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Abstract. Gelfand-Shilov spaces of the type Sαα (Rd) and
∑α
α(Rd) can be real-

ized as sequence spaces by means of the Hermite representation Theorem. In
this article we show that for a function f =

∑
akΨk ∈ Sββ (Rd) (resp.

∑β
β(Rd))

in order that
∑
akΨk → f in Sβα(Rd) (resp.

∑β
α(Rd)), where 1

2
≤ α ≤ β (resp.

1/2 < α ≤ β), it follows that α = β. Furthermore we characterize spaces of

the type
(
Sαα ⊗ Sββ

)
(Rs+t) (resp.

(
Σαα ⊗ Σββ

)
(Rs+t)) defined by Gelfand and

Shilowthrough the estimmates Hermite coefficients and, moreover, introduce a
new spaces of Gelfand-Shilov type S⊗,σ

σ (Rn), σ ≥ 1/2, and Σ⊗,σ
σ (Rn), σ > 1/2.

All the spaces are compared.
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1. Introduction

Gelfand-Shilov spaces Sα(Rd),Sβ(Rd) and Sβα(Rd) and their generalisations, the
Gelfand-Shilov spaces of Roumieau and Beuerling type S{Mp}(Rd) respectivly
S(Mp)(Rd) are discussed in [2], [3], [4], [6], [7], [9], [10], [11] and [12]. In this paper

we focus on the special cases Sβα(Rd), resp.,
∑β
α(Rd). We show that if the Her-

mite expansion
∑
akΨk converges to f (here Ψk denote the d-dimensional Hermite

functions and ak the Hermite coefficients of f) in the sense of Sβα(Rd) (α < β),

resp.,
∑β
α(Rd) (α < β), then it belongs to Sαα (Rd), resp.,

∑α
α(Rd).

Furthermore we analyze intermideate spaces
(
Sαα⊗S

β
β

)
(Rs+t) and

(
Σαα⊗Σββ

)
(Rs+t),

introduced also by Gelfand and Shilov, through the estimates of Hermite coeffi-
cients. The elements of spaces of this type are functions f which behave in their
first s components like a function in Sαα (Rs) (resp.

∑α
α(Rs)) and in their last t
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components like a function in Sββ (Rt) (resp.
∑β
β(Rt)). In the last part of the paper

we introduce one more class of Gelfand-Shilov type spaces S⊗,σσ (Rn), σ ≥ 1/2, and
Σ⊗,σσ (Rn), σ > 1/2. These spaces were obtained through the iteration of Harmonic
oscilators and are related to our study of Weyl formula for tensorised products
of elliptic Shubin type operators (see [1]). We compare all the considered spaces
through the estimates of Hermite coefficients.

1.1. Notation and basic notions

In this paper we use the following notation: Let j, p, q ∈ Nd0 and α, β ∈ R+, we
have ppα = pp1α1 · . . . · ppdαd and the analogoues for qqβ . Similarly for x ∈ Rd we
have xp = xp11 · . . . · x

pd
d and for c ∈ R we have cj = cj1 · . . . · cjd . In addition we

write ∂qf = ∂|q|

∂
q1
x1
...∂

qd
xd

f for f ∈ C∞(Rd).
We want to recall a few definitions and facts corresponding to the spaces of type

Sβα(Rd) and
∑β
α(Rd).

The Gelfand-Shilov spaces are defined as follows, cf. [10, Theorem 2.6]:

Definition 1.1. Let α, β ∈ R+, p, q ∈ Nd0 and assume that A,B,C are positive
numbers.

1. The Gelfand-Shilov space of type Sα,A(Rd) is defined as follows:

Sα,A(Rd) =
{
f ∈ C∞(Rd) : ∀q ∃ Cq s.t. ‖xp∂qf‖L2(Rd) ≤ CqA|p|p!α for all p

}
.

2. The Gelfand-Shilov space of type Sβ,B(Rd) is defined as follows:

Sβ,B(Rd) =
{
f ∈ C∞(Rd) : ∀p ∃ Cp s.t. ‖xp∂qf‖L2(Rd) ≤ CpB|q|q!β for all q

}
.

3. The Gelfand-Shilov space of type Sβ,Bα,A (Rd) is defined as follows:

Sβ,Bα,A (Rd) =
{
f ∈ C∞(Rd) : ∃ C s.t. ∀p, q : ‖xp∂qf‖L2(Rd) ≤ CA|p|p!αB|q|q!β

}
.

