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Abstract 

The aim of this paper is to provide a real time monitoring of the performances of microbial 

fuel cells (MFCs) employing two different anode configurations with a mixed consortia 

coming from seawater: a planar structure, constituted by carbon felt, and an innovative 3D-

packed structure, constituted by graphitized Berl saddles. A detailed exam of the dynamical 

behavior of the two cells is presented in order to analyze the differences between planar 

and 3D-packed structures. Both the bacteria communities composition and MFCs electrical 

properties have been monitored over 31 days. The effects on the cell performances of the 

start-up phase, of the feeding operation and of an external applied resistance are discussed. 

The energy losses inside the MFCs along time, before and after refill of chemical solutions 

have been obtained by means of electrochemical impedance spectroscopy. Results show 

that after 10 days of operations the total internal resistances decreased of about 30% and 
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50% for carbon felt and graphitized saddles anodes, respectively. The reduction of internal 

resistances is in agreement with improved performance in terms of power density. 

Moreover, for both MFCs the refill operation leads to a reduction of the impedances, in 

particular the anodic resistances decreases while the ohmic and the cathodic ones are quite 

unaffected. In addition, the energy production of the two devices was studied applying 

resistive loads for 10 days. The saddle-MFC presents more stable voltage values if compared 

to the other cell, implying a larger energy production over time. Finally, Quantitative real-

time Polymerase Chain Reaction analysis, performed over the whole period of investigation 

on planktonic phase, reveals the presence of two typical electrogens bacteria, such as 

Geobacter and Shewanella. 

Keywords: Bioconversion; Biofilms; Bioprocess Monitoring; Packed Bed Bioreactors; 

Microbial Fuel Cell; Electrochemical Impedance Spectroscopy. 

1. Introduction 

A microbial fuel cell (MFC) is a bioelectrochemical system constituted by an anode and a 

cathode for the direct conversion of chemical energy into electricity by simultaneously 

treating organic waste. In the anode chamber, the decomposition of organic substrates by 

microbes via the respiration chain generates electrons (e-) and protons (H+) that are 

transferred to the cathode through an external electric circuit and a cation exchange 

membrane (CEM), respectively [1]. MFCs do not require traditional fuel supply, as common 

fuel cells; moreover they do not need to be recharged/replaced after exhaustion, as it 

happens for lithium ion batteries. However, due to theoretical and practical limitations, they 

are not yet suitable for high energy demands. Their optimal application is foreseen for 
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powering sensors and communication systems either in harsh environments or remote 

terrestrial areas [2–6]. 

Involving both electrochemical processes and microbiology aspects, the overall performance 

of an MFC depends on a variety of factors, such as materials design, bacteria involved and 

operative conditions [7–10]. A significant parameter that reflects the performances of 

MFCsis the internal resistance Rint [11–15] (including anode resistance, cathode resistance, 

electrolyte resistance, and membrane resistance), which limits the output power [1]. Its 

value depends on MFC design and operation parameters such as substrate concentration, 

pH, temperature and ionic strength of the electrolyte and, also, it varies during the microbial 

activities. Moreover, the internal resistance strongly depends on the intrinsic characteristics 

of the employed materials and it can be reduced by increasing the surface area of the anode 

[16], of the cathode [17] and of the membrane [18]. The identification of the factors limiting 

the conversion efficiency of an MFC requires to quantify the contribution of each 

component to the total internal resistance, taking into account the energy losses during the 

evolving of the process, that are mainly due to mass transfer, ohmic and activation losses 

[19–23]. Electrochemical Impedance Spectroscopy (EIS) has been proposed as a good tool 

for the comprehension of the dynamic evolution of the MFC system [24]. The final 

performance of an MFC is decisively related to the density of electrochemically active 

bacteria that can grow at the anode and by the rate of electron transfer from the bacteria to 

the electrode. For this reason the choice of the electrode materials, their configuration and 

operative conditions play a fundamental role in an MFC design. 

