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Abstract

We report a family with domestic exposure to asbestos and multiple cancers, including eight

pleural malignant mesotheliomas and several other lung/pleural tumors.  DNA sequence

analysis revealed no evidence for an inherited mutation of BAP1. Sequence  analysis of other

potentially relevant genes, including TP53, CDKN2A and BARD1, also revealed no mutations.

DNA microarray analysis of two mesotheliomas revealed multiple genomic imbalances including

consistent losses of overlappping segments in 2q, 6q, 9p, 14q, 15q and 22q, but no losses of

chromosome 3 harboring the BAP1 locus.  However, immunohistochemistry demonstrated loss

of nuclear BAP1 staining in 3 of 6 mesotheliomas tested, suggesting that somatic alterations of

BAP1 occurred in a subset of tumors from this family. Since mesothelioma could be confirmed

in only a single generation, domestic exposure to asbestos may be the predominant cause of

mesothelioma in this family. Given the existence of unspecified malignant pleural tumors and

lung cancers in a prior generation, the possibility that some other tumor susceptibility or modifier

gene(s) may contribute to the high incidence of mesothelioma in this family is discussed.

Because the incidence of mesothelioma in this family is higher than expected even in heavily

exposed asbestos workers, we conclude that both asbestos and genetic factors have played a

role in the high rate of mesothelioma and potentially other pleural/lung cancers seen in this

family.



Introduction

Malignant mesothelioma (MM) is an uncommon cancer associated with asbestos exposure.

Familial clustering in close relatives has been described in multiple reports and cannot be

explained by chance alone (1).  In addition to shared asbestos exposures, MM clustering in

some families may suggest the contribution of inherited genes (low-penetrance alleles) in the

development of this malignancy.  A genetic factor predisposing to MM was recently discovered,

namely germline mutation of the BAP1 (BRCA1-associated protein 1) gene in two families with

a high incidence of MM and only modest exposure to asbestos (2, 3).  The association of

germline BAP1 mutations with familial MM has been confirmed in a series of recent reports (4-

7).  Germline BAP1 mutations have also been repeatedly associated with other tumor types,

including uveal melanomas, cutaneous melanomas, benign melanocytic tumors, kidney

cancers, and basal cell carcinomas (3-14).  Somatic mutations and/or deletions have been

described in MMs of both individuals with germline BAP1 mutations and in sporadic cases, i.e.,

lacking a germline mutation (3, 15, 16).  Based on these findings, we decided to analyze the

BAP1 status in a family with many cases of pleural MM and asbestos exposure.

Materials and methods

Family History and Patient Samples. Over the past 18 years, since the identification of the

index patient (III-2) in 1996 and the description of four MM cases (17), we have continued to

follow this Italian family with multiple cases of MM and other malignancies (Fig. 1).  Metaphase-

based comparative genomic hybridization (CGH) analysis on tumor samples uncovered DNA

losses involving 1p, 6q, 9p, 13q, and 14q (18), each of which is a chromosomal arm that is

commonly lost in sporadic MM (19). An update of the history of this extended family was

published in 2014 (2). Between 1987 and 2012, there were six women (mean age 62 yrs) and

two men (mean age 67 yrs) who developed pleural MM in generation III. In addition to the eight



confirmed MMs, two female family members in a prior generation (II-3 and II-8) had pleural

cancers (highly suspicious of MM but unconfirmed), without radiological evidence of a primary

tumor in the lung or elsewhere. The kindred had exposure to asbestos in the domestic setting;

we demonstrated the presence of asbestos in lung tissue of two subjects, using transmission

electron microscopy (III-5: crocidolite, elevated fiber burden and asbestos bodies) and optical

microscopy (III-2: asbestos bodies). All MM patients in this family are deceased.  Formalin-

fixed, paraffin-embedded (FFPE) tissues from six MM cases were available for the mutation and

immunohistochemical studies presented here.

Sequence Analysis.  PCR products encompassing all exons and intronic splice regions of BAP1

were amplified for sequencing. Primer pairs are listed in Table 1.  Primers consisted of M13-F

and M13-R sequences incorporated at the 5’ end to facilitate sequencing. PCR products were

gel purified and sequenced using M13-For (GTAAAACGACGGCCAGT) and M13-Rev

(CAGGAAACAGCTATGAC) primers. Primers for TP53, CDKN2A and BARD1 are also  shown

in Table 1.

Immunohistochemistry.  Immunohistochemical detection of BAP1 in FFPE tumor tissues was

performed using a BAP1 antibody (C4, from Santa Cruz Biotechnology, Santa Cruz, CA), as

previously described (15).

