ORIGINAL RESEARCH

An asbestos-exposed family with multiple cases of pleural malignant mesothelioma

without inheritance of a predisposing *BAP1* mutation

Mitchell Cheung a, Yuwaraj Kadariya a, Jianming Pei a, Jacqueline Talarchek a, Francesco

Facciolo b, Paolo Visca c, Luisella Righi d, Ilaria Cozzi e, Joseph R. Testa a,*, Valeria Ascoli e,*

^aCancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA; ^bDepartment of

Oncologic Thoracic Surgery, Regina Elena Cancer Institute, Rome, Italy; Department of

Pathology, Regina Elena Cancer Institute, Rome, Italy; ^dDepartment of Oncology, San Luigi

Hospital, University of Turin, Italy; Department of Radiological Sciences, Oncology and

Pathology, Sapienza University of Rome, Italy

Running Title: Mesothelioma family without inherited mutation of *BAP1*

Keywords: malignant mesothelioma, asbestos, familial cancer, cancer predisposition, BAP1

Disclosures: JRT and Fox Chase colleagues are supported by National Cancer Institute grants

CA175691 and P30 CA06927, NIEHS grant P42 ES023720 (UPenn Superfund Research and

Training Program Center), and a gift from the Local No. 14 Mesothelioma Fund of the

International Association of Heat and Frost Insulators & Allied Workers. MC was also supported

by a grant from the Mesothelioma Applied Research Foundation. JRT, MC, and JP have a

pending patent application on *BAP1* mutation testing. JRT has provided consultation regarding genetic aspects of mesothelioma. All other authors declare no potential conflict of interest.

* Corresponding authors

E-mail addresses: Joseph.Testa@fccc.edu or Valeria.Ascoli@uniroma1.it

Abstract

We report a family with domestic exposure to asbestos and multiple cancers, including eight pleural malignant mesotheliomas and several other lung/pleural tumors. DNA seguence analysis revealed no evidence for an inherited mutation of BAP1. Sequence analysis of other potentially relevant genes, including TP53, CDKN2A and BARD1, also revealed no mutations. DNA microarray analysis of two mesotheliomas revealed multiple genomic imbalances including consistent losses of overlappping segments in 2q, 6q, 9p, 14q, 15q and 22q, but no losses of chromosome 3 harboring the BAP1 locus. However, immunohistochemistry demonstrated loss of nuclear BAP1 staining in 3 of 6 mesotheliomas tested, suggesting that somatic alterations of BAP1 occurred in a subset of tumors from this family. Since mesothelioma could be confirmed in only a single generation, domestic exposure to asbestos may be the predominant cause of mesothelioma in this family. Given the existence of unspecified malignant pleural tumors and lung cancers in a prior generation, the possibility that some other tumor susceptibility or modifier gene(s) may contribute to the high incidence of mesothelioma in this family is discussed. Because the incidence of mesothelioma in this family is higher than expected even in heavily exposed asbestos workers, we conclude that both asbestos and genetic factors have played a role in the high rate of mesothelioma and potentially other pleural/lung cancers seen in this family.

Introduction

Malignant mesothelioma (MM) is an uncommon cancer associated with asbestos exposure. Familial clustering in close relatives has been described in multiple reports and cannot be explained by chance alone (1). In addition to shared asbestos exposures, MM clustering in some families may suggest the contribution of inherited genes (low-penetrance alleles) in the development of this malignancy. A genetic factor predisposing to MM was recently discovered, namely germline mutation of the *BAP1* (BRCA1-associated protein 1) gene in two families with a high incidence of MM and only modest exposure to asbestos (2, 3). The association of germline *BAP1* mutations with familial MM has been confirmed in a series of recent reports (4-7). Germline *BAP1* mutations have also been repeatedly associated with other tumor types, including uveal melanomas, cutaneous melanomas, benign melanocytic tumors, kidney cancers, and basal cell carcinomas (3-14). Somatic mutations and/or deletions have been described in MMs of both individuals with germline *BAP1* mutations and in sporadic cases, i.e., lacking a germline mutation (3, 15, 16). Based on these findings, we decided to analyze the *BAP1* status in a family with many cases of pleural MM and asbestos exposure.