The electrodes must generally exhibit good electric conductivity, adequate chemical 

stability, high mechanical strength and possibly low cost. In addition, specific requirements 

are needed for the electrode in contact with bacteria: high surface roughness, excellent 
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biocompatibility, high surface area and good porosity, efficient electron transfer between 

bacteria and electrode surface [25]. Carbon-based materials are generally preferred because 

of their good biocompatibility, good chemical stability, high conductivity and relatively low 

cost [25–29]. Moreover three dimensional architectures offer advantages such as to 

improve porous electrode structures, to increase the surface area and to obtain better 

biofilm growth and substrate propagation conditions. Reticulated vitreous carbon or 

graphite felt [30] have been used in small mini-MFCs as efficient 3D-electrodes; open-pore 

carbon foam, employed both as anode and cathode, has exhibited good stability and fair 

robustness [31]; highly conductive brush anodes in graphite fibers have been largely 

employed in tubular, bottle and cube shaped reactors [32]. The coverage of stainless steel 

fiber nanofelts with carbon nanoparticles such as graphene, carbon nanotubes and 

activated carbon has shown to be an effective method for high performant anodes [33]. 

Open celled carbon scaffolds have been obtained by carbonizing the microcellular 

polyacrylonitrile (PAN) and PAN/graphite composites with supercritical CO2 as foaming 

agent [34] and hydroxylated and aminated polyaniline nanowire networks were synthesized 

and used as MFC anodes to enhance the electrical outputs [35]. Finally, more recently, in 

view of obtaining cost-effective and environmental friendly electrodes, natural and “green” 

nanostructured 3D materials have been suggested. They range from wood-based biochar 

made using forestry residue with pore size in the range 10-60 Å [36], to lightweight hollow 

fibers made by kapok plants [37] to the kenaf stems, a byproduct of the crop that via a 

simple carbonization procedure are used to obtain a conducting electrode with an ordered 

macroporous architecture [38]. It has however to be noted that for the majority of these 

novel electrodes [30–38] the time-dependent performances and the scaling-up possibilities 

of the production methods have not yet been reported. Moreover the comparison with 
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results obtainable using traditional planar electrodes is missing. So, further research is 

needed to confirm the effectiveness in view of future applications.  

Depending on their configuration, the MFCs electrodes can be divided in planar, packed 

structures or brush structures [32]. Examples of planar structures are: carbon paper and 

mesh, graphite plates or sheets and carbon cloth or felt, even if some materials, e.g. carbon 

felt or mesh have a higher specific surface area [26,28,39–41]. Packed-structures are 

becoming increasingly common in MFCs [13,42–45] since they provide high surface area 

available to bacteria. In fact, as for the biological filter for wastewater treatment, the anode 

chamber of the MFC can be filled with granular or irregular shaped packing scaffolds in 

order to have high concentration of microorganisms per unit of volume. 

The main challenge for MFC technology is to replace the energy-expensive aerobic 

wastewater treatment approach (such as activated sludge and aerobic biofilm processes) 

with low-energy consumption ones [46]. For biofilm reactors, such as fixed and fluidized 

beds reactors, plastic or ceramic materials fabricated in grains with different shapes and 

dimensions are often selected. However, the granular packing material must be conductive 

to be used in MFC (e.g. granular graphite and active carbon [47–49]). In order to make the 

complete bed conductive, the granules must be tightly packed next to each other, although 

dead zones for current collection may still exist after long term running [32]. To this end, 

packed granules are often used in MFCs experiments [50] even if the problem of biofouling 

can occur: granules are heavy and could clog [32]. 

In this work an original solution for packed carbon-based electrodes is employed [51], 

through the graphitization of the so-called Berl saddles. Berl saddles constitute a packed 

support for bacteria, traditionally used in immobilized bed reactor, either in anaerobic or 

aerobic conditions, where there is a presence of gas phase. They are often employed in 
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vacuum distillation, absorption and extraction because they provide high useable contact 

surface area (1150 m2/m3) with high void bed fraction (about 80%); moreover, they can 

sustain high temperatures (till 1100 °C), they are cheap and easily commercially available. 

