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Abstract  (MAX 250) 

Asbestos exposure is the main risk factor for malignant pleural mesothelioma (MPM), a rare 

aggressive tumor. Nevertheless, on average less than 10% of subjects highly exposed to asbestos 

develop MPM, suggesting the possible involvement of other risk factors. To identify the genetic factors 

that may modulate the risk of MPM, we conducted a gene-environment interaction analysis including  

asbestos exposure and fifteen Single Nucleotide Polymorphisms (SNPs) previously identified through 

a genome-wide association study (GWAS; 370,000 genotyped SNPs, 5 million imputed SNPs) on 

Italian subjects. In the present study, we assessed gene-asbestos interaction (GAI) on MPM risk using 

Relative Excess Risk due to Interaction (RERI) and Synergy Index (SI) for additive interaction, and V 

index for multiplicative interaction. Generalized Multifactor Dimensionality Reduction (GMDR) 

analyses were also performed. Positive deviation from additive GAI was found for six SNPs 

(rs1508805, rs2501618, rs4701085, rs4290865, rs10519201, rs763271), and four of them (rs1508805, 

rs2501618, rs4701085, rs10519201) deviated also from multiplicative models. However, after 

Bonferroni correction only deviation form multiplicative model were still significant for rs1508805 and 

rs4701085. GMDR analysis showed a strong MPM risk due to asbestos exposure and suggested a 

possible synergistic effect between asbestos exposure and rs1508805, rs2501618, and rs5756444. 

Our results suggested that GAI may play an additional role on MPM susceptibility, given that asbestos 

exposure appears as the main risk factor. 

Summary: our gene-wide interaction study of asbestos and mesothelioma, based on 392 cases and 

367 controls, suggested that additive and multiplicative gene-environment interaction might be 

associated with an increased risk, in addition to asbestos exposure only.  

  



 

 

Introduction 

Malignant pleural mesothelioma (MPM) is a rare, aggressive tumor, characterized by treatment 

resistance and poor prognosis (1). Although rare in the past, MPM frequency increased, in relation to 

asbestos use (1). The only clearly established risk factors for MPM are exposure to asbestos and 

other asbestiform minerals such as erionite and, to a lesser extent, ionizing radiation for medical 

purposes (1,2).  

A genetic component in the etiology of the disease (3) might in part explain the relative rarity of MPM 

also in heavily exposed cohorts (2), the reports of familial clustering (4–6) and the results of candidate-

gene association studies (3,7). 

Matullo et al. (8) identified 15 and 5 imputed genotyped SNPs associated to MPM in a GWAS on an 

Italian study sample of 407 MPM cases and 389 healthy controls, and concluded that genetic risk 

factors may play an additional role in the development of MPM (8). Cadby et al. (9) in a companion 

GWAS study on MPM observed other associated SNPs but failed to replicate results from Matullo et 

al. (8). They hypothesized the lack of replication might be explained by differences in population 

genetic structure, type of asbestos exposure, or different asbestos exposure assessment. 

The present study further investigates the interactions between candidate SNPs (8) and asbestos 

exposure, and their effects in modulating MPM risk in Italian population. 

Methods 

Ethics statement  

All MPM cases and controls included in the present paper gave written informed consent. This study 

was performed according to the principles of the Declaration of Helsinki and in agreement with ethical 

requirements. Approval was obtained from the Istituto Nazionale per la Ricerca sul Cancro Ethics 

Committee for the studies in Genoa and La Spezia, and from the Human Genetics Foundation 

(HuGeF) Ethics Committee for the studies in Casale Monferrato and Turin.  

Study sample 

We presented statistical analysis of interaction in the study sample was the same as in the GWAS 

study by Matullo et al. (8). The study sample It was composed of MPM cases and controls from cities 



 

 

located in Northern Italy: Casale Monferrato and Turin in the Piedmont Region, and Genoa and La 

Spezia in the Liguria Region. Casale Monferrato sample was a population-based MPM case-control 

study (10), and included 241 MPM patients and 252 population controls. Turin sample was a hospital-

based MPM case-control study (7), and consisted of 91 MPM patients and 56 controls (non-neoplastic 

and non-respiratory conditions). The hospital-based study in Genoa and La Spezia included 75 

incident MPM cases (11), and 81 controls including (healthy subjects or patients hospitalized for non-

neoplastic and non-respiratory conditions). All study subjects were of Italian origin and caucasican 

ethnicity. Criteria of eligibility also included: be residing in the study area at the time of diagnosis and 

pathological confirmation of the diagnosis (based on histology or cytology with immunohistochemical 

staining). For practical reasons, the study in Turin was limited to cases and controls admitted to the 

main metropolitan hospitals. Cases and controls were individually matched by age and gender. 