Materials and methods

Family History and Patient Samples. Over the past 18 years, since the identification of the index patient (III-2) in 1996 and the description of four MM cases (17), we have continued to follow this Italian family with multiple cases of MM and other malignancies (Fig. 1). Metaphase-based comparative genomic hybridization (CGH) analysis on tumor samples uncovered DNA losses involving 1p, 6q, 9p, 13q, and 14q (18), each of which is a chromosomal arm that is commonly lost in sporadic MM (19). An update of the history of this extended family was published in 2014 (2). Between 1987 and 2012, there were six women (mean age 62 yrs) and two men (mean age 67 yrs) who developed pleural MM in generation III. In addition to the eight

confirmed MMs, two female family members in a prior generation (II-3 and II-8) had pleural cancers (highly suspicious of MM but unconfirmed), without radiological evidence of a primary tumor in the lung or elsewhere. The kindred had exposure to asbestos in the domestic setting; we demonstrated the presence of asbestos in lung tissue of two subjects, using transmission electron microscopy (III-5: crocidolite, elevated fiber burden and asbestos bodies) and optical microscopy (III-2: asbestos bodies). All MM patients in this family are deceased. Formalin-fixed, paraffin-embedded (FFPE) tissues from six MM cases were available for the mutation and immunohistochemical studies presented here.

<u>Sequence Analysis</u>. PCR products encompassing all exons and intronic splice regions of *BAP1* were amplified for sequencing. Primer pairs are listed in Table 1. Primers consisted of M13-F and M13-R sequences incorporated at the 5' end to facilitate sequencing. PCR products were gel purified and sequenced using M13-For (GTAAAACGACGGCCAGT) and M13-Rev (CAGGAAACAGCTATGAC) primers. Primers for *TP53*, *CDKN2A* and *BARD1* are also shown in Table 1.

Immunohistochemistry. Immunohistochemical detection of BAP1 in FFPE tumor tissues was performed using a BAP1 antibody (C4, from Santa Cruz Biotechnology, Santa Cruz, CA), as previously described (15).

<u>Chromosome Microarray Analysis (CMA)</u>. CMA was performed using Affymetrix Oncoscan arrays. Total genomic DNA from each test sample was digested with *Nspl* restriction enzyme and ligated to adapters that recognize cohesive 4-basepair (bp) overhangs. A generic primer that recognizes the adapter sequence was then used to amplify the adapter-ligated DNA fragments. Amplification products were purified using magnetic beads, fragmented, biotin-labeled, and hybridized to arrays according to the manufacturer's recommendations. The hybridized array was then washed and scanned with a GeneChip Scanner 3000 7G. Intensities of probe hybridization were analyzed by using Affymetrix's GeneChip Command Console, and

copy number and genotyping analyses were performed using Affymetrix Chromosome Analysis Suite software with default settings.

Results

To ascertain the potential involvement of a *BAP1* mutation, Sanger sequencing was performed on samples from family members III-1, III-2, III-5, and III-7. No mutations were identified. We also sequenced the *CDKN2A* gene in one specimen (III-5) to assess the possibility of a germline point mutation. No mutation was identified, although we did detect a common polymorphism (designated rs11515) in the 3'UTR that does not appear to affect the gene in any obvious way. Additionally, no mutations were identified in *TP53* in four tumor tumor tissues from this family.

CMA studies of two MMs revealed multiple genomic imbalances in each tumor. No DNA copy number losses or loss of heterozygosity of chromosome 3, site of the *BAP1* locus (3p21), were observed in either tumor. However, overlapping losses of segments in 2q, 6q, 9p, 14q, 15q and 22q were identified (Fig. 2). These and other variable alterations are summarized in Table 3. Sequence analysis of the BRCA1-associated ring domain 1 gene, *BARD1*, located at 2q35 — within the region of overlapping deletions in 2q — revealed no mutation in this gene in pleural fluid cells from case III-05.

