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ABSTRACT

The evaluation of the opportunity of investments on com-
plex production processes is a critical factor in order to enable
the balance of risks and potential benefits. There is no out-of-
the-box tool that can solve this problem: only the experience
of the responsible expert and his knowledgeability of the
process can help. Outcome Driven Innovation is an evaluation
technique that can support decisions, based on a structured
approach to process analysis and on the availability of domain
experts: anyway, the need for experts can make the evaluation
itself very expensive. In this paper a simulative approach is
used to provide an a priori characterization of the conditions
that can suggest the opportunity of adopting Outcome Driven
Innovation for a process.

I. INTRODUCTION

In 1980 business leaders began to recognize that being tech-
nology driven was just not good enough. Up until that point
it was common for companies to create a new technology and
then attempt to find a market in which the technology could
flourish. Traditional Research and Development laboratories
such as AT&T or Motorola R&D tried to build a mass market
business for products based on a new technology that appealed
only to a narrow market. With a failure rate approaching 90%,
R&D expenditures under scrutiny and lead-times for success
averaging nearly eight years in ICT industry USA, it was clear
that a new approach was needed [1]. Companies began to
adopt the ideas and principles associated with the customer
driven approach, i.e., first understand what the targeted cus-
tomers’ need and want, and then invest in the creation of a
new product or service. Indeed, over the past two decades,
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the customer driven approach has become the mantra for all
organizations and for innovation in particular. But after twenty
years of customer driven thinking U.S. companies still find
that 50 to 90 percent of their product and service initiatives
are failures [1]. A big issue in the customer driven approach
regards the fact that customers express their requirements in
a language that is convenient for them, which often, however,
is inappropriate for creating innovation.

Creating innovation becomes an uncertain practice [2] sur-
rounded by accidental events, intuition and experience of
individuals, heavy dose of serendipity and unconventional
practices, none of which is necessarily relevant. According
to the growing importance of innovation, the strategic role
of a methodology able to help entrepreneurs and innovators
to set up an innovative process was required: the outcome
methodology has been considered as alternative methodology
for fostering innovation [1].

Unfortunately, no out-of-the-box methodology can provide
the silver bullet to ensure success. Outcome Driven Innovation
(ODI) [3] is a valuable support for decisions, widely assessed
and adopted, but the need for experts and the need for a
non negligible time amount for the evaluation of the stages
of the process can make the evaluation itself very expensive.
Consequently, a set of thumb rules that can suggest a priori
what are the characteristics of a process that is more likely
to maximize the success chances in the application of the
methodology, which parameters are significant for success and
how they influence it would be a useful tool to increase control
on the risk.

In this paper a simulative approach is adopted to shape out
the type of processes and the characterization of the conditions
that can assist the decisions about the opportunity of adopting
Outcome Driven Innovation for a process.

The use of simulation is widely adopted in the field of
production and management (see e.g. [4]), but in this case
we simulate the behavior of the panel of experts that are in
charge of judging over the outcomes of the various phases
in which a process is organized, and the criteria according to



which a decision maker that is applying ODI will operate.
In order to (partially) explore the set of the possible pro-

cesses to which ODI could be applied, a probabilistic approach
has been chosen to generate the set by varying some of the
parameters of each phase of the process (see e.g. [5]). The
fixed structure of the process in the ODI view organizes it
into eight phases, each of which produces a variable number
of outcomes: in this approach, the average number of outcomes
per phase is considered as a free variable of the model, that
is set by the model user according to empirical considerations
over the domain of the process. The number of outcomes per
phase is defined as a stochastic variable, to simulate the actual
variability emerging in real processes phase by phase.

The evaluation of each outcome by a panel of experts is
simulated by two stochastic variables: the importance of the
outcome and the satisfaction about the outcome. For each of
the two variables, the variance is used as a simulation parame-
ter, to understand how sensitive the overall ODI application is
with respect to the dispersion of importance and satisfaction on
the set of processes. Moreover, also the correlation between
importance and satisfaction is a simulation parameter, as in
real processes the two can be more or less interrelated, to eval-
uate the impact of its spread in the set of processes. Another
parameter is given by the innovation threshold, that is used
to decide whether, according to innovation and satisfaction,
an outcome is to be considered innovative, thus worth of
investments, or not.

The paper is organized as follows: in Section II a general
introduction to ODI is provided; in Section III the simulation
approach is presented; in Section IV a case study is proposed;
conclusions and future works follow.

