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The U(1) lattice gauge theory in three dimensions is a perfect laboratory to study the properties
of the confining string. On the one hand, thanks to the mapping to a Coulomb gas of monopoles,
the confining properties of the model can be studied semi-classically. On the other hand, high-
precision numerical estimates of Polyakov loop correlators can be obtained via a duality map
to a spin model. This allowed us to perform high-precision tests of the universal behavior of
the effective string and to find macroscopic deviations with respect to the expected Nambu-Goto
predictions. These corrections could be fitted with very good precision including a contribution
(which is consistent with Lorentz symmetry) proportional to the square of the extrinsic curvature
in the effective string action, as originally suggested by Polyakov. Performing our analysis at
different values of β we were able to show that this term scales as expected by Polyakov’s solution
and dominates in the continuum. We also discuss the interplay between the extrinsic curvature
contribution and the boundary correction induced by the Polyakov loops.
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1. U(1) gauge theory in three spacetime dimensions

In our recent work reported in ref. [1], we studied numerically the U(1) gauge theory in three
spacetime dimensions. The Wilson discretization for the action of this theory is

β ∑
x∈Λ

∑
1≤µ<ν≤3

[
1−ReUµν(x)

]
, with β =

1
ae2 , (1.1)

where Λ is a cubic lattice of spacing a, Uµν(x) is the plaquette, and Uµ(x) = exp
[
iaAµ (x+aµ̂/2)

]
.

A semi-classical analysis shows that this theory is confining for all values of β , and that it reduces
to a theory of free massive scalars for β � 1 [2, 3]. In this limit the mass of the lightest glueball
(m0) and the string tension (σ ) are given by

m0a = c0
√

8π2βe−π2βv(0), σa2 ≥ cσ√
2π2β

e−π2βv(0), (1.2)

with c0 = 1 and cσ = 8. In agreement with previous numerical studies [4], we find that the string
tension saturates this bound and that both c0 and c1 are affected by the semi-classical approxima-
tion, changing their values in the continuum. Nevertheless, both m0 and σ are positive for all β , so
the model is confining. At finite lattice spacing, the m0/

√
σ ratio is given by

m0√
σ

=
2c0√

cσ

(2π
2
β )3/4e−π2v(0)β/2, (1.3)

so it can be set to any value by tuning β .
An exact duality transformation of this theory maps its partition function to

Z = ∑
{?s∈Z}

∏
links

I|d?s|(β ), (1.4)

which defines a globally Z-invariant model, with integer-valued ?s variables, residing on dual sites.
In eq. (1.4), Iα(z) is a modified Bessel function of the first kind, the product is taken over the
elementary bonds of the dual lattice, and d?s denotes the difference of ?s variables at the ends of a
bond. In four dimensions, this duality yields a model with local Z symmetry [5].

This duality maps the original gauge theory to a spin model, making it is faster and easier to
simulate. Furthermore, it is easy to add two opposite probe charges at distance R: this results into
a modified partition function

ZR = ∑
{?s∈Z}

∏
links

I|d?s+?n|(β ), (1.5)

where ?n is a 1-form with values in Z, which is non-vanishing on a set of links dual to a surface
bounded by the worldlines of the original charges. Thus, the two-point Polyakov loop correlator
becomes

〈P?(R)P(0)〉= ZR

Z
. (1.6)

Using the “snake algorithm” [6] and a hierarchical update scheme [7], these correlators can be
evaluated to high precision, even at large R: the duality transformation allows one to bypass the
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exponential decay of the signal-to-noise ratio. Denoting the length of (the separation between) the
Polyakov loops in units of the lattice spacing as nt (nR), one gets

〈P?(R)P(0)〉=
nRnt−1

∏
i=0

Z(i+1)

Z(i)
, (1.7)

where the partition function in the numerator differs from that in the denominator by just one ?n on
a bond of the dual lattice: thus the computation of the correlator is reduced to the computation of
nt local quantities in independent simulations.