In three tumors (cases III-2, III-5, and III-6), BAP1 immunohistochemistry showed nuclear staining (Fig. 3A; III-2 not shown). The other three tumors tested (III-1, III-7 and III-17) showed loss of BAP1 nuclear staining (Fig. 3B; III-7 not shown). Cytoplasmic staining for BAP1 was observed in four tumors, two in association with nuclear positivity (III-5, III-6; Fig. 3A) and two in tumors lacking nuclear staining (III-1, III-7; Fig. 3B; III-7 not shown).

Discussion

Recent studies have revealed germline mutations of *BAP1* in familial MM (3-7). In the family presented here, no evidence for an inherited *BAP1* mutation was identified, although loss of nuclear BAP1 staining was observed in 3 (III-1, III-7 and III-17) of 6 MMs tested, suggesting that somatic genetic inactivation of *BAP1* occurred in a subset of tumors. Thus, while sequencing of *BAP1* in MMs from individuals III-1 and III-7 did not reveal any mutation, loss of nuclear BAP1 staining in these two samples may have occurred via large somatic deletions of the gene, which would not be identified by *BAP1* sequencing. Alternatively, somatic epigenetic silencing of *BAP1* may have occurred in these cases.

The high incidence of MM in this family occurred within one generation and did not appear to be transmitted vertically. However, the presence of other cancers in generation II leaves open the possibility of vertical transmission of a cancer susceptibility locus or loci. The family is known to have exposure to asbestos in recent generations, which presumably accounts for the MM clustering among blood-related relatives. By interviewing individual III-17, it emerged that she and her cousin (III-15) during their childhood frequented with assiduity the proband's home (III-2), whereas individuals III-14 and III-16 did not. The occurrence of two pleural cancer (highly suspicious of MM) in subjects blood-unrelated between them (II-3, proband's mother and II-8, proband's aunt) highlights the possibility of shared domestic exposure, because they frequented the same home. Nevertheless, the aggregation of MM in generation III and the finding of lung cancer (II-5), liver cancer (II-6) and pleural cancer (II-8) in generation II in subjects blood-related to the proband is very striking and suggests the involvement of one or more unknown genetic factors.

Since germline *BAP1* mutations have been shown to be involved in a tumor syndrome consisting of not just MM but also other tumor types such as cutaneous melanoma, and given that germline mutations of *CDKN2A* mutations have been identified in some families with a high incidence of cutaneous melanoma (20), sequencing of *CDKN2A* was performed in one case (III-

5) to determine whether a germline CDKN2A mutation might be responsible for the high incidence of MM in this family. The identified polymorphism in CDKN2A is designated by the Single Nucleotide Polymorphism Database (dbSNP) as rs11515. According to information provided in the 1000 Genomes Project, this minor allele occurs with a frequency of 11.5% in the general population. Given the high frequency of this allele, it is unlikely that this variant has a role in MM susceptibility observed in the family presented here. Also, a literature search was performed, the terms 'rs11515' 'cancer' using and (http://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=rs11515++cancer), and nearly all the published work indicates that this polymorphism does not increase a person's risk for any type of cancer. Since somatic mutations of TP53 occur in ~15% of MMs (21), and germline mutation of TP53 predisposes to a variety of cancers in patients with Li-Fraumeni Syndrome, we also searched for mutations in this gene in MMs from four members of the family reported here. No point mutations in *TP53* were observed.

