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Abstract. Gelfand-Shilov spaces of the type S5 (R?) and % (R?) can be real-
ized as sequence spaces by means of the Hermite representation Theorem. In
this article we show that for a function f = > ar Uy € Sg (R?) (resp. Zg(Rd))
in order that 3" ar ¥y — f in SZ(R?) (resp. 327 (R?)), where 1 <a < B (resp.
1/2 < a < f), it follows that o = 8. Furthermore we characterize spaces of
the type (8o ® Sg)(]RS“) (resp. (30 ® Eg)(RSH)) defined by Gelfand and
Shilowthrough the estimmates Hermite coefficients and, moreover, introduce a
new spaces of Gelfand-Shilov type S&7(R"), o > 1/2, and 27 (R"), 0 > 1/2.
All the spaces are compared.
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1. Introduction

Gelfand-Shilov spaces S, (R%), S#(R?) and S?(R?) and their generalisations, the
Gelfand-Shilov spaces of Roumicau and Beuerling type S{M»}(R?) respectivly
SMp)(R?) are discussed in [2], [3], [4], [6], [7], [9], [10], [11] and [12]. In this paper
we focus on the special cases SZ(R%), resp., 327 (R%). We show that if the Her-
mite expansion Y a; ¥y converges to f (here Uy, denote the d-dimensional Hermite
functions and aj the Hermite coefficients of f) in the sense of S?(R?) (a < ),
resp., Zg(Rd) (o < B), then it belongs to S¢(R?), resp., Y o (R?).

Furthermore we analyze intermideate spaces (Sg‘@)Sg ) (R**) and (Eg@)Eg) (Rs+),
introduced also by Gelfand and Shilov, through the estimates of Hermite coefhi-
cients. The elements of spaces of this type are functions f which behave in their
first s components like a function in Sg(R*) (resp. > o (R*)) and in their last ¢
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components like a function in Sg (R?) (resp. Zg (R?)). In the last part of the paper
we introduce one more class of Gelfand-Shilov type spaces S&7(R™),0 > 1/2, and
$&:7(R™),0 > 1/2. These spaces were obtained through the iteration of Harmonic
oscilators and are related to our study of Weyl formula for tensorised products
of elliptic Shubin type operators (see [1]). We compare all the considered spaces
through the estimates of Hermite coefficients.

1.1. Notation and basic notions

In this paper we use the following notation: Let j,p,q € N& and o, 8 € R, we

have pP® = pi'® . ... . phe® and the analogoues for ¢?°. Similarly for z € R? we
have 2P = 2" - ... - 28 and for ¢ € R we have ¢/ = ¢/t - ... ¢/, In addition we

write 99f = -2 f for f € C>(RY).

q1 q
T 0%

We want to recall a few definitions and facts corresponding to the spaces of type
SP(RY) and Y7 (RY).
The Gelfand-Shilov spaces are defined as follows, cf. [10, Theorem 2.6]:

Definition 1.1. Let o, 3 € Ry, p,q € N¢ and assume that A, B,C are positive
numbers.

1. The Gelfand-Shilov space of type S, 4(R?) is defined as follows:

SmA(Rd) = {f €C>®(RY) : Vg 3C, st 2P0 f || 2 (may < C, APlpl® for all p}.
2. The Gelfand-Shilov space of type S#*B(R?) is defined as follows:

SPPRY) = {f € C¥(RY) : VpICy st [0 | pacue) <GB! for all g}
3. The Gelfand-Shilov space of type Sg:f (R?) is defined as follows:

SRR = {f €C®[RY) : IC s.t. ¥p,q : |27 f| 2 (ray < CAlplp!aB‘qlq!ﬁ} .

Their inductive and projective limits are denoted by:
1. So(RY) = indlimASa’A(]Rd) ;> (R = projlimASa’A(Rd)
2. SA(RY) = indlimpS?#B(RY); Y2 (R?) = projlim , 875 (R¢)
3. SE(RY) = indlima pS (RY) 5 30 (RY) = projlim, S5 (RY)
These spaces are subspaces of the Schwartz space

SRY) = {f €C®RY) : Yp,q : 2P0 2(ra) < 00} .

Note that the space S2(R9) is nontrivial if o + 3 > 1 (resp. Zg(Rd) is nontrivial
if a4+ B > 1) and that holds S#(R?) C S (R%) and S°7(RY) € 7, (RY) if o < o
and 8 < f'.

The polynomials

k
Hy(t) = (—1)* exp (t2) <c(lit> exp (—tg) ,teR, keNg
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are the Hermite polynomials. The one-dimensional Hermite functions v, are given
by

1 —z 1
¢k(t) = <7T52kk'!> exp <—2t2) Hk(t), te R, ke NO.