Their inductive and projective limits are denoted by:

1. Sα(Rd) = indlimASα,A(Rd) ;
∑
α(Rd) = projlimASα,A(Rd)

2. Sβ(Rd) = indlimBSβ,B(Rd) ;
∑β

(Rd) = projlimASβ,B(Rd)
3. Sβα(Rd) = indlimA,BSβ,Bα,A (Rd) ;

∑β
α(Rd) = projlimA,BS

β,B
α,A (Rd)

These spaces are subspaces of the Schwartz space

S(Rd) =
{
f ∈ C∞(Rd) : ∀p, q : ‖xp∂qf‖L2(Rd) <∞

}
.

Note that the space Sβα(Rd) is nontrivial if α+ β ≥ 1 (resp.
∑β
α(Rd) is nontrivial

if α+ β > 1) and that holds Sβα(Rd) ⊆ Sβ
′

α′ (Rd) and
∑β
α(Rd) ⊆

∑β′

α′(Rd) if α ≤ α′
and β ≤ β′.

The polynomials

Hk(t) = (−1)k exp
(
t2
)( d

dt

)k
exp

(
−t2

)
, t ∈ R, k ∈ N0
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are the Hermite polynomials. The one-dimensional Hermite functions ψk are given
by

ψk(t) =
(
π

1
2 2kk!

)− 1
2

exp

(
−1

2
t2
)
Hk(t), t ∈ R, k ∈ N0.

The d-dimensional Hermite functions are

Ψm(x) =

d∏
j=1

ψmj (xj) with x = (x1, . . . , xd) ∈ Rd and m ∈ Nd0.

For f ∈ S(Rd) the Hermite coefficients are

(am)m∈Nd0 =
(

(f,Ψm)L2(Rd)

)
m∈Nd0

. (1.1)

Lemma 1.2. Let α, β ∈ R+. Then the following holds:

Sα(Rd) ∩ Sβ(Rd) = Sβα(Rd)

This result was obtained by Kashpirovskii [5] and later by other authors, cf

[2]. In addition it holds
∑β
α(Rd) =

∑
α(Rd) ∩

∑β
(Rd) cf [2, Theorem 7.2.2].

We define the spaces of the Hermite coefficients of Sαα (Rd) (resp.
∑α
α(Rd)) as

follows:

sαα =

(an)n∈Nd0 there exists t > 0 :
∑
n∈Nd0

|an|2 exp
(
t |n|

1
2α
)
<∞

 ,

s̃αα =

(an)n∈Nd0 for all t > 0 :
∑
n∈Nd0

|an|2 exp
(
t |n|

1
2α
)
<∞

 .

The following lemma was proven in [2] and [7].

Lemma 1.3. Let α ≥ 1
2 (resp. α > 1

2). The mapping between Sαα (Rd) (resp.∑α
α(Rd)) and the space of the Hermite coefficients, denoted sαα (resp. s̃αα), f =∑
m∈Nd0

amΨm → (am)m∈Nd0
, is a topolocical isomorphism.

2. The Hermite representation of Sβα(Rd) and
∑β

α(Rd)

Let α, β ∈ R+ and 1
2 ≤ α < β (resp. 1

2 < α < β). Let X the set of all functions

f ∈ Sβα(Rd) (resp.
∑β
α(Rd)) s.t. their series expansion f =

∑
k∈Nd0

akΨk within

Sββ (Rd) (resp.
∑β
β(Rd)) converges in the sense of the topology of Sβα(Rd) (resp.∑β

α(Rd)).
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Theorem 2.1. If for every f =
∑
akΨk ∈ X, there exist positive constants Cf , cf

and sf s.t.

|ak| ≤ Cf exp (−cf |k|sf ) , for k ∈ Nd0 or resp. (2.1)

|ak| ≤ Cf exp (−t |k|sf ) , for every t > 0, for k ∈ Nd0 (2.2)

then (2.1) (resp. (2.2)) is true for

sf =
1

2α
.

In particular, this implies X = Sαα (Rd) (resp. X =
∑α
α(Rd)).

Proof. For the sake of simplicity we will only prove the case of X ⊂ Sβα(Rd) and

d = 1. But the proof in the case X ⊂
∑β
α(Rd) is analogous just like the cases of

higher dimensions.