After reviewing the individual occupational histories, collected during questionnaire-based personal 

interviews, asbestos exposure was classified by an expert (D.M.) as ‘‘absent/unlikely’’ (no 

acknowledged occupational or environmental exposure), ‘‘low’’ (low exposure probability, or definite 

exposure at low level), and ‘‘high’’ (definite and high exposure, corresponding in principle to asbestos-

cement and asbestos-textile workers, insulators, shipyard workers and dockers and similar activities). 

Further details on the exposure assessment process were given in Magnani et al. (12). 

SNP genotyping and genotyping quality controls 

Whole-genome genotyping was performed by using a Human CNV370 - Quad Bead Chip (Illumina 

Inc., San Diego, CA, USA) for 716 samples. The remaining 80 samples were tested on a Human610-

Quad (which includes 100% of the HumanCNV370 Bead Chip SNPs) as the Human CNV370-Quad 

had been discontinued. Genotypes assignment was done by Genome Studio V 2011.1 (Illumina Inc., 

San Diego, CA). Five SNPs (rs2236304, rs7632718, rs9833191, rs10815216, rs73034881) were 

assessed by 5’nuclease assay (TaqMan Assay, Life Technologies Inc). We tested the compatibility of 

the two platforms measuring the minor allele frequencies in our controls and no significant differences 

were observed (data not shown).  

Quality controls were conducted in the main GWAS (8) and are only summarized here. A cut-off a 

genotyping call rate of 0.98 was set, leading to the exclusion of 18 study subjects. SIdentity By 

Descent (IBD) estimation using the Identity By State (IBS) distance was used to check genotypic Commento [ST1]: Capire questo 
pezzo se è corretto  



 

 

identity or relatedness among subjects (13). Subjects with IBD≥0.05 (n = 16) were considered 

consanguineous and excluded from further analyses. We additionally excluded three samples with an 

X chromosome inbreeding homozygosity estimate of about 0.5. In total, thirty-seven subjects (4.64%) 

were removed from the analysis, leaving 759 subjects (392 cases and 367 controls). SNPs with minor 

allele frequency, <1% (n = 15,252), those having > 0.05 missing genotypes (n = 11,535) and those 

deviating from Hardy-Weinberg equilibrium (HWE) in the control population (P ≤0.001, n = 1,157) were 

excluded from the analysis, for a final study data-set of 330,879 SNPs, which were analyzed for their 

potential association with MPM.  

Population structure and SNPs selection 

Fifteen SNPs (rs2236304, rs742109, rs1508805, rs2501618, rs4701085, rs4290865, rs9536579, 

rs7632718, rs9833191, rs3801094, rs7841347, rs10519201, rs5756444, rs10815216, rs73034881) 

resulted from the GWAS analyses (8). These SNPs were selected by logistic regression analysis on 

per allele additive model adjusting by age, gender, PCA cluster, center of recruitment and asbestos 

exposure level (8). Only genotyped SNPs were considered for the present study. 

Statistical analysis 

The relationship between SNP and asbestos exposure in MPM causation was analyzed by logistic 

regression method adjusting by age, gender, PCA cluster and center. A binary classification was used 

both for asbestos exposure (exposed vs non-exposed) and for genotypes. Subjects with exposure 

coded as “‘absent/unlikely exposure” were considered as non-exposed, while subjects coded as “low” 

or “high” were considered as exposed.  

Generally speaking, MPM risk for a given SNP and asbestos exposure was expressed by ORi,j where 

the first index (i) indicated the asbestos exposure coded as 0 for non-exposed and 1 for exposed 

subjects; the second index (j) indicated the SNP variant coded as 0 for the major allele and 1 for 

subjects bearing one or two copies of the minor allele. Subjects non-exposed and homozygous for the 

major allele were considered as reference group, thus coding their MPM risk as OR00=1. 