These items are electrically insulating ceramic supports of length of about 6 mm with the 

shape of a saddle “without inside and outside faces” [52]; they can be made electrically 

conductive by a convenient graphitization procedure [43]. When graphitized Berl saddles 

are employed in the anode of MFC, where anaerobic conditions are present, the gas 

produced by bacteria metabolisms can easily migrate out of the system, due to the high bed 

void fraction, avoiding the increase of pressure in the anode chamber. In addition, Berl 

saddles can help to reduce biofouling and at the same time favor the growth of biofilm. 

The graphitized-Berl saddles have already been characterized from a structural point of 

view, with Saccaromyces cerevisiae and external electron mediator (methylene blue) [51]. 

The aim of this paper is to study the dynamics of an MFC system, comparing, over a period 

of 31 days, two different anode-configurations: a planar one (carbon felt) and a 3D-packed 

granular structure (graphitized Berl saddles). A mixed population coming from seawater 

(without the addition of external mediators) has been used. Marine water has been chosen 

as inoculum because is a complex high-conductivity, geochemical active ecosystem of major 

importance in the global carbon cycle [53]. The two MFCs were fed at fixed days, their 

voltages were online-monitored and their polarization curves were acquired at alternate 

days. After stabilization of the open circuit potential (about 21 days), external resistances 

were applied to the cells for the last 10 days of the test, and the energy production was 

measured. During the whole period of investigation, impedance spectroscopy (EIS) and real-

time quantitative Polymerase Chain Reaction (RT-qPCR) analyses were carried out. The 

obtained results are discussed in correlation with electrical performances of the MFCs, 
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focusing on the different behaviour of planar and 3D-packed structures. We demonstrate 

that the graphitized Berl saddles open a new possibility for designing cost-effective and 

easy-manufacturing anodes, very promising for large-scale practical applications. 

2. Experimental 

2.1 MFCs design and operation 

Two identical MFCs were designed: each one is based on two circular chambers, namely the 

anode and the cathode. Both compartments were made in Poly(methyl methacrylate) 

(PMMA) with internal diameter and thickness of 12 and 1.5 cm respectively (internal volume 

for each chamber ~ 170 mL) separated by a cation exchange membrane (CEM, CMI 7000, 

Membranes International Inc., Glen Rock, NJ, USA). A carbon felt (Soft felt SIGRATHERM 

GFA5, SGL Carbon, Germany) was used in one of the MFC as a planar anode electrode and 

assembled together with a graphite rod (diameter 5 mm, SGL Carbon, Germany) to ensure 

an effective current conduction capability. In the second MFC, carbon-coated Berl saddles 

were used to obtain a granular packing electrode, assembled together with a graphite rod in 

order to collect electrons. The procedure followed for obtaining the carbon-coated Berl 

saddles is described in paragraph 2.2, while a deep electrochemical and morphological 

characterization is reported in our recent work [51]. Both MFCs were inoculated in the 

anode chambers by sea water, previously enriched with following cultures (in five steps) in 

anaerobic conditions as described in the paragraph 2.3. A carbon sheet (Carolina, USA) 

joined with a graphite rod was used as cathode electrode in both MFCs. We performed the 

experiments at room temperature (24 ± 2 ºC). The first 21 days of tests have been 

conducted in Open Circuit condition, in order to have the adaptation of bacteria to the new 

conditions inside the MFC and to permit electrode colonization. After the start-up period, 
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MFCs operated under external resistance applied between anode and cathode chamber. 

Each MFC was running in semi-continuous mode (fed-batch) using a Syringe Pump (NE-1600 

Programmable Syringe Pump, USA) with Hydraulic Retention Time (HRT) of 6.5 days for each 

reactor, feeding a synthetic substrate at pH 7, with the following organic carbonaceous 

loading rate in g/L for a day: 1 C6H12O6, 1 CH3CO2Na and 1.25 peptone. The cathode 

compartment was filled by potassium ferricyanide (6.58 g/L) used as oxidant compound, 

and solution of mineral salts (8.2 g/L of Na2HPO4 and 5.2 g/L of NaH2PO4) was used as a 

buffer in both anode and cathode chamber. These reagents were dissolved in 75% v/v 

filtered sea water and 25% v/v distilled water. The mixing of the solutions at both anode and 

cathode chambers was obtained by recirculating anolyte and catholyte with a 500 mL 

reservoir by using multichannel peristaltic pumps at both anode and cathode chambers 

(Peri-Star Pro 4 and 8 channel, USA, respectively), with a flow rate of 30 mL/min. The 

schematic view and a picture of set-up are shown in Figure 1a and b, respectively. 