The dual formulation also offers insight into the confinement mechanism at work. As shown in
ref. [2], confinement is driven by monopole condensation, as advocated in the dual superconductor
picture of QCD. For this theory, however, Polyakov [8] even suggested an Ansatz for the effective
action which should describe the confining string, and for the dependence of its couplings on the
lightest glueball mass and on the coupling of the original gauge theory. In the cited work it is
pointed out that the action should be

SPol = c1e2m0

∫
d2

ξ
√

g + c2
e2

m0

∫
d2

ξ
√

gK2 . (1.8)

Identifying c1 and c2 with σ and α one finds
√

σ/α ∼ m0.
This action was first proposed as a model for fluid membranes [9] and later as a way to stabilize

the Nambu-Goto action [10]. Its contribution to the interquark potential was first computed in the
limit of a large number of dimensions D [11], and then also for D generic [12]. The corrections it
induces onto higher-order terms of the spectrum have been recently calculated [13]. A discussion
of the implications of this action for the static interquark potential in the 3D U(1) gauge theory is
presented in a companion contribution [14].

2. Numerical evidence for a rigid-string contribution

We performed a set of simulations on the dually transformed U(1) lattice model with a local-
update Metropolis algorithm. Here and in the following we will mostly use lattice units, setting
a = 1. The computations were done on lattices of size L2×Nt , with L = Nt ranging from 64 to 128,
at five values of β , from 1.7 to 2.4, see tab. 1: this setup enabled us to explore a large range of σ

and m0 values. Note that we always chose L > 10/
√

σ and L > 10/m0, to suppress finite-volume
corrections.

We calculated the ratio of Polyakov loop correlators at distances differing by one lattice spac-
ing, and constructed the quantity

Q(R) =− 1
Nt

ln
G(R+1)

G(R)
=V (R+1)−V (R), (2.1)

where G(R) = 〈P?(x)P(x+R)〉, P(x) is the Polyakov loop through the site x and V (R) denotes the
potential between two static sources at distance R. Q(R) relates the effective string action to the
static interquark potential, removing constant and perimeter terms. Using the algorithm described
above, we evaluated Q(R) to high precision for several values of β and for 1/

√
σ < R < L/2.
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The data was first fitted with the standard Nambu-Goto effective string expectation1

QNG(R) = σ

[√
(R+1)2− π

12σ
−
√

R2− π

12σ

]
. (2.2)

Q(R) was fitted to the data (using the string tension σ as the fitted parameter), for R from Rmin

to R = L/2. Rmin was increased, starting from 1/
√

σ , until a reduced χ2 of order 1 could be
obtained, yielding the results reported in the second column of tab. 1. For β < 2 a good fit could
be obtained for small Rmin, but for β ≥ 2, the minimal R had to be increased to larger and larger
values. The deviation from the Nambu-Goto behavior is manifest in fig. 2, where the differences
[Q(R)−QNG(R)] (using the asymptotic values of σ from tab. 1 for QNG(R)) are shown.

It is well-known that Lorentz invariance sets strong constraints onto the effective string ac-
tion [15]. For the 3D U(1) theory, Polyakov [8] presented an argument for the existence of a
mapping between gauge and string degrees of freedom, and suggested the form of the action de-
scribing the string dynamics, including a term proportional to the square of the extrinsic curvature
of the worldsheet. The resulting string is often referred to as the “rigid string”. Here we follow the
analysis performed in ref. [14], from which we can infer that the shape of Q(r) allowed by Lorentz
invariance, computed to the leading order in the extrinsic curvature term, is

Q(R) = QNG(R)+Qr(R)+Qb(R) (2.3)

with

Qb(R) =−
b2π3

60

[
1

(R+1)4 −
1

R4

]
, Qr(R) =−

m
2π

∞

∑
n=1

K1 (2nm(R+1))−K1(2nmR)
n

, (2.4)

for m =
√

σ/(2α). Qb(R) is a boundary contribution and Qr(R) is the contribution from the
extrinsic curvature term in the effective string action. Including the next-to-leading-order (NLO)
contribution in the extrinsic curvature term would correspond to replacing Qr(R) with

Q′r(R) = Qr(R)+
21

20mσ

(
π

24

)2
[

1
(R+1)4 −

1
R4

]
. (2.5)

The [Q(R)−QNG(R)] differences were at first fitted to the boundary correction Qb(R) alone.
However, reasonable values of χ2

red could only be reached for very large Rmin, and the resulting
values for b2 were inconsistent with the expected scaling behavior. b2 should scale as σ−3/2, but
we found that b2σ3/2 increases from 0.033(3) (for β = 1.7) to 0.62(6) (for β = 2.4). To rule
out the possibility that the deviations could be due solely to a boundary term, we performed a
two-parameter fit of the [Q(R)−QNG(R)] differences to a correction term with a free exponent b,