II. OUTCOME DRIVEN INNOVATION
A way to predict more theoretically the value created has

been found redefining the market concept based on the job to
be done theory. The theory builds on two very simple concepts:
customers hire product and services to get a job (the job
is the stable unit of analysis [2] [1]), and the consequential
observation that customers will adopt products and services
that help them get the job done better [2] [1], and to get the
whole job done on a single platform [1].

To systematically uncover more innovation ideas Betten-
court and Ulwick [6] create job mapping: breaking down a job
that customers want done into discrete steps, then brainstorm
ways to make steps easier faster or unnecessary.

All the jobs have the same eight steps (see Fig. 1 from [3])
that are summarized as follow:

1) Define: determinate customers goals and plan resources;
2) Locate: gather items and information needed to do the

job;
3) Prepare: set up the environment to do the job;
4) Confirm: verify that customers are ready to perform the

job;
5) Execute: carry out the job;
6) Monitor: assess whether the job is being successfully

executed;

7) Modify: make alterations to improve execution;
8) Conclude: finish the job or prepare to repeat it.
To get to the next step, it has been postulated that customers

use well defined metrics to assess how good the job is done [1].
Consequently, an approach has been implemented to capture
such metrics and to measure them on a representative sample
of the market [1] obtaining an objective and quantitative
assessment of market opportunities, in terms of where value
can be created.

As each of the metrics addresses one individual element
of dissatisfaction, i.e. one aspect of the job execution that
customers are still struggling to achieve, they make possible
to objectively rate each solution by its ability to better satisfy
these aspects. That ability is now a measured element of value
creation.

The job to be done theory, extended with outcome method-
ology (the metrics the costumers use to evaluate the job
execution), provides tools to identify (all the) individual el-
ements of dissatisfaction in the execution of a job, and so
to assess how a new solution (innovation) rates in term of
improving satisfaction with these elements. This is a value
creation assessment.

In the specific the outcome or metrics belong to 3 different
types:
• Speed metrics: getting the job done faster;
• Stability metrics: eliminating variability on the job;
• Output metric: improve the output of the job.
Outcome drive innovation framework is structured around

the link between opportunity for innovation and need not
well satisfied. Identifying an opportunity of undeserved needs
means find a specific job/activities a customers need to exploit.
Needs are strategically linked to customers activities (or job
to be done) and their importance and satisfactions. Best
Opportunity for innovation creation is when need is very
important for a customer and it is not satisfied by market
products or services.

Using this formula, the needs that are most important and
least satisfied receive the highest priority:

Opportunity= Importance+max(Importance−Satis f action,0)
(1)

If this link exist is possible to develop an innovation with
a considerable value for the customer target and a potentially
market growth for the organisation.

III. SIMULATION APPROACH
This section provides the description of the simulator we

implemented to analyze the applicability of ODI over a set
of different possible scenarios. The proposed framework is
based on probabilistic approach in order to generate different
sets of parameters that define each phase of the process.
The entities that characterize the real model are described by
stochastic variables. To present our work we generate these
values by selecting a possible set of distributions, but it is
important to note that different choices can be performed in
order to exploit the simulator for describing different real
system configurations. We implemented it in GNU Octave [7].



Fig. 1. The eight phases

A. The Outcomes

The number of outcomes for each phase of the process is a
stochastic number generated with a probability distribution. In
this case study, we set a Poisson distribution whose parameter
n (mean) is derived for each phase by a Zipf distribution. In
particular, the number is randomly generated with a parameter
that is function of the number of phase it belongs. In this
way, we assume that, according to the phase, the simulator
can produce a different number of outcomes, and the use of
a Zipf allows us to set the first phases with a potential higher
number of outcomes. The Zipf parameter is denoted with Θ.
Different policies can be modelled by other distributions or
functions.
Once the number of outcomes is generated for each phase,
the simulator can spread it with a given probability in three
different categories: speed, stability, and output. We set the
probability that the outcomes are assigned to a given category
as a Zipf Distribution with parameter Θ. In this case the choice
aims to account for a category ranking where we set the
speed as the most probable, the stability as the second, and
the output as last (details are reported in the next Section).
Other options can also be implemented by setting different
probability distributions.