Let f ∈ X, i.e. f has a convergent Hermite expansion in Sβα(R). This implies
by lemma 1.2, that f has a convergent Hermite expansion in the spaces Sα(R) and

Sβ(R). Then the sequence
(∑N

k=0 akψk

)
N∈N

of partial sums is Cauchy in Sα(R)

and Sβ(R), i.e. for A > 0:

a)
‖xp

∑M
k=N akψk‖L2(R)
App!α → 0 for all p if N,M →∞ and

b)
‖∂q

∑M
k=N akψk‖L2(R)
Aqq!β

→ 0 for all q if N,M →∞.

It is known (cf. [8, 1.1]) that ∂qψk = (ix)
q Fψk = (ix)

q
(−i)

k
ψk, where F is the

Fourier transform. Thus we have

‖∂q
M∑
k=N

akψk‖L2(R) =

M∑
k=N

‖akxqψk‖L2(R).

Therefore we only have to consider case a). Note, by a) with M = N , for every
ε > 0 there exists N0(ε) such that:

‖xpaNψN‖L2(R)

App!α
< ε for N ≥ N0(ε) (2.3)

uniformly in p ∈ N0. We use the well known fact ([10, eq. 1.8]), that

xψk(x) =

√
k

2
ψk−1(x) +

√
k + 1

2
ψk+1(x)

and by the use of L2-norm and Parseval’s formula, we obtain by induction that
for all k, p ∈ N0

‖xpψk‖L2(R) ≥ Cp+1k
p
2 (2.4)

for suitable C > 0. Now suppose that the assertion is not true which implies
that there exists a function f =

∑∞
k=0 akψk ∈ X such that, for a subsequence
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(
akj
)
kj∈N0

of
(
ak
)
k∈N0

, it holds

∣∣akj ∣∣ = Cf exp
(
−cfr(kj)k

1
2α
j

)
with j ∈ N0

where
(
r(kj)

)
kj∈N0

is a sequence of positive numbers not bounded from below by

a c > 0. Reformulating the quoted facts, if (2.1) does not hold, then there exists
a function f =

∑∞
k=0 akψk ∈ X such that∣∣ak∣∣ = Cf exp

(
−cfr(k)k

1
2α

)
with k ∈ N0 (2.5)

and

r(k)→ 0 as k →∞.

Therefore, (2.3) and (2.4) give, for large enough N ,

ε >
‖xpaNψN‖L2(R)

App!α
≥
Cf exp

(
− cfr(N)N1/2α

)
CpNp/2

App!α
(2.6)

uniformly in p ∈ N0. Now we use the inequality

sup
p∈N0

(
C2N1/2

Ap!α/p

)p
≥ exp

(
HN

1
2α

)
(2.7)

which holds for suitable H > 0. Thus (2.6) and (2.7) imply that for N large enough

ε > Cf exp
((
− cfr(N) +H

)
N

1
2α

)
and this is not true since (−cfr(N) +H)N

1
2α → ∞ N → ∞. This completes the

proof. �

3. Tensorised Gelfand-Shilov spaces

In the following we will use the following notation. Let s, t ∈ N, s. t. s+ t = d.
Therefore we write for x ∈ Rs+t = Rd: x = (x1, x2) = (x1, . . . , xs, xs+1 . . . , xs+t)
and similarly for p ∈ Ns+t0 : p = (p1, p2) = (p1, . . . , ps, ps+1 . . . , ps+t). In addition
we put m, k, q ∈ Nd0 accordingly.

As a consequence of inequalities proved by Kahspirovskij, Pilipovic and others
we have the following proposition.

Proposition 3.1. Let x ∈ Rd and k,m ∈ Nd0
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1.

xmΨk(x) =

d∏
i=1

xmii ψki(xi)

=

d−1∏
i=1

2−mdxmii

md∑
rd=0

ψki(xi)c
kd
rd,md

ψkd−md+2+2rd(xd)

= 2−m
mi∑
ri=0,
i=1,...,d

d∏
i=0

ckiri,miψki−mi+2+2ri(xi)

where, for j = 1, . . . , d∣∣∣ckjrj ,mj ∣∣∣ ≤ (mj

rj

)
[(2kj + 1)mj/2 +m

mj/2
j ].