Q′b(R) = k
[

1
(R+1)b −

1
Rb

]
. (2.6)

In this case, at every value of the coupling that we investigated, the results of the fits for b ranged
between 2 and 3 and reasonable χ2

red values could only be obtained for very large Rmin, resulting in

1We performed our fits using the NG expression to all orders in the 1/R expansion, as in eq. (2.2), which is equiva-
lent, within errors, to its truncation at order O(R−3).
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β σ m0 L,Nt

1.7 0.122764(2) 0.88(1) 64
1.9 0.066824(6) 0.56(1) 64
2.0 0.049364(2) 0.44(1) 64
2.2 0.027322(2) 0.27(1) 64
2.4 0.015456(7) 0.197(10) 128

Table 1: Information on the setup of our simulations.

β m m0 m/m0

1.7 0.28(9) 0.88(1) 0.32(10)
1.9 0.25(4) 0.56(1) 0.45(7)
2.0 0.17(2) 0.44(1) 0.39(4)
2.2 0.11(1) 0.27(1) 0.41(4)
2.4 0.06(2) 0.20(1) 0.30(10)

Table 2: Best-fit results for m obtained using a three-
parameter fit to our data, as explained in the text.

k values essentially compatible with zero, within their uncertainties. A boundary-type correction
was therefore rejected as the explanation for the observed deviations.

We then tried to fit the [Q(R)−QNG(R)] differences with the rigid-string prediction Qr(R).2 In
this case, fits with m as the only free parameter successfully describe the data, even for small values
of Rmin, and the resulting m values show the expected scaling behavior, m ∝ m0 (see tab. 2). For
example, for β = 2.2, a χ2

red of order 1 is obtained for Rmin

√
σ = 2.15: a clear improvement over

the one-parameter fit to the pure Nambu-Goto model. Our results for Q(R) at β = 2.2 are shown
in fig. 1, with the fitted curves.

We also tested if the NLO correction eq. (2.5) from the rigidity term could be seen in our lattice
data, by fitting the [Q(R)−QNG(R)] differences, with m as the only fitted parameter. This leads to
better fits, especially for 1 < Rmin

√
σ < 2, but the χ2

red values are still larger than one. Moreover, the
best-fit values for m exhibit changes larger than their uncertainties. Therefore, this term cannot be
neglected, within the precision of our lattice data. Note that this correction is of the same order as
the boundary correction previously discussed. Hence it is possible that both boundary and rigid-
string corrections are present. To test this hypothesis, we set m and σ to the previously obtained
best-fit values, and carried out a one-parameter fit of [Q(R)−QNG−Q′r(R)] with the boundary
correction Vb(R), using b2 as the free parameter. This leads to much better fits, including at small
Rmin

√
σ : χ2

red values around one are obtained already for Rmin

√
σ ∼ 1.65, with a small but non-

negligible value of b2σ3/2 = 0.005(1). This shows that also this term is non-vanishing, and that
it should be included in the analysis. However, disentangling the contributions from the boundary
and the rigidity terms would require more precise data.

The Rmin dependence of the fits reveals that the rigid-string correction could affect the value of
σ . Carrying out two-parameter fits of Q(R) to the function QNG +Qr(R) (or QNG +Q′r(R)) using σ

and m as free parameters, we find that the best-fit value of σ has a non-negligible impact on m and
on its uncertainty, and that including the NLO rigid-string correction changes the result for m.