B. Importance and Satisfaction

The evaluation of each outcome is simulated by two
stochastic variables: the importance of the outcome and the
satisfaction about the outcome. For each phase and for each
outcome category a different probability distribution is used
to define both importance and satisfaction parameters.
In this case study, the simulator generates the importance
and satisfaction elements for all the outcomes by a Truncate
Bivariate Normal distribution. The related parameters µ and
cv (mean and variance) are defined by Zipf distribution to
keep the following criteria: the outcomes of phases with higher
number of outcomes have higher satisfaction parameters,
whereas the outcome belonging to categories with lower prob-
ability to be assigned to have higher importance parameter.
The choice of a Bivariate Normal distribution allows also to
set the correlation parameter ρ to keep into account that in
real processes importance and satisfaction can be more or less
interrelated. We would remark again that the simulator can
generate the outcome importance and satisfaction parameters
with any other probability distribution for describing different
scenario and criteria.



C. Innovation and Opportunity

The simulator first generates the number of outcomes for
each phase, then it assigns them to the categories, and finally it
produces the importance and satisfaction parameters for any of
them. After that, it computes the Opportunity Algorithm (see
Section II, equation 1) by using the previous results for all the
outcomes in order to evaluate their innovation level. To decide
whether, according to importance and satisfaction, an outcome
is to be considered innovative, thus worth of investments, or
not, a parameter called Innovation Threshold (denoted with
T ) is set. The simulator selects only the outcomes whose
innovation evaluation provided by that Opportunity Algorithm
is equal or higher than the threshold. Furthermore, another pa-
rameter called Innovation Probability Factor (denoted with p)
determines the probability that an outcome with a value equal
or higher to the Innovation Threshold has to be successful. The
simulator uses this parameter to provide the set of outcomes
that can produce innovation and that are also successful.

IV. A CASE STUDY
To show the effectiveness of the simulation, we proceed

to the generation of several sets of simulated traces for
processes with given sets of parameters and then we analyze
the characteristics of the various outcomes, to obtain a global
idea of their behavior. Figure 2a shows an example of a
trace produced during one simulation run. In particular, in
this case, the simulation has generated 124 outcomes of the
three different types in the eight phases. For each outcome the
importance and satisfaction values have been generated. Using
the provided threshold T = 15, 7 opportunities for innovation
have been selected and for each of them a success probability
has been assigned, as shown in Figure 2b. Different runs, with
different seeds, will produce different traces: Figure 2c shows
the number of outcomes generated in the eight phases for three
different runs.

Simulation requires the computation of confidence intervals.
In this work we focus on the evaluation of distributions, for
which the computation of confidence intervals is not a simple
issue and can be considered a research topic on its own. To
verify the accuracy of our results, we have divided the metrics
computed by the simulator into bins, and considered the prob-
ability of belonging to a bin as a Bernoulli trial. In particular
we have counted, out of N repetitions, the number of runs n
in which the value of the considered performance index was
contained in a given bin. We then applied the Wald interval
estimation [8] to compute the 95% confidence intervals of
the probability parameter p of a Bernoulli distribution with
N trials out of which n are successful. As an example, let
us focus on the distribution of the opportunity value: since
it is a numerical value in the range [0,20], we have divided
the statistics into 100 bins of size 0.2 each and computed both
the cumulative distribution function (CDF) and the probability
distribution function (PDF). Figure 3 shows that for the CDF,
a small number of simulations is enough to produce smooth
results. When considering however the PDF, as in Figure 4,
a larger number of runs its required to obtain smooth results

since the considered performance index belongs to a bin in a
smaller number of simulation. In our experiment we will fix
N = 10000 runs to consider a tradeoff between accuracy of
the results and simulation time. Experiments were run on a
standard laptop and required less than ten minutes each. To
simplify the presentation, only the center of the confidence
intervals will be shown in the following.

We start studying the distribution of the opportunity value
for different scenarios to characterize the effect of the variance
and of the correlation between the importance and the satisfac-
tion levels of the outcomes. Figure 5 shows the results. Positive
correlation (Figure 5c) implies that the more an outcome
is important, the more it is also satisfied leading to a low
opportunity. This can be seen by the lighter tail that the
distribution has. It is instead interesting to note that when there
is a negative correlation (Figure 5b), indeed more important
outcomes are also characterized by a low satisfaction level as
seen in the right tail of the distribution. However, there is also
an increase in the probability of having very low opportunity
values as a consequence of the way in which the algorithm
works. Variance does not play an important role for negative
correlations, but its effect is more visible when ρ = 0.8: in the
former case larger variances create more uniform distributions
for smaller opportunity levels.