2. Put Rjii = (x2i − ∂2i )ji , i = 1, · · · , d. Then for f ∈ C∞(Rd),

Rj11 . . .Rjdd f = Rj11 . . .Rjd−1

d−1

∑
pd+qd=2kd,
kd≤jd

Cjdpd,qdx
pd
d ∂

qdf(x1, . . . , xd)

=
∑

pi+qi=2ki,ki≤ji,
i=1,...,d

d∏
i=1

Cjipi,qix
pi
i ∂

qif(x1, . . . , xd),

where for i = 1, . . . , d ∣∣Cjipi,qi∣∣ ≤ 10jij
ji−

pi+qi
2

i .

Definition 3.2. We define the tensored spaces
(
Sαα⊗S

β
β

)
(Rs+t) and

(
Σαα⊗Σββ

)
(Rs+t)

as follows:(
Sαα ⊗ S

β
β

)
(Rs+t) :=

{
f ∈ S(Rd) : ∃ A,B,C s.t. ∀p, q

‖x1p1x2p2∂q
1

x1∂
q2

x2f‖L2(Rd) ≤ CA|p|p1!αq1!αB|q|p2!βq2!β
}

(
Σαα ⊗ Σββ

)
(Rs+t) :=

{
f ∈ S(Rd) : ∃C ∀h s.t. ∀p, q

‖x1p1x2p2∂q
1

x1∂
q2

x2f‖L2(Rd) ≤ Ch|p|+|q|p1!αq1!αp2!βq2!β
}

The next proposition is formulated in the simple form so that it can be used
for the characterization of new Gelfand-Shilov type spaces.

Theorem 3.3. Let 1/2 ≤ ν < µ and s, t ∈ N0 such that s+ t = d.

1. Let f ∈ C∞(Rs+t). If for some A > 0 and some C > 0 (resp. for every A > 0
there exists C > 0) such that

‖x1p
1

x2p
2

∂q
1

x1∂
q2

x2f(x1, x2)‖L2 ≤ CA|p||q|p1!νp2!µq1!νq2!µ, (3.1)
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then f ∈ L2(Rs+t), f(x) =
∑
k∈Ns+t0

a(k1,k2)ψk1(x1)ψk2(x2), x ∈ Rs+t, and

there exist constants C > 0 and δ > 0 (respectively, for every δ > 0 there
exists a C > 0) such that

|ak| ≤ C exp
(
−δ
(
|k1|1/(2ν) + |k2|1/(2µ)

))
, k ∈ Ns+t0 . (3.2)

2. If f ∈ L2(Rs+t), f(x) =
∑
k∈Ns+t0

a(k1,k2)ψk1(x1)ψk2(x2), x ∈ Rs+t, satisfies

(3.2) for some C > 0 and δ > 0 (respectively, for every δ > 0 there exists
C > 0), then f ∈ C∞(Rs+t) and (3.1) holds with some A > 0 and C > 0
(respectively, for every A > 0 there exists C > 0).

Proof. Assume (3.1) to hold as well as that j = (j1, j2) ∈ Ns+t0 . We have

Rj11 . . .Rjdd f =
∑
k∈Nd0

akRj11 . . .Rjdd ψk1 · . . . · ψkd =
∑
k∈Nd0

ak

d∏
i=1

(2ki + 1)jiψki .

There exists a constant C > 0 such that

‖R1
j1 . . .Rdjdf‖L2 =

∑
pi+qi=2ki,ki≤ji,

i=1,...,d

d∏
i=1

Cjipi,qi‖x
pi
i ∂

qif‖L2(Rd)

≤ C 10j
∑

pi+qi=2ki,ki≤ji,
i=1,...,d

d∏
i=1

jji−kii p1!νq1!νp2!µq2!µlk

≤ C 10j
∑

pi+qi=2ki,ki≤ji,
i=1,...,d

d∏
i=1

jji−kii k1!2νk2!2µ(2lr)k
1

2k

≤ C (20lr)j
∑

pi+qi=2ki,ki≤ji,
i=1,...,d

d∏
i=1

jji−kii

k1!2νk2!2µ

j1!2νj2!2µ
j1!2νj2!2µ

1

2k
.

This implies, using∑
k∈Nd0

|ak|2
d∏
i=1

(2ki + 1)2jiψki

1/2

= ‖R1
j1 . . .Rdjdf‖L2

and with new constants

|ak|
d∏
i=1

(2ki + 1)ji ≤ Ccjj1!2νj2!2µ.