2.2 Preparation of the packed anode 

α-D-glucose was used to deposit a conductive carbon layer on the porcelain Berl saddles 

(Product cod. Z169013 Sigma Aldrich, Germany). The Berl saddles were firstly accurately 

cleaned in ultrasonic bath for 10 min at 1.8 kW using ethanol to remove pollutants from the 

surface and then dried in air at room temperature. Subsequently, the Berl saddles (250 g) 

were immersed in 200 mL of glucose solution (500 g/L) in distilled water under gently 

stirring conditions for 24 h. The Berl saddles were then separated by filtration from the 

glucose solution and caramelized at 185°C under vacuum for 24 h. The caramelized material 

was pyrolyzed at 800 °C under Argon flow (500 mL/min) in a horizontal tube furnace for 2 h 

(heating rate of 5 °C/min), and then let cooling down overnight. 
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2.3 Bacterial growth conditions 

The inoculum chosen come from seawater (Arma di Taggia (IM), Italy). It has been taken 

from the interface between water and atmosphere and it contains high number of diverse 

planktonic populations, where extracellular enzymes produced by the resident population 

degrade organic matter naturally present in seawater, transferring electrons. The seawater 

sample was inoculated into anodic chamber of MFC after an enrichment procedure. In fact, 

the fresh seawater sample, before the use inside the anode as inoculum, was previously 

enriched in 250 mL glass flasks in three following steps. In the first step, the fresh seawater 

was inoculated (10% v/v) into a synthetic substrate, with the following composition in g/L: 7 

C6H12O6, 8.2Na2HPO4, 5.2 NaH2PO4, 8 CH3CO2Na, 7 fructose and10 peptone. These reagents 

were dissolved in 75% v/v filtered sea water and 25 % v/v distilled water. After that, the pH 

of the culture was set-up in the range 7 - 7.5 by adding NaOH 2 M. Furthermore, in order to 

reach strictly anaerobic condition, the culture was purged by high-speed N2 flow for 5 min. 

The medium used for bacteria growth is general and few selective to allow growing of 

resident marine consortia in order to have a high biodiversity in the inoculum. The enriched 

culture was grown at room temperature (24 ± 2 °C) and under gentle orbital shaking (150 

rpm). The bacteria growth was monitored as a function of the time by measuring the optical 

density (OD) at 600 nm. When OD was inside the range 0.5 - 0.8 (i.e. inside the range of the 

exponential phase of bacteria growth), 10% culture was used as inoculum of a new fresh 

culture (second step), using the same medium and the same operative conditions described 

before. Once the culture reached again an OD value in the range 0.5 - 0.8, it was inoculated 

in the third fresh medium, repeating the same procedure. Finally, when OD was again in the 
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range 0.5 - 0.8, the bacteria suspension was ready to be inoculated into the MFCs, with a 

ratio of 10% v/v of the total anode volume. 

 

2.4 Characterization techniques and instrumentation 

The morphology of both carbon felt and carbon-coated Berl saddles (before and after the 

carbon layer deposition) was evaluated through Field Emission Scanning Electron 

Microscopy (FESEM, ZEISS Dual Beam Auriga). The resistivity measurements on the two 

different anode materials were carried out using a Keithley 2635 Source Measure Unit in 

four-point probe configuration. During the first 21 days of operation both cells were 

maintained in open circuit voltage (OCV) configuration, and their potential was continuously 

monitored by using a Data Acquisition Unit (Agilent, 34972A). During this period, the 

performances of the cells were analyzed through different electrochemical techniques: 

Linear Sweep Voltammetry (LSV), Current Interrupt (CI) method and Electrochemical 

Impedance Spectroscopy (EIS). All these experiments were carried by a multi-channel VSP 

potentiostat (BioLogic) in a two-electrode set-up configuration: a working electrode was 

coupled to the anode and both counter and reference electrode were connected to the 

cathode, respectively); the data were recorded by using EC-Lab® software version 10.1x 