The d-dimensional Hermite functions are

d
U, (x) = mej (z;) with z = (21,...,24) € R and m € N.
j=1

For f € S(R?) the Hermite coefficients are

(am)nLENg = ((f7 ‘l’m)LQ(Rd))'mENg '

Lemma 1.2. Let oo, 5 € Ry . Then the following holds:
Sa®RY) NS (RY) = SE(RY)

This result was obtained by Kashpirovskii [5] and later by other authors, cf
[2]. In addition it holds 37 (R?) = 37 _ (R4) N0 27 (R?) cf [2, Theorem 7.2.2).
We define the spaces of the Hermite coefficients of SY(R?) (resp. Y o(R%)) as
follows:

Sa = { (@n)nena there exists ¢ > 0 Z |an|® exp (t |n|ﬁ ) <ooop,
neNg

Sa = { (@n)yeng forallt>0: Z lan |2 exp (t|n|i) o
neNg

The following lemma was proven in [2] and [7].

Lemma 1.3. Let « > % (resp. a > 3). The mapping between ST (RY) (resp.
Y%(R%)) and the space of the Hermite coefficients, denoted s (resp. §%), f =
ZmeNg am V., — (am)meNg’ s a topolocical isomorphism.

2. The Hermite representation of S’(R%) and Y_° (R%)

Let a, 8 € Ry and % < a < [ (resp. % < a < ). Let X the set of all functions

f € SP(R?) (resp. Eg(Rd)) s.t. their series expansion f = > a;¥; within
keNg

Sg(Rd) (resp. Eg(Rd)) converges in the sense of the topology of S?(R?) (resp.

S8 (RY).
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Theorem 2.1. If for every f =" ap Uy € X, there exist positive constants Cy,cy
and s¢ s.t.

lag| < Cyexp (—cy k), for k € NI or resp. (2.1)
lag| < Cexp (—t |k|**), for everyt >0, for k € NJ (2.2)
then (2.1) (resp. (2.2)) is true for
1

Sf = 2%
In particular, this implies X = S(R?) (resp. X =Y 0 (R%)).

Proof. For the sake of simplicity we will only prove the case of X C S?(R%) and
d = 1. But the proof in the case X C ZZ (R9) is analogous just like the cases of
higher dimensions.

Let f € X, ie. f has a convergent Hermite expansion in S?(R). This implies
by lemma 1.2, that f has a convergent Hermite expansion in the spaces S, (R) and
SP(R). Then the sequence (ZQLO akwk> of partial sums is Cauchy in S, (R)

NeEN

and SA(R), i.e. for A > 0:

lz? Sl v antrll L2
Appla

91 "M
Il Zk::‘qu!kﬁwkuﬂ(m) — 0 for all ¢ if N, M — oc.

& 0 for all p if N,M — oo and

b)

It is known (cf. [8, 1.1]) that 0%y = (iz)? Fuy, = (iz)? (—i)" ¢4, where F is the
Fourier transform. Thus we have

M M
|0 Z akVrllL2 ) = Z larzi9r] L2 ®)-
k=N k=N

Therefore we only have to consider case a). Note, by a) with M = N, for every
g > 0 there exists Ny(e) such that:

|zPanyn || L2 (r)

Avplo < e for N > Ny(e) (2.3)

uniformly in p € Ny. We use the well known fact ([10, eq. 1.8]), that

e Ty LT ey LE L

and by the use of L?-norm and Parseval’s formula, we obtain by induction that
for all k,p € Ny

2Pkl 2@y > CPHE® (2.4)

for suitable C' > 0. Now suppose that the assertion is not true which implies
that there exists a function f = Z;O:O arr € X such that, for a subsequence
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(k) eny ©F (a) ey, » it Dolds
‘akj‘ = Cyrexp (—Cfr(kj)k;%) with j € Ny

where (r(kj)) K €No is a sequence of positive numbers not bounded from below by
J

a ¢ > 0. Reformulating the quoted facts, if (2.1) does not hold, then there exists
a function f =377 apthr € X such that

|ar| = Cyexp (—Cfr(k)k:i) with k € Ng (2.5)
and
r(k) = 0 as k — oo.
Therefore, (2.3) and (2.4) give, for large enough N,

lz?antdnllr@ o Crexp (= cgr(N)NV/2>)CcPNP/2

APp!Ol - App!a (26)
uniformly in p € Nyg. Now we use the inequality
CQNW)” 1
sup (| ——— | >exp(HN?2« 2.7
e

which holds for suitable H > 0. Thus (2.6) and (2.7) imply that for N large enough
e > Crexp (( —csr(N) + H)N%)

and this is not true since (—c;r(N) + H)N2« — oo N — co. This completes the
proof. O

3. Tensorised Gelfand-Shilov spaces

In the following we will use the following notation. Let s,t € N, s.t. s + ¢ = d.
Therefore we write for x € R*Tt = R%: x = (21, 22) = (21, ..., Ts, Toi1 -, Tsrt)
and similarly for p € N5t p = (p',p?) = (p1,. .., Ps,Pss1---,Pstt)- In addition
we put m, k,q € N¢ accordingly.