Chromosome Microarray Analysis (CMA).  CMA was performed using Affymetrix Oncoscan

arrays.  Total genomic DNA from each test sample was digested with NspI restriction enzyme

and ligated to adapters that recognize cohesive 4-basepair (bp) overhangs.  A generic primer

that recognizes the adapter sequence was then used to amplify the adapter-ligated DNA

fragments.  Amplification products were purified using magnetic beads, fragmented, biotin-

labeled, and hybridized to arrays according to the manufacturer’s recommendations.  The

hybridized array was then washed and scanned with a GeneChip Scanner 3000 7G.  Intensities

of probe hybridization were analyzed by using Affymetrix’s GeneChip Command Console, and



copy number and genotyping analyses were performed using Affymetrix Chromosome Analysis

Suite software with default settings.

Results

To ascertain the potential involvement of a BAP1 mutation, Sanger sequencing was performed

on samples from family members III-1, III-2, III-5, and III-7.  No mutations were identified. We

also sequenced the CDKN2A gene in one specimen (III-5) to assess the possibility of a

germline point mutation.  No mutation was identified, although we did detect a common

polymorphism (designated rs11515) in the 3’UTR that does not appear to affect the gene in any

obvious way. Additionally, no mutations were identified in TP53 in four tumor tumor tissues

from this family.

CMA studies of two MMs revealed multiple genomic imbalances in each tumor.  No DNA copy

number losses or loss of heterozygosity of chromosome 3, site of the BAP1 locus (3p21), were

observed in either  tumor.  However, overlapping losses of segments in 2q, 6q, 9p, 14q, 15q

and 22q were identified (Fig. 2).  These and other  variable alterations are summarized in Table

3. Sequence analysis of the BRCA1-associated ring domain 1 gene, BARD1, located at 2q35

 within the region of overlapping deletions in 2q revealed no mutation in this gene in pleural

fluid cells from case III-05.

In three tumors (cases III-2, III-5, and III-6), BAP1 immunohistochemistry showed nuclear

staining (Fig. 3A; III-2 not shown). The other three tumors tested (III-1, III-7 and III-17) showed

loss of BAP1 nuclear staining (Fig. 3B; III-7 not shown). Cytoplasmic staining for BAP1 was

observed in four tumors, two in association with nuclear positivity (III-5, III-6; Fig. 3A) and two in

tumors lacking nuclear staining (III-1, III-7; Fig. 3B; III-7 not shown).



Discussion

Recent studies have revealed germline mutations of BAP1 in familial MM (3-7).  In the family

presented here, no evidence for an inherited BAP1 mutation was identified, although loss of

nuclear BAP1 staining was observed in 3 (III-1, III-7 and III-17) of 6 MMs tested, suggesting that

somatic genetic inactivation of BAP1 occurred in a subset of tumors.  Thus, while sequencing of

BAP1 in MMs from individuals III-1 and III-7 did not reveal any mutation, loss of nuclear BAP1

staining in these two samples may have occurred via large somatic deletions of the gene, which

would not be identified by BAP1 sequencing.  Alternatively, somatic epigenetic silencing of

BAP1 may have occurred in these cases.

The high incidence of MM in this family occurred within one generation and did not appear to be

transmitted vertically.  However, the presence of other cancers in generation II leaves open the

possibility of vertical transmission of a cancer susceptibility locus or loci.  The family is known to

have exposure to asbestos in recent generations, which presumably accounts for the MM

clustering among blood-related relatives. By interviewing individual III-17, it emerged that she

and her cousin (III-15) during their childhood frequented with assiduity the proband’s home (III-

2), whereas individuals III-14 and III-16 did not. The occurrence of two pleural cancer (highly

suspicious of MM) in subjects blood-unrelated between them (II-3, proband’s mother and II-8,

proband’s aunt) highlights the possibility of shared domestic exposure, because they frequented

the same home. Nevertheless, the aggregation of MM in generation III and the finding of lung

cancer (II-5), liver cancer (II-6) and pleural cancer (II-8) in generation II in subjects blood-related

to the proband is very striking and suggests the involvement of one or more unknown genetic

factors.