Interaction was analyzed in respect to both additive and multiplicative models. Deviation from an 

additive model was explored as the Relative Excess Risk due to Interaction (RERI) and the Synergy 

Index (SI) (14). Confidence intervals (CI) were calculated by the delta method (15). RERI was defined 



 

 

as [OR11-OR01-OR10+1] and SI as [OR11-1]/[(OR01-1) + (OR10-1)] where the ORi,j represents the odds 

ratio estimated using logistic regression adjusted by age, gender, PCA cluster, and center of 

recruitment.  

Under the null hypothesis of no interaction, RERI is not significantly different from 0, whereas SI is not 

significantly different from 1. RERI > 1 indicates positive interaction and RERI < 0 negative interaction. 

SI > 1 means positive interaction and SI < 1 negative interaction. Synergistic interaction (positive 

interaction) implies that the combined action between two factors in an additive model is greater than 

the sum of individual effects. On the contrary, antagonistic interaction means that in the presence of 

two factors in an additive model, the action of one exposure variable reduces the effects of the other 

(14).  

Deviations from a multiplicative model were explored by multivariable logistic regression models 

including: asbestos exposure, one SNP at time and the corresponding interaction term (SNP × 

exposure); models were adjusted for age, gender, PCA cluster and center of recruitment. P-values for 

multiplicative interaction were calculated by comparing the full model including a multiplicative 

interaction term to a reduced model without it, using the likelihood ratio test (LRT) (16). 

The Multiplicativity index V=OR11/(OR01 × OR10) (17) was also calculated. A value of 1 for V suggested 

a multiplicative joint effect, whereas values greater or lower than 1 indicated an interaction that is more 

or less than multiplicative, respectively. 

The generalized multifactor dimensionally reduction (GMDR) (18) method was applied to analyze high 

order SNP-exposure interactions (GMDR v7, software obtained fromhttp://www.ssg.uab.edu/gmdr/). 

GMDR is considered a model-free method. Potential confounders (age, gender, PCA cluster, and 

center of recruitment) were included as covariates. The data were divided in 10 sets: 9 for training and 

1 for testing. N (from 1 to 5) factors were selected from the training set and their combinations were 

represented in n-dimensional space. The GMDR classified each combination (multifactorial class) as 

‘high risk’ or ‘low risk’, thus reduced the n-dimensional space to one dimensional with two levels. For 

each possible model size (one-factor, two-factor, etc.), the model with the lowest misclassification 

error was selected. “Leave one-out-cross-validation” was used to calculate the prediction error and to 

evaluate the predictive ability of the model to fit the test set. The result was a set of models, and the 

Testing Balanced Accuracy (TBA) and Cross Validation Consistency (CVC) indexes were used to 



 

 

determinate the overall best model. TBA was calculated as (sensitivity+specificity)/2. ORs were 

computed by ‘low risk’ vs ‘high risk’ combinations. P values were determined by sign test, a robust non 

parametric test implemented in GMDR software (19). The model with higher TBA and CVC and P-

value less of equal to 0.05 derived from sign test was considered as the best one.  

HWE was reassessed for the 15 SNPs comparing the observed genotype frequencies with the 

expected frequencies using Chi-squared test with significance level at P<0.05. 

Statistical significance was set at P<0.05, confidence intervals (CIs) were estimated at 95%.  

Results 

After standard GWAS quality control procedure, as reported in (8), we considered eligible for the 

statistical analyses 759 subjects, 367 MPM cases and 392 controls. The general characteristics of the 

sample are reported in Table I. For each SNP we performed the gene-environment interaction 

analysis considering only subjects with known asbestos exposure and genotype. 

All the polimorfisms were in HWE at P<0.05, except rs2236304 (P=0.022) and rs9536579 (P=0.034) 

and rs10815216 (P=0.004). This may be due to the small size of the sample or to chance.  

The baseline association of covariate with MPM onset showed statistically significant differences for 

age (P<0.001), PCA cluster (P=0.040) and centre (vs P>0.001) and multivariate analyses were 

adjusted for (Tab. II).  

Stratified analysis 

The joint effect of exposure and each of the candidate SNPs assessed by multivariate logistic 

regressions, controlling by possible confounders (age, PCA cluster, centre and sex), is shown in Table 

III.  

For example, considering the SNP rs2236304 the risk of mesothelioma was increased (OR=3.34 

95%CI 1.00 – 11.09) in non-exposed subjects carrying the minor allele compared to non-exposed and 

homozygous for the major allele (reference category), and it was also increased in exposed individuals 

homozygous for the major allele (OR=16.00 95%CI 5.45 – 46.98). The effect further increased 

(OR=28.87 95%CI 9.95 – 83.78) when both factors (exposure and minor allele) were present. 