In summary, an inherited *BAP1* mutation does not appear to be involved in the high incidence of MM in the family reported here. Since MM does not appear to be transmitted vertically from one generation to the next, it appears likely that domestic asbestos exposure is the predominant cause of MM in this extended family. However, it is still possible that another susceptibility locus may contribute to the high incidence of MM and other pleural and lung cancers seen in this family. Experimental evidence with knockout mouse models demonstrate that heterozygous germline mutations of tumor suppressor genes such as *Cdkn2a* and *Bap1* are more prone to the development of asbestos-induced MM than genetically normal (wild-type) littermates, but given a sufficient amount of exposure to these carcinogenic fibers, even wild-type mice will develop MM (22, 23). Given that our proband's immediate family experienced certain asbestos exposure in a domestic setting, exposure alone might have been sufficient to cause a high incidence of MM. Notably, however, the proportion of asbestos-exposed individuals who develop MM, even among those who have been heavily exposed

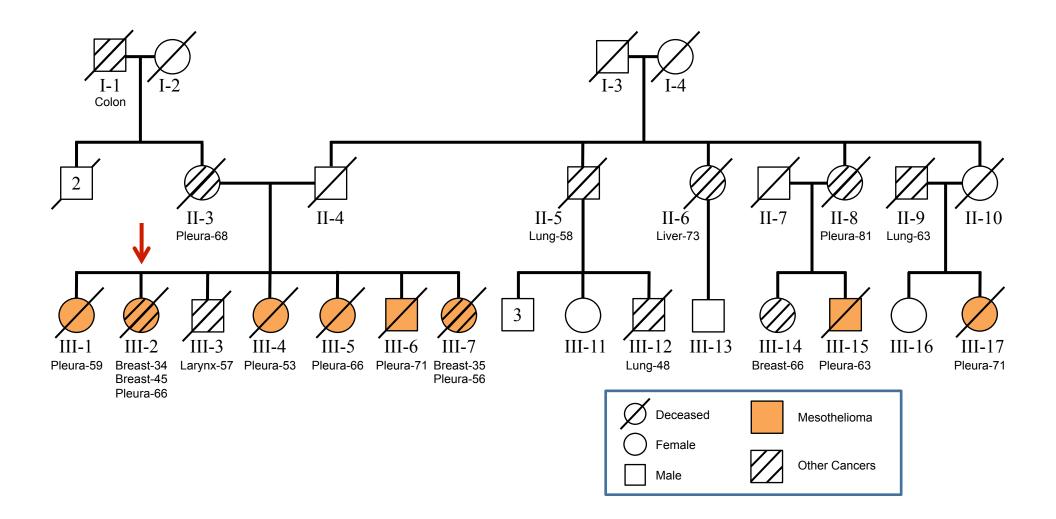
occupationally, generally is relatively small. While familial risk for MM has not yet been fully determined to date, an increased risk has been reported among blood relatives in cohorts wherein estimates of asbestos exposure levels for families of workers are known (24). Thus, we speculate that both asbestos and genetic factors have played a role in the high rate of MM and pleural/lung cancers seen in the family presented here.

References

- Ascoli V, Cavone D, Merler E, et al. Mesothelioma in blood related subjects: report of 11 clusters among 1954 Italy cases and review of the literature. Am J Ind Med 2007;50:357-369.
- 2. Ascoli V, Romeo E, Carnovale Scalzo C, et al. Familial malignant mesothelioma: a population-based study in central Italy (1980-2012). Cancer Epidemiol 2014;38:273-278.
- 3. Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 2011;43:1022-1025.
- 4. Abdel-Rahman MH, Pilarski R, Cebulla CM, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 2011;48:856-859.
- Betti M, Casalone E, Ferrante D, et al. Inference on germline BAP1 mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area. Genes Chromosomes Cancer 2015;54:51-62.
- 6. Cheung M, Talarchek J, Schindeler K, et al. Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet 2013;206:206-210.
- 7. Wiesner T, Fried I, Ulz P, et al. Toward an improved definition of the tumor spectrum associated with BAP1 germline mutations. J Clin Oncol 2012;30:e337-340.
- 8. de la Fouchardiere A, Cabaret O, Savin L, et al. Germline BAP1 mutations predispose also to multiple basal cell carcinomas. Clin Genet 2014.
- 9. Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010;330:1410-1413.
- 10. Hoiom V, Edsgard D, Helgadottir H, et al. Hereditary uveal melanoma: A report of a germline mutation in BAP1. Genes Chromosomes Cancer 2013;52:378-384.
- 11. Njauw CN, Kim I, Piris A, et al. Germline BAP1 inactivation is preferentially associated with

- metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One 2012;7:e35295.
- 12. Popova T, Hebert L, Jacquemin V, et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet 2013;92:974-980.
- 13. Wadt K, Choi J, Chung JY, et al. A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res 2012;25:815-818.
- 14. Wiesner T, Obenauf AC, Murali R, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 2011;43:1018-1021.
- 15. Bott M, Brevet M, Taylor BS, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 2011;43:668-672.
- 16. Yoshikawa Y, Sato A, Tsujimura T, et al. Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci 2012;103:868-874.
- 17. Ascoli V, Scalzo CC, Bruno C, et al. Familial pleural malignant mesothelioma: clustering in three sisters and one cousin. Cancer Lett 1998;130:203-207.
- 18. Ascoli V, Aalto Y, Carnovale-Scalzo C, et al. DNA copy number changes in familial malignant mesothelioma. Cancer Genet Cytogenet 2001;127:80-82.
- 19. Murthy SS, Testa JR. Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J Cell Physiol 1999;180:150-157.
- 20. Hansson J. Familial cutaneous melanoma. Adv Exp Med Biol 2010;685:134-145.
- 21. Altomare DA, Vaslet CA, Skele KL, et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res 2005;65:8090-8095.
- 22. Altomare DA, Menges CW, Xu J, et al. Losses of both products of the Cdkn2a/Arf locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis. PLoS One 2011;6:e18828.
- 23. Xu J, Kadariya Y, Cheung M, et al. Germline mutation of Bap1 accelerates development of

asbestos-induced malignant mesothelioma. Cancer Res 2014;74:4388-4397.


24. de Klerk N, Alfonso H, Olsen N, et al. Familial aggregation of malignant mesothelioma in former workers and residents of Wittenoom, Western Australia. Int J Cancer 2013;132:1423-1428.