Since germline BAP1 mutations have been shown to be involved in a tumor syndrome

consisting of not just MM but also other tumor types such as cutaneous melanoma, and given

that germline mutations of CDKN2A mutations have been identified in some families with a high

incidence of cutaneous melanoma (20), sequencing of CDKN2A was performed in one case (III-



5) to determine whether a germline CDKN2A mutation might be responsible for the high

incidence of MM in this family.  The identified polymorphism in CDKN2A is designated by the

Single Nucleotide Polymorphism Database (dbSNP) as rs11515.  According to information

provided in the 1000 Genomes Project, this minor allele occurs with a frequency of 11.5% in the

general population.  Given the high frequency of this allele, it is unlikely that this variant has a

role in MM susceptibility observed in the family presented here.  Also, a literature search was

performed, using the terms ‘rs11515’ and ‘cancer’

(http://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=rs11515++cancer), and nearly all the

published work indicates that this polymorphism does not increase a person’s risk for any type

of cancer. Since somatic mutations of TP53 occur in ~15% of MMs (21), and germline mutation

of TP53 predisposes to a variety of cancers in patients with Li-Fraumeni Syndrome, we also

searched for mutations in this gene in MMs from four members of the family reported here.  No

point mutations in TP53 were observed.

In summary, an inherited BAP1 mutation does not appear to be involved in the high

incidence of MM in the family reported here.  Since MM does not appear to be transmitted

vertically from one generation to the next, it appears likely that domestic asbestos exposure is

the predominant cause of MM in this extended family. However, it is still possible that another

susceptibility locus may contribute to the high incidence of MM and other pleural and lung

cancers seen in this family.  Experimental evidence with knockout mouse models demonstrate

that heterozygous germline mutations of tumor suppressor genes such as Cdkn2a and Bap1

are more prone to the development of asbestos-induced MM than genetically normal (wild-type)

littermates, but given a sufficient amount of exposure to these carcinogenic fibers, even wild-

type mice will develop MM (22, 23).  Given that our proband’s immediate family experienced

certain asbestos exposure in a domestic setting, exposure alone might have been sufficient to

cause a high incidence of MM.  Notably, however, the proportion of asbestos-exposed

individuals who develop MM, even among those who have been heavily exposed



occupationally, generally is relatively small.  While familial risk for MM has not yet been fully

determined to date, an increased risk has been reported among blood relatives in cohorts

wherein estimates of asbestos exposure levels for families of workers are known (24).  Thus, we

speculate that both asbestos and genetic factors have played a role in the high rate of MM and

pleural/lung cancers seen in the family presented here.
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Figure Legends

Figure 1. Pedigree showing multiple family members with pleural malignant mesothelioma

(MM) in first-degree (6 cases) and third-degree (2 cases) relatives of the proband (arrow) as

well as additional cancers in relatives of both paternal and maternal lines.  Other malignancies

involved the pleura (II-3 and II-8), larynx (III-3), lung (II-5, II-9, and III-12), breast (III-14), liver (II-

6), and colon (I-1).  Breast cancer also occurred in two MM patients (III-2, III-7) at early ages.

Figure 2. BAP1 immunostaining of MM cells.  A) BAP1 nuclear positive staining in cases III-5

and III-6. B) Lack of BAP1 nuclear staining in MM cells from cases III-1 and III-17.

Note cytoplasmic immunostaining in MM cells associated either with BAP1 nuclear positivity (III-

5 and III-6 in A) or negativity (III-1 in B); note BAP1 nuclear staining in normal stromal cells and

lymphocytes (III-17 in B).
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Table 1

BAP1 Exons Forward primer Reverse Primer
1 GTAAAACGACGGCCAGTGAGCCCAGAGGCGGAGCAG CAGGAAACAGCTATGACGTCAGGCAGGCGCGTC
2 GTAAAACGACGGCCAGTGACGCGCCTGCCTGAC CAGGAAACAGCTATGACCTTGACACCTGCGATGAGGAA
3 GTAAAACGACGGCCAGTCTCACTCATCAGGGGCTGTC CAGGAAACAGCTATGACCAGCACTCTGGGTGTAAGGG
4 GTAAAACGACGGCCAGTAGTGATGACGCAGTGCAAAG CAGGAAACAGCTATGACCTCCATTTCCACTTCCCAAG
5 GTAAAACGACGGCCAGTGAGGGGTGCTGTGTATGGG CAGGAAACAGCTATGACCTGTGAGCCAGGATGAAGGC
6 GTAAAACGACGGCCAGTTGTGTTCCTTCCGATTCCTGG CAGGAAACAGCTATGACAAACAGAGTCAGGGCCCAAAA
7 GTAAAACGACGGCCAGTGGTGGGAGTAGGGGGAGTATC CAGGAAACAGCTATGACGGTAGGCAGAGACACCCAAC
8 GTAAAACGACGGCCAGTCAGGGTTTCCTTCTCGCTGA CAGGAAACAGCTATGACCCCAAAGTAGGTACAGCTCCAG
9 GTAAAACGACGGCCAGTCCTGCCAGGATATCTGCCTC CAGGAAACAGCTATGACTCAGAGACAAATGCTGTGGG