(BioLogic). Polarization curves were obtained by LSV using a scan rate of 1 mV/s. The CI 

method was carried out using a perturbation to the system with a very short duration (50 

ms): when the MFC produced a stable current output (I) at fixed potential (0.30 V), the 

circuit was opened, thus causing an initial steep potential (VR) rise followed by a further 

slow increase of the potential (VA). The steep increase is referred to as the ohmic losses 

expressed as ohmic resistance (RΩ), which can be calculated as RΩ=VR/I [54]. Impedance 
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spectroscopy measurements were carried out in two-electrode configuration at cell open 

circuit voltage, exploiting an AC signal with amplitude equal to 10 mV and frequency range 

100 mHz – 20 kHz. The experimental data were fitted through the equivalent circuit 

reported in Fig. 2 [24]. Each electrode is modeled through a polarization resistance (Ran and 

Rcat for anode and cathode, respectively) and a constant phase element (CPE) associated to 

the double layer (Qan and Qcat for anode and cathode, respectively), while the series 

resistance Rs takes into account the ohmic losses due to cables, electrolyte and membrane. 

In the anodic compartment, the Warburg impedance ZW is associated to diffusion 

limitations. For all the investigation period, anode and cathode solutions were refilled thrice 

a week. Before and after the refill procedure, all the electrochemical measurements were 

repeated, in order to check the effect of the solution depletion. 

After the start-up phase ended (21 days), the performances of the fuel cells were evaluated 

by applying a load between the electrodes, and calculating the generated power output for 

a period of 10 days. The current production during stabilized operation of fuel cells was 

monitored by connecting them to various external resistances (100, 330, 560, 680, 820 and 

1000 Ω) and measuring the voltage through a Data Acquisition Unit (Agilent, 34972A). 

2.5 RT-qPCR analysis 

In order to identify and quantify some bacterial communities involved in anaerobic 

respiration leading to the production of electricity in an MFC, Real Time quantitative 

Polymerase Chain Reaction (RT-qPCR) analysis were performed in planktonic liquid phase 

for the following genera of microorganisms: Total Bacteria, Total Sulfate Reducing Bacteria 

(SRB) and Total Sulfate Oxidating Bacteria (SOB), Acetobacter, Clostridium, Geobacter, 

Saccharomyces, Shewanella. These microorganisms were chosen as markers of the phylum 
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Proteobacteria (α- Proteobacteria: Acetobacter; γ-Proteobacteria: Geobacter and δ-

Proteobacteria: Shewanella), Firmicutes (Clostridium) and Ascomycota (Saccharomyces). 

Genomic DNA was extracted with a commercial kit (UltraCleanTM Microbial DNA Isolation 

Kit, MO-BIO Laboratories Inc., Carlsbad, CA) according to manufacturer’s instructions. Gene 

target and primers were selected by the international scientific literature (Table I). The RT-

qPCR used a standard super-mix (Bio-Rad SsoFast_EvaGreen SuperMix) for each strain and a 

standard power-mix (Bio-Rad IQTM Multiplex PowerMix) for Total Bacteria. Opticon 

Monitor 3 Software and the RT-qPCR Chromo4 (Bio-Rad) were used to perform and analyze 

the RT-qPCR. Optimal thermal cycling parameters consisted of an initial 3.5 min 

denaturation step at 95°C followed by 40 cycles at 95 °C for 30 s, 55 °C for 45 s and 72 °C for 

30 s. After every RT-qPCR, except for Total Bacteria, a melting curve was run with the 

following thermal conditions: from 55 °C to 95 °C read every 0.5 °C, and read plate at 95 °C. 

2.6 Statistics 

Statistical analyses were performed with the SPSS Package version 21.0 for Windows. 

Student’s t-test was applied to compare two groups of independent samples. The 

differences were considered significant at p < 0.05. 