 

 

Evidence of synergistic interaction between the minor allele of this polymorphism and asbestos 

exposure is further evaluated by indicators presented in Table IV (see later).  

Considering “non exposed-non carrying at risk alleles” as the reference group, ORs among “exposed-

non carrying” subjects ranged from 4.56 (rs7632718) to 35.83 (rs5756444); among “exposed-carrying” 

subjects it ranged from 3.92 (rs10815216) to 28.87 (rs223604) (Table III).  

Rs1508805, rs2501618, rs4701085, rs4290865, rs10519201 (SHC4) and rs7632718 (SLC74A14) 

showed a similar pattern: null effect or protection among non-exposed and risk increase among the 

exposed.  

For rs5756444, in the absence of exposure, the minor allele triplicated the risk (OR 3.37, borderline 

statistical significance) while it showed no effect among the exposed (OR from 35.83 to 21.34 with 

overlapping CIs).  

Analysis without adjusting for confounding (age, sex, PCA cluster and center) showed similar results 

(Supplementary Table S1).  

Additive and multiplicative interaction 

RERI, SI, V and the statistical significance of the interaction term in the multiplicative logistic 

regression model are reported in Table IV, for each SNP. 

In respect to deviation from additivity, significant positive interaction between SNP and exposure was 

found for rs1508805, rs2501618 (CEP350 gene), rs4701085, rs4290865, rs10519201 (SHC4), 

rs7632718 (SLC74A14) according to RERI and SI indexes. Rs73034881 (SDK1/FOXK1) showed 

borderline RERI and statistically significant SI, with negative interaction. Significant negative 

interaction between SNP and exposure was also found according to SI index for rs9536579, 

rs5756444, rs10815216, rs9833191 (THRB) and rs7303881 (SDK1/FOXK1). After accounting for 

multiple comparisons using Bonferroni correction, SI index was still statistically significant a part for 

eight SNPs (rs1508805, rs2501618, rs4701085, rs4290865, rs9536579, rs10519201, rs5756444, 

s9833191) but RERI was no longer statically significant for any SNPs.  

Statistically significant deviation from the multiplicative model was observed for: rs1508805, 

rs2501618 (CEP350), rs4701085, rs10519201 (SHC4), rs575644, and rs10815216. Except for 



 

 

rs575644 (V=0.18), all these deviation from multiplicative model indicated a more than multiplicative 

interaction (V>1) between SNP and exposure. After accounting for multiple comparison using 

Bonferroni correction of P= 0.003 (0.05/15) the interaction remaned statistically significant in 

multiplicative scale, for rs150885 and rs471085. 

Rs1508805 (Table III) in absence of exposure the minor allele conferred protection (OR=0.19), 

whereas exposure doubled the risk (from 5.22 to 10.33). 

Rs1508805, rs2501618, rs4701085, rs4290865, rs10519201 (SHC4) and rs7632718 (SLC74A14) 

showed a similar pattern: null effect or protection among non-exposed and risk increase among the 

exposed.  

For rs5756444, in the absence of exposure, the minor allele triplicated the risk (OR 3.37, borderline 

statistical significance) while it showed no effect among the exposed (OR from 35.83 to 21.34 with 

overlapping CIs).  

In summary (Table IV) six SNPs (rs1508805, rs2510618, rs4701085, rs10519201 (SHC4), rs5765444, 

rs10815216) showed deviation from multiplicative model. SNPs rs575644 and rs10815216 had a 

significant deviation from multiplicativity while the deviation from additivity was observed only 

according to SI index. Similar trends were observed in unadjusted association analyses 

(Supplementary Table S2). 

 

GMDR 

Table V shows the result obtained from the GMDR analysis for one to five-factors models adjusted by 

covariates; the best models for different sizes were reported. According to GMDR selection model 

(19), the best model is the one with maximum TBA, maximum CVC and P-value derived from sign test 

less or equal to 0.05. There was no single model with all of these characteristics. The model with 

maximum CVC (10/10), included exposure only, had the second highest TBA (63.39%), OR= 9.71 

(95% CI 4.02 – 22.44) and sign test P-value <0.001. The model including SNP rs2501618, rs1508805, 

rs5756444 and exposure had the third CVC (5/10) and the first maximum TBA (64.45%), sign test P-

value <0.001 and OR=6.64 (95% CI 3.60 – 11.30) (Table V). 