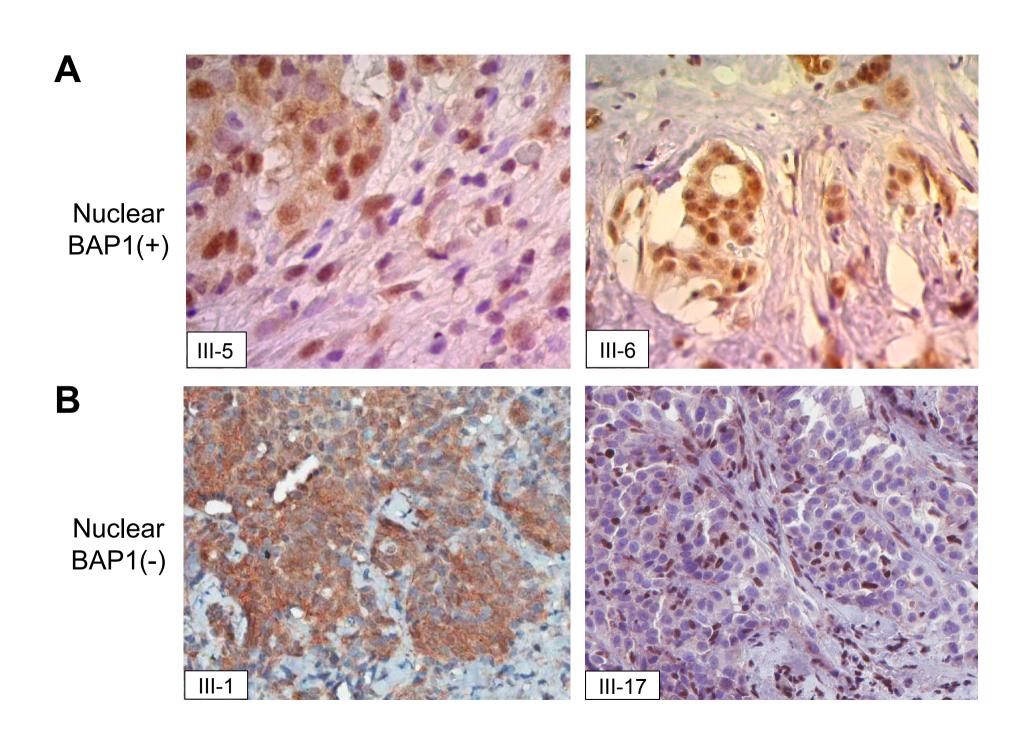

Figure Legends

Figure 1. Pedigree showing multiple family members with pleural malignant mesothelioma (MM) in first-degree (6 cases) and third-degree (2 cases) relatives of the proband (arrow) as well as additional cancers in relatives of both paternal and maternal lines. Other malignancies involved the pleura (II-3 and II-8), larynx (III-3), lung (II-5, II-9, and III-12), breast (III-14), liver (II-6), and colon (I-1). Breast cancer also occurred in two MM patients (III-2, III-7) at early ages.

Figure 2. BAP1 immunostaining of MM cells. A) BAP1 nuclear positive staining in cases III-5 and III-6. B) Lack of BAP1 nuclear staining in MM cells from cases III-1 and III-17.

Note cytoplasmic immunostaining in MM cells associated either with BAP1 nuclear positivity (III-5 and III-6 in A) or negativity (III-1 in B); note BAP1 nuclear staining in normal stromal cells and lymphocytes (III-17 in B).