As a consequence of inequalities proved by Kahspirovskij, Pilipovic and others
we have the following proposition.

Proposition 3.1. Let x € R? and k,m € N
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"Wy (2 H ;" i, (x;)

= H2 mdinml Z ¢k 131 Td mdwkd md+2+2rd(1'd)

Td= 0
m;
_o9—m § ki
=2 H Crim; wki—mi +2+42r; (xl)
r;=0, =0

i=1,...,d
where, for j=1,...,d

kj < (m )[(2]€ +1)T}'LJ/2_’_mm7/2]
T

Tj,Mj

C

2. Put RZ = (22 - 02)%i,i=1,--- ,d. Then for f € C®(R?),
RYREf=RYRES D G abio% f(a, . xg)

DPd; qaz

Pa+qa=2ka,
kd<.'ld

= > ch:,ql PO f(xy,. .., 3a),

p1+q1_2k ki<ji,i=1

i=1,..., d

where fori=1,...,d

pita;
2

’CJZ

gi iJi—
Pi»qi <10 Ji

Definition 3.2. We define the tensored spaces (S ®Sﬁ’6) (Rs+) and (Zg&aZg) (Rs+t)
as follows:

(82 ©85) (R : {f e S(RY) : 3 A, B,C s.t. Vp, q

17 2090 fl 2 ey < CAPIpH 1 Bl 217217
(52 @ £5) (R*H) ; {f e S(RY) :3C Vh s.t. Vp, q

e 2P2aq 5q Fll2 e < Ch|p|+|q|p11aq1lap2|ﬂq215}

The next proposition is formulated in the simple form so that it can be used
for the characterization of new Gelfand-Shilov type spaces.

Theorem 3.3. Let 1/2 <v < p and s,t € Ny such that s +t = d.

1. Let f € C°(R**t). If for some A > 0 and some C > 0 (resp. for every A >0
there exists C > 0) such that

1 2
|27 227" 0%, 0%, f(a", 22)|| 2 < C APl p2imeglivg2im (3.1)
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then f € LA(R*TY), f(x) = ZkeNSH ar g2y ()2 (2?), © € R¥T, and
there exist constants C > 0 and § > 0 (respectively, for every § > O there
exists a C > 0) such that

lax| < Cexp (—5(|k1|1/(2”) + |k2|1/(2“))) ke Nt (3.2)

2. If f € L2(R*HY), f(z) = ZkeNg+t akr g2y ()2 (2?), @ € R¥M, satisfies
(3.2) for some C' > 0 and § > 0 (respectively, for every 6 > O there exists
C > 0), then f € C®(R*™) and (3.1) holds with some A > 0 and C > 0
(respectively, for every A > 0 there exists C' > 0).

Proof. Assume (3.1) to hold as well as that j = (5!, 5%) € N5**. We have
d
Ry RS = D arRY Rk, bk, = Y ar [ (2 1)
keNg keNd =1

There exists a constant C > 0 such that

IR R 2 = > Hcii,m 27 0% f|| L2 (re)
I)r‘rqz;:lei,kiSjui:l
i

EEREE)

d
j -ji—ki
<C1v’ Z HJZ p gt pPingtIng
p1+ql_2k ki<ji, =1
1=1,.

d
: o 1
Ji—ki v
<C1 > [ L7 " kR i) o
pitqi=2k;,ki<ji, i=1

1=1,...

i ik LL12v 2120 1420 2120 1
< C (20ir) Z H Jvgeeed ) gE

Pi+qi=2ki,ki<ji, i=1

i=1,...,

This implies, using

1/2
> \ak\QH (2k; + 1) iy, =R R 2
keNg
and with new constants
d
Jax| T (2k: + 1)7 < €c?jh1 2120,
i=1

Thus, with suitable C > 0 and 6 > 0,

_ 111/(2v) 211/(2p)
lag] < Cem 0K M @2/ 1),
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b) Now, assume (3.2) and let m = (m*, m?) € Njt'. We have

1 2 1 2
Hl‘lm $2m f”Lz = || Z akxlm x2m kalzbszLz

keNg

< 2—m1/2—m2/2'

Therefore we get with () = Hle (")

ki
m mi/2 my/2 ma/2 mg/2
Sanl | D0 () @+ D)™ 4 my™ ) [(2ka + 1) 4y
keNd ]z%mza
i=1,...,
1/2 1/2
<o | Swpct) (X arr)
keNg keNg

where C), = exp ((5 (kll/(zy) + le/(zu))) and Cj, = Hle[(Qki +1)mi/2 ¢ mmi/2].