10 GTAAAACGACGGCCAGTAGGTCCTCAGCCCTTAGCTATT CAGGAAACAGCTATGACTCAGACATTAGCGGGTGGCTC
11 GTAAAACGACGGCCAGTGGAGGTCCTGCCTGTGTTC CAGGAAACAGCTATGACTCAAGTAGAGAATCCTGCAAGGG
12 GTAAAACGACGGCCAGTCCGAGCAGCACTTGTTTGTA CAGGAAACAGCTATGACGGGATCCGAAGCACCTAGAAC

13a GTAAAACGACGGCCAGTCGTTCCCTTGCTTCACATCTTCT CAGGAAACAGCTATGACCCGCTGCTAGTCTTGATGGA
13b GTAAAACGACGGCCAGTTGGCTGAGAAGCTCAAAGAGTC CAGGAAACAGCTATGACCGCGTCGGGTTGGCTG
13c GTAAAACGACGGCCAGTAGTACAGACACGGCCTCTGA CAGGAAACAGCTATGACGGTTGTAGCGTATGCAGTCAAC
13d GTAAAACGACGGCCAGTCCCACATCTCCAAGGTGCTT CAGGAAACAGCTATGACCCTCCTGGGTGCACCAA
14 GTAAAACGACGGCCAGTAAAGTGTCCTGCACTCTGATGATT CAGGAAACAGCTATGACGCCTTACCCTCTGCCAGGATTA
15 GTAAAACGACGGCCAGTGCATGGACTCGCTGCTCATC CAGGAAACAGCTATGACTGGGTCCTTCTCTGGTCATCAA
16 GTAAAACGACGGCCAGTTCTGGCAAGATTGGCTCCAG CAGGAAACAGCTATGACCTCAGCAGGGCATTCCAGTTA
17 GTAAAACGACGGCCAGTCATGAGAGCCTCAGCTCCT CAGGAAACAGCTATGACGCAAGAGTGGGCTGCAGAG

CDKN2A  Exons Forward primer Reverse Primer
1beta GTAAAACGACGGCCAGTGCGCGCTCAGGGAAGG CAGGAAACAGCTATGACACAAAACAAGTGCCGAATGC
1alpha GTAAAACGACGGCCAGTGAGCGCGGCTGGGAG CAGGAAACAGCTATGACCAGAGTCGCCCGCCATC

2 GTAAAACGACGGCCAGTTTAGACACCTGGGGCTTGTG CAGGAAACAGCTATGACTGGAAGCTCTCAGGGTACAA
3 GTAAAACGACGGCCAGTTTTCAATGCCGGTAGGGACG CAGGAAACAGCTATGACAAACGATGCTGTCTTCCATGC

TP53  Exons Forward primer Reverse Primer
1 GTAAAACGACGGCCAGTGGCGGATTACTTGCCCTTACTT CAGGAAACAGCTATGACGCCCGTGACTCAGAGAGGAC
2 GTAAAACGACGGCCAGTAGGGTTGGAAGTGTCTCAT CAGGAAACAGCTATGACGGGACTGTAGATGGGTGAA
3 GTAAAACGACGGCCAGTCCTGGTCCTCTGACTGCTCTTTT CAGGAAACAGCTATGACGAAGTCTCATGGAAGCCAGCC

4a GTAAAACGACGGCCAGTAAATTAGCCAGGCATGGTG CAGGAAACAGCTATGACGTGGAATCAACCCACAGC
4b GTAAAACGACGGCCAGTTCACTTGTGCCCTGACTTTCAA CAGGAAACAGCTATGACCAGTGAGGAATCAGAGGCCTG
5 GTAAAACGACGGCCAGTGGTCCCCAGGCCTCTGATT CAGGAAACAGCTATGACGACAACCACCCTTAACCCCTC
6 GTAAAACGACGGCCAGTTTGCCACAGGTCTCCCCA CAGGAAACAGCTATGACGGGCACAGCAGGCCAG
7 GTAAAACGACGGCCAGTGATTTCCTTACTGCCTCTTGCTTCT CAGGAAACAGCTATGACAGTGAATCTGAGGCATAACTGCAC
8 GTAAAACGACGGCCAGTTGCAGTTATGCCTCAGATTCACTT CAGGAAACAGCTATGACTGAGTGTTAGACTGGAAACTTTCCA
9 GTAAAACGACGGCCAGTGGCAGTGATGCCTCAAAGA CAGGAAACAGCTATGACGCAGGCTAGGCTAAGCTATG