The previous scenario leads also to a different distribution
in the number of opportunities that will be considered for
possible innovations. This is shown in Figure 6, where it is
clear that the center of the distribution moves toward higher
values as the correlation among the inputs turns from positive
to negative. It is interesting to note how, when the correlation
is negative, a higher variance produces worse results, while
when ρ > 0 a higher variance improves the situation.

The number of outcomes in the different phases and the
types of innovations proposed play a role in the distribution
of the opportunity value. In our model, we have determined
this parameters using two Zipf distributions. Figure 7a shows
how the number of outcome can be divided per phase under
three different parameterization (θ = 0.5, θ = 0.7 and θ = 1),
and Figure 7b focuses on how the outcome are categorized
according to the three different types. Then, Figure 7c shows
the effects of these distributions on the different shapes of the
opportunity value. As it can be seen, when a scenario has a
more uniform distribution of outcomes and outcome types, it
has a larger probability of having opportunity values above the
threshold.

One of the key features of the simulative approach is the
ability to study the considered scenarios in depth by allow-
ing to capture complex performance measures. For example,
Figure 8 shows how different thresholds for the opportunity
level, and the probabilities of success for outcomes at the
threshold, affect the joint distributions of the number of
selected outcomes and number of successes. The more a plot
is centered across the 45◦ line, the more likely an innovation
is likely to be successful. The more a plot is shifted away
from the origin, the more the scenario will be able to produce
innovations. The more the plot is packed near a point, the
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lower will be the uncertainty in the number and the success
of the considered innovations. For example, the scenario in
Figure 8a shows a large possibility of successful innovations,
but with a larger uncertainty, while Figure 8c describes a case
where less innovations are possible, but their success is more

probable.
From the joint distributions, marginal values such as the

probability of successful outcomes can be computed, as shown
in Figure 9. From this we can see that by lowering the
threshold we can increase the number of successes for any
value of p. However, if we consider that innovations that
are not successful might incur in extra costs, situation might
be different, as shown in Figure 10. In particular we have
computed the average cost / benefit β of a scenario as:

β = ∑
k

∑
s

psk [sλ − (k− s)µ]

where k is the sum over the outcomes, s the sum of the
successes, πsk the joint probability of having s success out
of k outcomes, λ is the benefit obtained from a successful
innovation, and µ is the cost incurred from an unsuccessful
opportunity. For example for a gain λ = 7Keuro and a penalty
of µ = 10Keuro, as in Figure 10, we can see that for risky
scenarios characterized by a small probability p of success at
the threshold, it is better to set a higher threshold to reduce
the loss.

Finally, Figure 11 shows the distribution of the percentage
of successes for the cases whose parameters are given in Table
I. In scenarios with parameters like the one in B, there is a
high probability of having a 100% of successes among all the
innovations that have been considered: this is mainly due to
the fact that even innovations at the threshold have a very large
success probability. Case A is instead the worse, since it has
a much smaller success probability, even at a lower threshold.
When the scenario has a negative correlation (Case C), the
percentage of successes tends to be more packed around a
given value. Positive correlation (Case D) instead produces a
larger variance in the percentage of successes.

TABLE I
PARAMETERS FOR THE CASES CONSIDERED IN FIGURE 11

Case cv ρ T p n θ

A 1 0 15 40% 120 0.7
B 1 0 16 60% 120 0.7
C 2 −0.8 14 50% 120 0.7
D 0.5 0.8 14 50% 120 0.7
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Fig. 5. Probability distribution of the opportunity value for different correlation and variances of the satisfaction and importance levels: a) ρ = −0.8, b)
ρ = 0, c) ρ = 0.8.
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b) Distribution of outcome types, c) distribution of the opportunity value.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we explored a simulation approach for the
evaluation of the effectiveness of ODI in dependency of some
characteristics of the processes to which resources are planned
to be invested. The simulated scenarios show some interesting
hint to support experts in the application of the technique to
real cases.

Future works include the definition of a dedicated modeling
language to describe ODI models in a multiformalism frame-
work such as SIMTHESys [9] [10] or OsMoSys [11] [12] to

integrate the evaluation in more complex and articulated sce-
narios including the nature and the performances of processes
in composite metrics.

REFERENCES

[1] A. W. Ulwick, What customers want - Using outcome-driven innovation
to create Breakthrough Products and Services. McGraw-Hill, 2005.

[2] C. M. Christensen and M. E. Raynor, The Innovator’s Solution: Creating
and Sustaining Successful Growth, 1st ed. Harvard Business Press, Sep.
2003.