i
There exists a constant C such that
1/2
1 2 m =
2™ 2™ flle <C2% YOG

kNg

N|=

<C22C ) exp (—5((%1 + 1)1/@”) +(2k2 + 1)1/(2u))>

1 2
m- /2 m~ /2
ml / m2 /

<C2T mMm2AInC + mMYm2Ie,

mllvm?2in
= d
where C' = [];_, C; and

C: = supy, en, ((2ki + 1)mi/2 4 mim"/z)@_%é(zk”l)l/@u) fori=1,...,s
: supkieNo((zki +1)mi/2 +mimi/2)e—%6(2ki+1)l/(2u) for i — S+17...,t

and C = Hle C; with

(2k;+1)™i/2e= 38R+ CY)

& SUPg, eNg T fori=1,...,s
SUPg; eNy (%iﬂ)mwe,,:ju( o fori=s+1,...,t
We conclude that
||x1m1x2m2fHLz < C2m/2m1!um2!u. (33)

By the Fourier transformation, we have

107 08 e < C2™2m Y m21e, (3.4)
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Let p,q € N&. Then

2P0 f|7 = (2P0"f,aP0"f) 2 = [(09(x* 0 ). f) ]
q (2p)! —kK —K
< Zd (ff>(2p—fi)!($2p FE ) e
KENG
ki <i
< X (D)) s 1P e
RENg
ki <3

where 7; := min{q;, 2p; },i =1,...,d.
This implies that (3.1) holds. d

Corollary 3.4. Let s, € Nd st. s+t =d, and 1/2 < a < 3 in the case S?(R?)
(resp. 1/2 < o < B in the case Zg (R9)) then it holds

T2(RY) € (25 ® B5) (R*H) € BE(RY), SA(R?) € (25 @ B2) (R*H) € SHRY),
S2(RY) € (S2 @ S5)(R™H) € S5(RY) and S5 (R?) C (8§ ® Sg)(R*H) € SJ(RY).
The inclusions are strict and continuous.

Proof. The inclusions are obviously continuous. The statement that the inclusions
are strict follows straightforward from Theorems 2.1 and 3.3. (|

Moreover it is clear that X2 (R***) is not a subset of (Zg ® Zg) (R5*?) and

that the opposite inclusion also does not hold; the same is true for S?(R***) and
(S5 @ S85) (Re+).

4. Gelfand—Shilov type spaces related to the tensorised harmonic
oscillators on R?

We introduce one more class of Gevrey Gelfand-Shilov-type spaces.

587 (RY) = indlims_,0SE7 (R §) and £27 = projlim;_, . SE 7 (R?; §)
where
S57(R%8) = {f € S(RY) : |flg,p 5 < o0} with
Wos = D laml? exp (20((my +1) ... (mg + 1))/ @7D)
meNd

where the (am)
Let

mend are the Hermite coefficients of f (cf. (1.1)).

b = (br,...,ba) €RL, by >—1,5=1,....d. (4.1)
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Define
Hy = (=02 +ai+b)... (=02, + x5 +ba) = @f_ (=02 + 7 +1b;) (4.2)
By the arguments as in Theorem 3.3 one can prove the next theorem.

Theorem 4.1. Under the hypotheses given above the following conditions are equiv-
alent:

1. f€8%7(RY), o >1/2, resp., f € X27(RY), o > 1/2.
2. there exists A > 0, resp., for every A >0,

HHgf ] < ATHIp2de e,

where o > 1/2, resp., o > 1/2.

3. if f = Zaklllk(x), there exist Cye > 0, resp. for every € > 0 there exists
k=0
C > 0 such that

lag| < Cexp (- e(klog~ 4 V(1 4 k))l/(2d")),
where o > 1/2, resp., o > 1/2.

Example 4.2. With o = 1/2 we obtain ¢ = ZkeNg ap¥y € SS’;N(Rd), if and only

if |ax| < Cexp (— 6k'/4(log(1 + k))~1*1/), k € Ny, for some C' > 0,5 > 0.

It is natural to see the relations of the space S£+7 (R?), resp., 27 (R%) and
S7(RY), resp., Z(R?) o >0, 0 > 1/2, resp., o > 1/2.
Since
((2ky +1)..(2kg + D))V < 2(ky + ... + kg + 1),

it follows
Theorem 4.3. Let d > 2 and o > 1/2, resp. 0 > 1/2. Then
SI(RY) = 877 (RY) = S35 (RY),
resp.,
Tg(R?) = B27(R?) — T (RY).
The inclussions are strict.

Remark 4.4. The relation with the Gelfan-Shilov tensor-type spaces are clear.
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