10 GTAAAACGACGGCCAGTCAATTGTAACTTGAACCATC CAGGAAACAGCTATGACGGATGAGAATGGAATCCTAT
11 GTAAAACGACGGCCAGTGTGTGGCCACCATCTTG CAGGAAACAGCTATGACCAAAGCAAATGGAAGTCCTG

BARD1  Exons Forward primer Reverse Primer
1  GTAAAACGACGGCCAGTGGAAGAGCTTGGCCGGTTTC  CAGGAAACAGCTATGACTACTATATCCCCCGGCAGGT
2  GTAAAACGACGGCCAGTCCAGGGAGTAACAGCCTTTCA  CAGGAAACAGCTATGACACAATAGGTTACTTTGCAGACTTTG
3  GTAAAACGACGGCCAGTCCTCTGCTCCATTTATTTCTGTTCA  CAGGAAACAGCTATGACCGTATTCCAGAACTCCAGATAGAT

4a  GTAAAACGACGGCCAGTCACACTCTAGGAGCTGAGAAAGAA  CAGGAAACAGCTATGACTCCTCTTTGGAGTCAAATTCACC
4b  GTAAAACGACGGCCAGTAGGGCTAAAAAGGCTTCTGCAA  CAGGAAACAGCTATGACTGAGGGCACCGTTTGCTTA
4c  GTAAAACGACGGCCAGTAATGGAAAACGTGGCCATCAC  CAGGAAACAGCTATGACTCTGGTTCAGAGGAAGTATCATGT
5  GTAAAACGACGGCCAGTACAGTAGCCTTAAGAGAAAACGA  CAGGAAACAGCTATGACAGAGTATATGTGGCAGAGGATGA
6  GTAAAACGACGGCCAGTAATTTACTGCCTGACGTTTACATT  CAGGAAACAGCTATGACAAGGGCATGAAGGCTGATTATGA
7  GTAAAACGACGGCCAGTTGAGTTCAGCAGCTTTTGATTCTA  CAGGAAACAGCTATGACTGTAAGCAATTGGTCAAATGGAA
8  GTAAAACGACGGCCAGTGGTTCTGGGTGTAGATTCAATGG  CAGGAAACAGCTATGACGTATACAGCCATCTCCCAATGGT
9  GTAAAACGACGGCCAGTATTGATGGCCAGGTTAGAGAACT  CAGGAAACAGCTATGACCAAAATGCAGTGACTAACCAGAGG

10  GTAAAACGACGGCCAGTCTGCCATGAAGAAGAAAAACCACT  CAGGAAACAGCTATGACACTGCTCATCGTGATCATCTTTC
11a  GTAAAACGACGGCCAGTTCTGAAATGCTTCTCCTCCAAATG  CAGGAAACAGCTATGACGGAAGCAACTCAAAGGACATCAC
11b  GTAAAACGACGGCCAGTCATACCATGCGAGACCCGAT  CAGGAAACAGCTATGACTGACTGGGCTCTCACAAACC



Table  2. Histopathological and genetic findings in six family members with MM.

Case Histology Age
at dx.

BAP1
nuclear
staining

BAP1 tumor
sequencing

status

CDKN2A
sequencing

status

Chromosome
Microarray

Losses§

Chromosome
Microarray

Gains§

III-1 Epithelial 59 negative No mutation Not done X, 2q, 6q13-qter, 8pter-q12, 9p, 9q, 14,
15q11-q21.1, 22

6pter-q13, 8q12-q24,
15q21.1-qter

III-2 Sarcomatoid
(desmoplastic) 66 positive No mutation Not done Not done Not done

III-5 Mixed 66 positive No mutation Polymorphism
500C>G in 3'UTR

1p, 1p, 2q, 4, 6q, 9p, 10q, 11p, 14, 15q11-
q21.1, 18p, 20p, 22 15q21.1-qter

III-6 Epithelial 71 positive Not done Not done Not done Not done

III-7 Epithelial 56 negative No mutation Not done Not done Not done

III-17 Epithelial 71 negative Not done Not done Not done Not done
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