 

 

We verified that the ORs estimated by GMDR using a classification (‘high risk’ vs ‘low risk’) 

corresponded, as expected, to the ORs estimated by logistic regression using the same classification 

(results not shown).  

Discussion 

This is the first study systematically examining interactions between asbestos exposure and a set of 

candidate SNPs emerging from a GWAS on MPM. We considered for each SNP both additive and 

multiplicative interactions with asbestos exposure and some significant results were found.  

The age differences between cases and control observed in Casale Monferrato and Genova studies 

were due to different participation of cases and controls invited to the study. We observed a lower 

participation of controls in older ages, in particular among women (7). The main analyses were always 

adjusted for age, gender, PCA cluster and center. 

Interaction analysis is dependent on the selection of the joint effect of interest. In the absence of “a 

priori” knowledge and of theoretical reason for choosing either, both additive and multiplicative models 

were tested. Interaction on the additive scale is present when the joint effect of the two risk factors is 

different from the sum of the individual effects. Interaction on the multiplicative scale is characterized 

by joint effect of the two risk factors different from the product of the individual effects (14). In this 

study, deviation from additive model was assessed by RERI and SI indexes. All of the selected SNPs 

presented SI index with significant values, suggesting deviation from additivity. The RERI index, on 

the contrary, was more restrictive. Indeed, as noted by Assmann (20), SI is generally statistically more 

unstable than RERI, when estimated using ORs instead of relative risks, as in the present study. 

 When multiple comparison were considered using Bonferroni correction SI remained statistically 

significant for eight SNPs (rs1508805, rs2501618, rs4701085, rs4290865, rs9536579, rs10519201, 

rs5756444, s9833191) and multiplicative interaction for two SNPs (rs1508805 and rs10519201 

(SHC4)). However, we do not entirely agree on the use of Bonferroni correction here, because all the 

SNPs were already selected under consideration of multiple comparison in the GWAS analysis (8) and 

therefore repeating the correction for the present interaction analysis is too conservative . 

The GMDR analysis suggested that the major contribution to the development of MPM was due to 

asbestos exposure, even after consideration of the selected SNPs. In fact, the model with the highest 



 

 

TBA value (a four-way model including: exposure, rs1508805, rs2501618, rs5756444) had a low value 

of CVC (5/10); the model including only asbestos exposure had an only slightly lover TBA value 

(64.45% vs 63.39%) but a much better CVC value (10/10), so it is the best one. Without adjusting for 

confounding variables the GMDR selected the same two models and including the same SNPs that 

were selected by the model adjusted by confounders (Supplementary Table S3)  

The most of the selected SNPs from GMDR analysis were also selected by additive or multiplicative 

interaction analysis; however the results we obtained from the GMDR analysis indicated the 

preeminent role of asbestos exposure and offer limited support for an interaction between asbestos 

exposure and some variant alleles. 

In the present study, we selected the significant SNPs from our published GWAS (8), as no other 

evidence was previously reported in the literature. In a recent publication, Cadby et al. (9) also 

investigated MPM risk with a genome-wide association study, but their findings were not replicated in 

our Italian sample, apart some evidence of replication in the SDK1 gene region. Because the SNPs 

they detected were not included in our most significant fifteen SNPs, they were not considered in 

these analyses. 

SNPs included in the present study have a limited ‘a priori’ association with MPM risk or other 

asbestos health effects. 

The rs2501618, located inCEP350 gene, and selected as deviating from both additive and 

multiplicative models, was found associated to atopy in a previous paper (21) studying potential 

candidate genes for asthma or atopy. In our work, rs2501618 reduced the MPM risk in non-exposed 

subjects but increased the risk in exposed subjects with a synergistic interaction between asbestos 

exposure and the minor allele. 

Deviation from additive interaction was found for SNP rs10519201, located in SHC4 gene. SI additive 

interaction index remind significant after Bonferroni correction. This SNP showed association with 

psychiatric illness (eating-disorder) in Boraska et al. (22).  

Rs7632718 is located in SLC7A14 (solute carrier family 7 member 14), which lies in 3q26.2 regions, 

that was one of the replicating regions in Cadby et al. (9). Although no link with MPM had been 

previously reported for SLC7A14, a chromosomal gain of this region has been described in MPM (23), 



 

 

suggesting a possible involvement of other genes. Cadby et al (9) indicated SDK1 and the region 

around this gene as most consistently associated with MPM risk in both Australian and Italian studies.  