Table 1

BAP1 Exons	Forward primer	Reverse Primer
1	GTAAAACGACGGCCAGTGAGCCCAGAGGCGGAGCAG	CAGGAAACAGCTATGACGTCAGGCAGGCGCGTC
2	GTAAAACGACGCCAGTGACGCCTGCCTGAC	CAGGAAACAGCTATGACCTTGACACCTGCGATGAGGAA
3	GTAAAACGACGCCAGTCTCACTCATCAGGGGCTGTC	CAGGAAACAGCTATGACCAGCACTCTGGGTGTAAGGG
4	GTAAAACGACGCCAGTAGTGATGACGCAGTGCAAAG	CAGGAAACAGCTATGACCTCCATTTCCACTTCCCAAG
5	GTAAAACGACGCCAGTGAGGGGTGCTGTGTATGGG	CAGGAAACAGCTATGACCTGTGAGCCAGGATGAAGGC
6	GTAAAACGACGGCCAGTTGTGTTCCTTCCGATTCCTGG	CAGGAAACAGCTATGACAAACAGAGTCAGGGCCCAAAA
7	GTAAAACGACGCCAGTGGTGGGAGTAGGGGGAGTATC	CAGGAAACAGCTATGACGGTAGGCAGAGACACCCAAC
8	GTAAAACGACGGCCAGTCAGGGTTTCCTTCTCGCTGA	CAGGAAACAGCTATGACCCCAAAGTAGGTACAGCTCCAG
9	GTAAAACGACGGCCAGTCCTGCCAGGATATCTGCCTC	CAGGAAACAGCTATGACTCAGAGACAAATGCTGTGGG
10	GTAAAACGACGGCCAGTAGGTCCTCAGCCCTTAGCTATT	CAGGAAACAGCTATGACTCAGACATTAGCGGGTGGCTC
11	GTAAAACGACGCCAGTGGAGGTCCTGCCTGTGTTC	CAGGAAACAGCTATGACTCAAGTAGAGAATCCTGCAAGGG
12	GTAAAACGACGCCAGTCCGAGCACCTTGTTTGTA	CAGGAAACAGCTATGACGGGATCCGAAGCACCTAGAAC
13a	GTAAAACGACGGCCAGTCGTTCCCTTGCTTCACATCTTCT	CAGGAAACAGCTATGACCCGCTGCTAGTCTTGATGGA
13b	GTAAAACGACGGCCAGTTGGCTGAGAAGCTCAAAGAGTC	CAGGAAACAGCTATGACCGCGTCGGGTTGGCTG
13c	GTAAAACGACGGCCAGTAGTACAGACACGGCCTCTGA	CAGGAAACAGCTATGACGGTTGTAGCGTATGCAGTCAAC
13d	GTAAAACGACGGCCAGTCCCACATCTCCAAGGTGCTT	CAGGAAACAGCTATGACCCTCCTGGGTGCACCAA
14	GTAAAACGACGGCCAGTAAAGTGTCCTGCACTCTGATGATT	CAGGAAACAGCTATGACGCCTTACCCTCTGCCAGGATTA
15	GTAAAACGACGCCAGTGCATGGACTCGCTGCTCATC	CAGGAAACAGCTATGACTGGGTCCTTCTCTGGTCATCAA
16	GTAAAACGACGGCCAGTTCTGGCAAGATTGGCTCCAG	CAGGAAACAGCTATGACCTCAGCAGGGCATTCCAGTTA
17	GTAAAACGACGCCAGTCATGAGAGCCTCAGCTCCT	CAGGAAACAGCTATGACGCAAGAGTGGGCTGCAGAG
17	GTAAAACGACGGCCAGTCATGAGAGCCTCAGCTCCT	CAGGAAACAGCTATGACGCAAGAGTGGGCTGCAGAG
CDKN2A Exons	Forward primer	Reverse Primer
1beta	GTAAAACGACGGCCAGTGCGCGCTCAGGGAAGG	CAGGAAACAGCTATGACACAAAACAAGTGCCGAATGC
1alpha	GTAAAACGACGCCAGTGAGCGCGGCTGGGAG	CAGGAAACAGCTATGACCAGAGTCGCCCGCCATC
2	GTAAAACGACGGCCAGTTTAGACACCTGGGGCTTGTG	CAGGAAACAGCTATGACTGGAAGCTCTCAGGGTACAA
3	GTAAAACGACGGCCAGTTTTCAATGCCGGTAGGGACG	CAGGAAACAGCTATGACAAACGATGCTGTCTTCCATGC
TD50 F		
TP53 Exons	Forward primer	Reverse Primer
1 2	GTAAAACGACGGCCAGTGGCGGATTACTTGCCCTTACTT	CAGGAAACAGCTATGACGCCCGTGACTCCAGAGAGGAC
3	GTAAAACGACGGCCAGTAGGGTTGGAAGTGTCTCAT GTAAAACGACGGCCAGTCCTGGTCCTCTGACTGCTCTTTT	CAGGAAACAGCTATGACGGGACTGTAGATGGGTGAA CAGGAAACAGCTATGACGAAGTCTCATGGAAGCCAGCC
	GTAAAACGACGGCCAGTCCTGGTCCTCTGACTGCTCTTTT	CAGGAAACAGCTATGACGAAGTCTCATGGAAGCCAGCC
4a 4b	GTAAAACGACGGCCAGTTAAATTAGCCAGGCATGGTG	CAGGAAACAGCTATGACGTGGAATCAACCCACAGC
4b 5	GTAAAACGACGGCCAGTTCACTTGTGCCCTGACTTTCAA	CAGGAAACAGCTATGACCAGTGAGGAATCAGAGGCCTG