3. Results and discussion 

3.1 Material properties 

Carbon felt was used as anode electrode first of all because it exhibits high mechanical 

strength, good conductivity and high surface area (1.5 g/m2); furthermore, its planar 

structure reduces the distance between the two electrodes improving MFC performance 

[64]. Carbon felt photograph and FESEM images are shown in Figures 3a, 3b and 3c. FESEM 

images evidence that the material is constituted by cylindrical carbon fibers randomly 
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arranged: this fact makes it a suitable place for bacterial growth. Figure 3d shows the 

carbon-coated Berl saddles used as anode electrode in the second MFC. From Raman 

characterization reported in [51], the presence of conductive graphitic and amorphous 

carbon was observed. As evidenced by FESEM images shown in Figures 3e and 3f, the 

graphitized saddles exhibit a very rough surface that can promote the adhesion and the 

growth of the bacteria. The carbon-coating obtained after deposition process of glucose on 

the pristine Berl saddles (specific surface area of 1.5 m2/g) results homogeneous with 

thickness of about 7 - 8 µm (as shown in the inset of Figure 3e). In addition, the structure of 

the graphitized Berl saddles provides a high useable contact surface area with high void bed 

fraction (1115 m2/m3), useful to avoid an increase of pressure in the anode chamber caused 

by gas production during the activity of microorganisms. The electrical properties of the 

materials were evaluated in four-point probe configuration, obtaining for the carbon felt a 

resistivity of about (35 ± 10) mΩ/cm2 and for one isolated Berl saddle a value of (50 ± 10) Ω. 

3.2 Start-up and dynamic evolution 

The evolution of OCV, maximum power density (Pmax) and internal resistance (Rs, Ra, Rc) over 

time was studied through electrical and electrochemical tests. At the very beginning, the 

uncolonized anodes were inactive. Then, in the first period (21 days of operation) the 

acclimatization of bacteria at the new conditions inside MFCs occurs, and hence the cell 

potentials at open circuit conditions were rapidly increasing, passing from values of 0.2 and 

0.45 V for graphitized saddles and carbon felt, respectively, to stable potentials equal to 0.7 

V for both type of cells. This feature indicates a successful startup; in fact the planktonic 

microbial population in the anode chamber of both MFCs slightly decreases probably as a 

consequence of anode colonization as well (Figures 4a and 4b). After that period, both the 
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MFCs show an increase of the performances as reported in the polarization curves at 10 and 

17 days (Figure 5a). The polarization curve of carbon felt shows a point of maximum power 

(MPP) greater than graphitized saddle after start-up (the corresponding current densities at 

MPP are 1.17 A/m2 and 0.23 A/m2, respectively). However, the very rapid drop of voltage 

visible from LSV (Figure 5a) without a substantial increase of the current, and the 

correspondent power densities curve (Figure 5b) with a visible and sharp peak, show an 

unstable MPP for carbon felt-based electrodes. On the contrary, graphitized saddles permit 

to have more stable conditions moving around MPP voltage (Figure 5). It has to be noted 

that LSV evaluation gives a ready-reference of the behavior of the electrical parameters 

(voltage, current and power) for both planar and packed electrodes. However, in biological 

systems such as MFCs, more truthful information is obtained by monitoring the system 

under external loads, as it will be shown in paragraph 3.6. Accordingly to LSV curves, the 

internal resistances of both cells decreased of about 14% between initial time and 10-days 

operating conditions. This reduction can be explained by the growth of anode-reducing 

microorganisms which colonize the electrodes but it can also be due to the bulk solution 

creating a biofilm on carbon felt surface and around the Berl saddles. This improves the 

electron transport mechanisms between cell membrane and anode and hence reduces the 

internal resistance (which limits the current output). According to RT-qPCR, Geobacter and 

Clostridium, for carbon felt MFC, and Acetobacter, for Berl saddles MFC, show a pattern that 

could account for colonization, even if the quantitative decrease is not statistically 

significant (Figure 4). Comparing the results obtained by planar and 3D-packed materials, 

the first one (i.e. carbon felt) gives the best performances in terms of maximal output power 

density (Pmax), reaching after 10 days the value of about 227 mW/m2 against the value of 77 

mW/m2 obtained with the 3D-packed material (Berl saddles). Taking into account that the 
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ratio between the geometrical anode surface and the total volume of the anodic chamber is 