Thus, with suitable C > 0 and δ > 0,

|ak| ≤ Ce−δ(|k
1|1/(2ν)+|k2|1/(2µ)).
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b) Now, assume (3.2) and let m = (m1,m2) ∈ Ns+t0 . We have

‖x1m
1

x2
m2

f‖L2 = ‖
∑
k∈Nd0

akx
1m

1

x2
m2

ψk1ψk2‖L2

≤ 2−m
1/2−m2/2.

Therefore we get with
(
m
k

)
=
∏d
i=1

(
mi
ki

)
∑
k∈Nd0

|ak|

 ∑
ji≤mi,
i=1,...,d

(
m

j

)[
(2k1 + 1)m1/2 +m

m1/2
1

]
· . . . ·

[
(2kd + 1)md/2 +m

md/2
d

]
≤ 2m/2

∑
k∈Nd0

|ak|2C2
k

1/2∑
k∈Nd0

C−2k C̄2
k

1/2

,

where Ck = exp
(
δ
(
k1

1/(2ν)
+ k2

1/(2µ)
))

and C̄k =
∏d
i=1[(2ki + 1)mi/2 +m

mi/2
i ].

There exists a constant C such that

‖x1m
1

x2
m2

f‖L2 ≤ C 2
m
2

∑
kNd0

C−2k C̄2
k

1/2

≤ C 2
m
2 C̄

∑
k∈Nd0

exp

(
−δ
((

2k1 + 1
)1/(2ν)

+
(
2k2 + 1

)1/(2µ))) 1
2

≤ C 2
m
2 m1!νm2!µ C̃ +

m1m
1/2
m2m

2/2

m1!νm2!µ
m1!νm2!µ,

where C̄ =
∏d
i=1 Ci and

C̄i :=

{
supki∈N0

((2ki + 1)mi/2 +mi
mi/2)e−

1
2 δ(2ki+1)1/(2ν) for i = 1, . . . , s

supki∈N0
((2ki + 1)mi/2 +mi

mi/2)e−
1
2 δ(2ki+1)1/(2µ) for i = s+ 1, . . . , t

and C̃ =
∏d
i=1 C̃i with

C̃i :=

supki∈N0

(2ki+1)mi/2e−
1
2
δ(2ki+1)1/(2ν)

mi!ν
for i = 1, . . . , s

supki∈N0

(2ki+1)mi/2e−
1
2
δ(2ki+1)1/(2µ)

mi!µ
for i = s+ 1, . . . , t

We conclude that

‖x1m
1

x2
m2

f‖L2 ≤ C 2m/2m1!νm2!µ. (3.3)

By the Fourier transformation, we have

‖∂m
1

x1 ∂m
2

x2 f‖L2 ≤ C 2m/2m1!νm2!µ. (3.4)
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Let p, q ∈ Nd0. Then

‖xp∂qf‖2L2 = (xp∂qf, xp∂qf)L2 =
∣∣(∂q(x2p∂qf), f)

L2

∣∣
≤

∣∣∣∣∣∣∣∣
∑
κ∈Nd0
κi≤γi

(
q

κ

)
(2p)!

(2p− κ)!
(x2p−κf (2q−κ), f)L2

∣∣∣∣∣∣∣∣
≤

∑
κ∈Nd0
κi≤γi

(
q

κ

)(
2p

κ

)
κ! ‖x2p−κf‖L2 ‖∂2q−κf‖L2 ,

where γi := min{qi, 2pi}, i = 1, . . . , d.
This implies that (3.1) holds. �

Corollary 3.4. Let s, t ∈ Nd0 s.t. s + t = d, and 1/2 ≤ α < β in the case Sβα(Rd)
(resp. 1/2 < α < β in the case

∑β
α(Rd)) then it holds

Σαα(Rd) ⊂
(
Σαα ⊗ Σββ

)
(Rs+t) ⊂ Σββ(Rd), Σαα(Rd) ⊂

(
Σββ ⊗ Σαα

)
(Rs+t) ⊂ Σββ(Rd),

Sαα (Rd) ⊂
(
Sαα ⊗ S

β
β

)
(Rs+t) ⊂ Sββ (Rd) and Sαα (Rd) ⊂

(
Sββ ⊗ S

α
α

)
(Rs+t) ⊂ Sββ (Rd).

The inclusions are strict and continuous.

