration of 300nM brigatinib (grey rhombi) 

is shown. B) Dose-response curve obtained by 3H proliferation test on K299AR300A, 

K299AR300A-, K299AR300C and K299AR300C- starting from 1μM brigatinib dose. C) 

Corresponding IC50 values and RR index are summarized. D) NPM-ALK expression in 

K299AR300A, K299AR300A-, K299AR300C and K299AR300C- was assessed by western 

blot.  

Figure 8. Effects of an excess of NPM-ALK signaling in ALK-rearranged ALCL cells. 

Schematic representation of NPM-ALK signaling in ALK-rearranged ALCL cells in 

conditions where WT NPM is knocked out or NPM-ALK is overexpressed. Lymphoma cells 

resistant to ALK TKI via NPM-ALK amplification are induced to apoptosis upon drug 

suspension (drug holiday). 
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