[3] A. W. Ulwick, “What is outcome-driven innovation
(ODI)?” 2011. [Online]. Available: http://grababyte.com/storage/
Outcome-Driven-Innovation .pdf



T = 14, p = 60%
P
r
o
b
.

# innovations

#
 
s
u
c
c
e
s
s
e
s

 0
 5

 10
 15

 20
 25

 30
 0

 5

 10

 15

 20

 25
 0

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

T = 15, p = 50%

P
r
o
b
.

# innovations

#
 
s
u
c
c
e
s
s
e
s

 0
 5

 10
 15

 20
 25

 30
 0

 5

 10

 15

 20

 25
 0

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

T = 16, p = 40%

P
r
o
b
.

# innovations

#
 
s
u
c
c
e
s
s
e
s

 0
 5

 10
 15

 20
 25

 30
 0

 5

 10

 15

 20

 25
 0

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

a) b) c)
Fig. 8. Joint distributions of the number of selected outcomes and number of successes for different different thresholds and probabilities of success for
outcomes at the threshold: a) T = 14, p = 0.6, b) T = 15, p = 0.5, c) T = 16, p = 0.4.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  5  10  15  20  25

P
r
o
b
.

# Successes

p=40% T=14
p=40% T=15
p=40% T=16
p=50% T=14
p=50% T=15
p=50% T=16
p=60% T=14
p=60% T=15
p=60% T=16

Fig. 9. Distributions of the number of successes for different thresholds and
probabilities of success for outcomes at the threshold.

-10

-5

 0

 5

 10

 15

 20

 25

 30

 14  15  16

K
 
E
u
r
o

Threshold

p = 40%
p = 50%
p = 60%

Fig. 10. Cost / Benefit for different thresholds and probabilities of success
for outcomes at the threshold.

[4] R. Bandinelli, M. Iacono, and A. Orsoni, “Improving the remote schedul-
ing of manufacturing and installation of large custom-made products,” in
Proceedings of ESM 2004, 18th European Simulation Multiconference,
Magdeburg, Germany, June 13-16, 2004, 2004.

[5] P. Piazzolla, M. Gribaudo, R. Borgotallo, and A. Messina,
“Performance evaluation of media segmentation heuristics using

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

<
1
0
%

<
2
0
%

<
3
0
%

<
4
0
%

<
5
0
%

<
6
0
%

<
7
0
%

<
8
0
%

<
9
0
%

<
9
9
%

1
0
0
%

P
r
o
b
.

 

Success percentage

A
B
C
D

Fig. 11. Distributions of the percentage of success for the case defined in
Table I.

non-markovian multi-class arrival processes,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6148
LNCS, pp. 218–232, 2010, cited By 0. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-77955447571&
partnerID=40&md5=dc29e61db402682b4b7763e856add0f1

[6] L. Bettencourt and A. Ulwick, “The customer-centered innovation map,”
Harvard business review, vol. 86:5, pp. 109–130, 2008.

[7] J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave Manual Version
3. Network Theory Ltd., 2008.

[8] L. D. Brown, T. T. Cai, and A. DasGupta, “Interval estimation for
a binomial proportion,” Statistical Science, vol. 16, no. 2, pp. pp.
101–117, 2001. [Online]. Available: http://www.jstor.org/stable/2676784

[9] E. Barbierato, M. Gribaudo, and M. Iacono, “Defining Formalisms
for Performance Evaluation With SIMTHESys,” Electr. Notes Theor.
Comput. Sci., vol. 275, pp. 37–51, 2011.

[10] M. Iacono and M. Gribaudo, “Element based semantics in multi formal-
ism performance models,” in MASCOTS. IEEE, 2010, pp. 413–416.

[11] F. Moscato, F. Flammini, G. D. Lorenzo, V. Vittorini, S. Marrone, and
M. Iacono, “The software architecture of the OsMoSys multisolution
framework,” in ValueTools ’07: Proceedings of the 2nd international
conference on Performance evaluation methodologies and tools, 2007,
pp. 1–10.

[12] G. Franceschinis, M. Gribaudo, M. Iacono, S. Marrone, F. Moscato, and
V. Vittorini, “Interfaces and binding in component based development
of formal models,” in Proceedings of the Fourth International ICST
Conference on Performance Evaluation Methodologies and Tools, ser.
VALUETOOLS ’09. ICST, Brussels, Belgium, Belgium: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2009, pp. 44:1–44:10.