Proof. The inclusions are obviously continuous. The statement that the inclusions
are strict follows straightforward from Theorems 2.1 and 3.3. �

Moreover it is clear that Σβα(Rs+t) is not a subset of
(

Σαα ⊗ Σββ

)
(Rs+t) and

that the opposite inclusion also does not hold; the same is true for Sβα(Rs+t) and(
Sαα ⊗ S

β
β

)
(Rs+t).

4. Gelfand–Shilov type spaces related to the tensorised harmonic
oscillators on Rd

We introduce one more class of Gevrey Gelfand-Shilov-type spaces.

S⊗,σσ (Rd) = indlimδ→0S
⊗,σ
σ (Rd; δ) and Σ⊗,σσ = projlimδ→∞S

⊗,σ
σ (Rd; δ)

where

S⊗,σσ (Rd; δ) = {f ∈ S(Rd) : f ⊗;σ,δ <∞} with

f ⊗;σ,δ =
∑
m∈Nd0

|am|2 exp
(
2δ((m1 + 1) . . . (md + 1))1/(2σd)

)
where the

(
am
)
m∈Nd0

are the Hermite coefficients of f (cf. (1.1)).

Let

~b = (b1, . . . , bd) ∈ Rd, bj > −1, j = 1, . . . , d. (4.1)
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Define

H~b = (−∂2x1
+ x21 + b1) . . . (−∂2xd + x2d + bd) = ⊗dj=1(−∂2xj + x2j + bj) (4.2)

By the arguments as in Theorem 3.3 one can prove the next theorem.

Theorem 4.1. Under the hypotheses given above the following conditions are equiv-
alent:

1. f ∈ S⊗,σσ (Rd), σ ≥ 1/2, resp., f ∈ Σ⊗,σσ (Rd), σ > 1/2.
2. there exists A > 0, resp., for every A > 0,∥∥∥Hr~bf∥∥∥ ≤ Ar+1r!2dσ, r ∈ N0,

where σ ≥ 1/2, resp., σ > 1/2.

3. if f =

∞∑
k=0

akΨk(x), there exist C, ε > 0, resp. for every ε > 0 there exists

C > 0 such that

|ak| ≤ C exp
(
− ε(k log−(d−1)(1 + k))1/(2dσ)

)
,

where σ ≥ 1/2, resp., σ > 1/2.

Example 4.2. With σ = 1/2 we obtain φ =
∑
k∈Nd0

akΨk ∈ S⊗,1/21/2 (Rd), if and only

if |ak| ≤ C exp
(
− δk1/d(log(1 + k))−1+1/d

)
, k ∈ N0, for some C > 0, δ > 0.

It is natural to see the relations of the space S⊗,σσ (Rd), resp., Σ⊗,σσ (Rd) and
Sσσ (Rd), resp., Σσσ(Rd) σ > 0, σ ≥ 1/2, resp., σ > 1/2.

Since
((2k1 + 1)...(2kd + 1))1/d ≤ 2(k1 + ...+ kd + 1),

it follows

Theorem 4.3. Let d ≥ 2 and σ ≥ 1/2, resp. σ > 1/2. Then

Sσσ (Rd) ↪→ S⊗,σσ (Rd) ↪→ S2σ2σ (Rd),
resp.,

Σσσ(Rd) ↪→ Σ⊗,σσ (Rd) ↪→ Σ2σ
2σ(Rd).

The inclussions are strict.

Remark 4.4. The relation with the Gelfan-Shilov tensor-type spaces are clear.

References

1. U. Batisti, T. Gramchev, S. Pilipovic, and L. Rodino, Globally bisingular elliptic
operators, New Developments in Pseudo-Differential Operators, Operator Theory:
Advances and Applications, vol. 228, Springer, Basel, 2013, pp. 21–38.

2. R. D. Carmichael, A. Kaminski, and S. Pilipovic, Boundary values and convolution
in ultradistribution spaces, World Scientific, London, 2007.

3. I. M. Gelfand and G. E. Shilov, Generalized functions, vol. 2, Academic Press, Or-
lando, 1968.



Gelfand-Shilov type spaces through Hermite expansions 11

4. T. Gramchev, S. Pilipovic, and L. Rodino, Classes of degenerate elliptic operators in
Gelfand-Shilov spaces, New Developments in Pseudo-Differential Operators, Operator
Theory: Advances and Applications, vol. 189, Birkhäuser Basel, 2009, pp. 15–31.
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