It is clear that both the best-fit values of σ and b2 affect our estimate of m. In order to account
for this interplay, we chose the result of a three-parameter fit to the data (using σ , m and b2 as free
parameters) as our estimate for m. As σ and b2 are not fixed, this leads to a slightly larger error on
m. We report these estimates for m in tab. 2. The last column shows the m/m0 ratio, which reveals
good scaling properties. Our final estimate for the rigid-string parameter, including both statistical

2The sum over Bessel functions was truncated at n = 100; the corresponding error was much smaller than the other
uncertainties of our data.
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√
σ
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0.031

Q
(R

)a

NG, χ 2
r =0.91, Rmin

√
σ=4.3

Lüscher

NG+VE , χ
2
r =1.04, Rmin

√
σ=2.15

NG+VE +V ′2 , χ
2
r =1.2, Rmin

√
σ=1.82

β=2.2

Figure 1: Data and best-fit curves for β = 2.2 with QNG, QNG+ Lüscher,Vext, and Vext +V ′2. The last two are
two-parameter (σ and m) fits.
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a
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√
σ =2.31

ma=0.101(1), χ 2
r =1.31, Rmin

√
σ =2.31

ma=0.099(2), b2σ
3/2 =0.005(1), χ 2

r =1.13, Rmin

√
σ =1.65

Figure 2: Fits of the [Q−QNG(R)] differences at β = 2.2, with Vext, Vext +V ′2 and Vext +V ′2+ boundary term.

and systematic uncertainties into the error budget, is
m
m0

= 0.35(10). (2.7)

3. Concluding remarks

Our results show that in the 3D U(1) model, large deviations from the Nambu-Goto model
appear for β ≥ 2. These deviations grow as β is increased towards the continuum limit, and are
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accounted for by an extrinsic-curvature term in the effective string action. The rigidity parameter
m scales with the mass m0 of the lightest glueball, and becomes dominant in the continuum limit,
making this string very different from the Nambu-Goto one.

A necessary future step in our analysis is to disentangle the NLO contribution of the rigidity
term from the one due to the boundary term, and to study the fate of the rigid string at finite
temperature. Another interesting extension of this work would be to study the behavior of the
string width at large β , which should differ from the Nambu-Goto prediction.

Acknowledgments This work is supported by the Spanish MINECO (grant FPA2012-31686
and “Centro de Excelencia Severo Ochoa” programme grant SEV-2012-0249).

References

[1] M. Caselle, M. Panero, R. Pellegrini, and D. Vadacchino, (2014), 1406.5127.

[2] A. M. Polyakov, Nucl.Phys. B120, 429 (1977).

[3] M. Göpfert and G. Mack, Commun.Math.Phys. 82, 545 (1981).

[4] M. Loan, M. Brunner, C. Sloggett, and C. Hamer, Phys.Rev. D68, 034504 (2003), hep-lat/0209159.

[5] M. Zach, M. Faber, and P. Skala, Phys.Rev. D57, 123 (1998), hep-lat/9705019. M. Panero, JHEP
0505, 066 (2005), hep-lat/0503024. M. Panero, Nucl.Phys.Proc.Suppl. 140, 665 (2005),
hep-lat/0408002. E. Cobanera, G. Ortiz, and Z. Nussinov, Adv.Phys. 60, 679 (2011), 1103.2776.
Y. D. Mercado, C. Gattringer, and A. Schmidt, Phys.Rev.Lett. 111, 141601 (2013), 1307.6120.

[6] P. de Forcrand, M. D’Elia, and M. Pepe, Phys.Rev.Lett. 86, 1438 (2001), hep-lat/0007034.

[7] M. Caselle, M. Hasenbusch, and M. Panero, JHEP 0301, 057 (2003), hep-lat/0211012.

[8] A. M. Polyakov, Nucl.Phys. B486, 23 (1997), hep-th/9607049.

[9] W. Helfrich, J.Phys.France 46, 1263 (1985). L. Peliti and S. Leibler, Phys.Rev.Lett. 54, 1690 (1985).
D. Förster, Phys.Lett. A114, 115 (1986).

[10] A. M. Polyakov, Nucl.Phys. B268, 406 (1986). H. Kleinert, Phys.Lett. B174, 335 (1986).

[11] E. Braaten, R. D. Pisarski, and S.-M. Tse, Phys.Rev.Lett. 58, 93 (1987).

[12] G. German and H. Kleinert, Phys.Rev. D40, 1108 (1989).

[13] J. Ambjørn, Y. Makeenko, and A. Sedrakyan, Phys.Rev. D89, 106010 (2014), 1403.0893.

[14] M. Caselle, D. Vadacchino, M. Panero, and R. Pellegrini, PoS Lattice 2014, 348 (2014).

[15] O. Aharony and M. Dodelson, JHEP 1202, 008 (2012), 1111.5758.

7