6	GTAAAACGACGGCCAGTTTGCCACAGGTCTCCCCA	CAGGAAACAGCTATGACGGCACACCACCCTTAACCCCTC
7	GTAAAACGACGGCCAGTGATTTCCTTACTGCCTCTTGCTTCT	CAGGAAACAGCTATGACAGTGAATCTGAGGCATAACTGCAC
8	GTAAAACGACGGCCAGTTGCAGTTATGCCTCAGATTCACTT	CAGGAAACAGCTATGACAGTGAATCTGAGGCATAACTGCAC
9	GTAAAACGACGGCCAGTGGCAGTGATGCCTCAAAGA	CAGGAAACAGCTATGACTCAGTCTTAGACTCGAAACTTTCGA
10	GTAAAACGACGGCCAGTCAATTGTAACTTGAACCATC	CAGGAAACAGCTATGACGCAGGCTAGGCTAAGCTATG
11	GTAAAACGACGGCCAGTGTGTGGCCACCATCTTG	CAGGAAACAGCTATGACCGAAGCAAATGGAAGTCCTAT
11	OTAAAAOOAOOOOAOTOTO	UNUUAANUUTATUANUUAANTUUAAUTUUTU
BARD1 Exons	Forward primer	Reverse Primer
1	GTAAAACGACGGCCAGTGGAAGAGCTTGGCCGGTTTC	CAGGAAACAGCTATGACTACTATATCCCCCGGCAGGT
2	GTAAAACGACGGCCAGTCCAGGGAGTAACAGCCTTTCA	CAGGAAACAGCTATGACACAATAGGTTACTTTGCAGACTTTG
3	GTAAAACGACGGCCAGTCCTCTGCTCCATTTATTTCTGTTCA	CAGGAAACAGCTATGACCGTATTCCAGAACTCCAGATAGAT
4a	GTAAAACGACGGCCAGTCACACTCTAGGAGCTGAGAAAGAA	CAGGAAACAGCTATGACTCCTCTTTGGAGTCAAATTCACC
4b	GTAAAACGACGGCCAGTAGGGCTAAAAAGGCTTCTGCAA	CAGGAAACAGCTATGACTGAGGGCACCGTTTGCTTA
4c	GTAAAACGACGGCCAGTAATGGAAAACGTGGCCATCAC	CAGGAAACAGCTATGACTCTGGTTCAGAGGAAGTATCATGT
5	GTAAAACGACGGCCAGTACAGTAGCCTTAAGAGAAAACGA	CAGGAAACAGCTATGACAGAGTATATGTGGCAGAGGATGA
6	GTAAAACGACGCCAGTAATTTACTGCCTGACGTTTACATT	CAGGAAACAGCTATGACAAGGGCATGAAGGCTGATTATGA
7	GTAAAACGACGCCAGTTGAGTTCAGCAGCTTTTGATTCTA	CAGGAAACAGCTATGACTGTAAGCAATTGGTCAAATGGAA
8	GTAAAACGACGGCCAGTGGTTCTGGGTGTAGATTCAATGG	CAGGAAACAGCTATGACGTATACAGCCATCTCCCAATGGT
9	GTAAAACGACGGCCAGTATTGATGGCCAGGTTAGAGAACT	CAGGAAACAGCTATGACCAAAATGCAGTGACTAACCAGAGG
10	GTAAAACGACGGCCAGTCTGCCATGAAGAAGAAAAACCACT	CAGGAAACAGCTATGACACTGCTCATCGTGATCATCTTTC
11a	GTAAAACGACGGCCAGTTCTGAAATGCTTCTCCTCCAAATG	CAGGAAACAGCTATGACGGAAGCAACTCAAAGGACATCAC
11b	GTAAAACGACGGCCAGTCATACCATGCGAGACCCGAT	CAGGAAACAGCTATGACTGACTGGGCTCTCACAAACC

Table 2. Histopathological and genetic findings in six family members with MM.

Case	Histology	Age at dx.	BAP1 nuclear staining	BAP1 tumor sequencing status	CDKN2A sequencing status	Chromosome Microarray Losses§	Chromosome Microarray Gains§
III-1	Epithelial	59	negative	No mutation	Not done	X, 2q, 6q13-qter, 8pter-q12, 9p, 9q, 14, 15q11-q21.1, 22	6pter-q13, 8q12-q24, 15q21.1-qter
III-2	Sarcomatoid (desmoplastic)	66	positive	No mutation	Not done	Not done	Not done
III-5	Mixed	66	positive	No mutation	Polymorphism 500C>G in 3'UTR	1p, 1p, 2q, 4, 6q, 9p, 10q, 11p, 14, 15q11- q21.1, 18p, 20p, 22	15q21.1-qter
III-6	Epithelial	71	positive	Not done	Not done	Not done	Not done
III-7	Epithelial	56	negative	No mutation	Not done	Not done	Not done
III-17	Epithelial	71	negative	Not done	Not done	Not done	Not done