In the present analysis, although not statistically significant for all the interaction indexes, the 

rs73034881, located in SDK1/FOXK1 region, is suggestive of negative (protective) additive interaction 

between variant allele and asbestos exposure. It is interesting to note that FOXK1 is an interactor of 

BAP1, whose deleterious mutations are responsible for a cancer prone syndrome that included 

mesothelioma in its phenotype.  

In these analyses we found a possible interaction, both additive and multiplicative, between asbestos 

exposure and both rs2501618 (CEP350) and rs10519201 (SHC4). Interaction is also suggested by 

four-way GMDR interaction analysis that included exposure, rs2501618 (CEP350), rs10519201 

(SHC4), and rs5756444. Although these genes have not been directly associated with MPM, their 

involvement in several cancer types has been described. CEP350 interacts directly with FGFR1 

oncogene partner (FOP), a critical protein in the myeloproliferative disorders (24) and SHC4 has been 

reported to activate both Ras-dependent and Ras-independent migratory pathways in melanomas (25) 

Their involvement in cancer suggests a possible role in MPM pathogenesis, interacting with asbestos 

exposure. 

We did not find association for other genes associated to MPM in literature results. We performed an 

additional analysis with the Variant Effect Predictor software 

(http://www.ensembl.org/info/docs/tools/vep/index.html) to determine the effect of the SNPs. Four 

variants (rs742109, rs9833191, rs10519201, rs5756444) resulted to be localized in regulatory regions 

suggesting putative functional consequences. 

THRB and MMP14 are reported as to be dysregulated in MPM (26,27). THRB encodes for thyroid 

hormone receptor beta (TRb), which could function as a tumor suppressor and MMP14 (matrix 

metallopeptides 14) has been reported to influence overall survival in MPM cases (27) but we did not 

find any significant interaction with asbestos exposure in relation to MPM risk. PVT1 (Pvt1 oncogenic 

(non-protein coding)) gene is involved in several types of cancer (28,29) but no significant interaction 

between asbestos and PVT1-rs7841347 was found. 

http://www.ensembl.org/info/docs/tools/vep/index.html


 

 

None of the SNPs deviated from HWE showed a clear interaction with asbestos exposure in MPM 

development; although rs9536579 and rs2236304 showed deviation from the additive model for SI 

index, and rs10815216 showed borderline deviation from both the multiplicative model and the 

additive model for SI index, moreover after Bonferroni correction neither SI index nor V index were 

stratistically significant for rs1081521 and both rs2236304 showed SI not statistically significant. 

Several limitation of the current study should be acknowledged. The statistical power is limited: the 

sample size is critical in general for all gene-environment interaction studies, and in particular for rare 

diseases such as MPM. The number of cases (with minor allele variant and not) exposed to asbestos 

is very limited, as the rule in MPM studies. This may influence the estimated ORs and their confidence 

intervals and increase the variability of interaction indexes. In order to better investigate the 

relationship between gene and asbestos exposure a larger sample size would be required. As we 

selected significant SNPs from our GWAS, no further multiple comparison correction for GWAS 

threshold was performed. Only SNPs previously selected by association study (8) were considered in 

this gene-environment analysis. We cannot exclude that other SNPs with weaker effect in MPM risk 

might interact with asbestos-exposure, but for the through investigation it will be necessary a 

replication study with huger numbers. 

Finally, it is also possible that rare variants could contribute to gene-asbestos interaction but our 

GWAS did not take into account rare variants. The availability of methods for complete genome 

sequencing will allow to circumvent the problem linked to the identification of rare variants, whose 

involvement should be better investigated in future studies, in order to avoid missing potential 

associations. 

In conclusion, our results give some suggestions on the combined contribution of genetic background 

in asbestos-related carcinogenesis of the pleura, indicating that genetic factors may interact with 

asbestos exposure on MPM risk with different modes of interaction. Asbestos however remains the 

major risk factor for MPM.  

Although the interpretation of observed results is still unclear because of the limited apriori evidence of 

genetic factors modulating the effects of asbestos exposure, an independent replication of our results, 

together with functional data, could contribute to understand MPM physiopathology, and to better 

define the MPM risk profile of subjects at high level of asbestos’ exposure.  

Commento [ST2]: chiarire 
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