655 cm2/L, Pmax values turn out to be about 15 mW/L for carbon felt and 5 mW/L for 

graphitized Berl saddles anodes, respectively. It has to be noted that the Pmax values 

obtained with 3D-packed materials are lower than with planar material, and also lower with 

respect to other researches on mixed population [65–67] and on 3D electrodes 

[31,32,35,36]. In the power density curves (Figure 5b) sharp peaks are observed for the 

carbon felt MFC. This fact indicates the risk of instability under real operation conditions, 

when the systems work either at fixed current or at fixed voltage. On the contrary, 

Graphitized Saddles-MFC evidence stable MPP conditions over a wide range of voltage 

values. In fact, the high bed void fraction (80%) created by Berl saddles packaging provides 

an open 3D space accessible to microbial growth which permits a long-operation and an 

effective electron transfer from the bacteria to the anode. Recently, granules and biofilm-

based system have been widely used since they are capable of maintaining higher biomass 

concentration and could operate at higher dilution rate without biomass washout, 

permitting a reduction of the reactor volume [68]. We verified that during the time of the 

test no clogging of the electrode as consequence of gas entrapment occurred, thus 

confirming the possibility of using these innovative graphitized Berl saddles as anode in 

MFCs also for scale-up purposes. 

3.3  Microbes in anodic chambers and their role 

Rt-qPCR analyses conducted on the planktonic microorganisms revealed that in the anolytes 

of both MFCs, mainly sulfate-oxidizing and sulfate-reducing bacteria (SOB and SRB) and 

bacteria belonging to the Proteobacteria phylum (Geobacter and Shewanella) were grown. 

In addition, Firmicutes (Clostridium) and Ascomycota (Saccharomyces) phyla were detected 
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in small percentages (Figure 4). In particular, in the carbon felt anode a slight decrease of 

Shewanella concentration values (and, as a consequence, of the total bacteria) was detected 

after 17 days, while the values remained quite constant in the Berl saddles-based anode 

(Fig. 4a and 4b, respectively). Nakagawa et al. [69] reported that Shewanella oneidensis MR-

1 acquires the ability to utilize glucose after an initial exposure to glucose, as in our case of 

microorganism exposure in a pre-culture medium beyond the feeding. In general, members 

of the Shewanella genus have great flexibility in terms of growth strategy and metabolisms 

[70], allowing them to proliferate in diverse and changing environments. It was interesting 

to detect along the time-course of the experiments, the presence of Geobacter in both 

planktonic phases, even if many studies reported the presence of Geobacter only on the 

anodic biofilm because of their principal electron transfer mechanisms [71]; however other 

studies reported that Geobacter is also able to produce electron shuttles as mechanism for 

the extracellular electron transfer in the mixed consortium[72]. Similarly to this study, also 

Lee et al. [73] found Geobacter sp. in MFC fed with a mixture of glucose and acetate. The 

presence of Geobacteriaceae spp. guarantees an electron transfer to the electrode that is 

mediated both by extracellular conductive biological nanowires (pili), also at long-range (on 

the order of 1 cm), and by redox proteins, which are c-cytochromes present in the external 

membrane of bacterium [62,74]. Beyond the direct transfer mechanisms (like 

Geobacteriaceae spp.), Shewanellariaceae spp. possess the possibility to excrete soluble 

flavin redox molecules as natural electron shuttles. Even if these bacteria constitute only 

about 3% of the total population, their concentration is relatively abundant considering that 

they include a sole species within the wide diversity of microorganisms living in seawater, 

involved in many ecophysiological processes (e.g. nitrogen, sulfur, iron and phosphorous 

cycling). Based on bacteria and electrical properties of MFCs, a higher concentration of 
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bacteria (especially if electroactive), favors a stable electricity generation, as was observed 

from the polarization curves after some days of acclimations (Figure 5). With RT-qPCR 

analysis we identified only ~25% of planktonic component of the anode chambers; in 

particular tables in Figure 4 evidence that SOB and SRB are the most abundant (~20%) with 

respect to total bacteria in both case (there are no significant difference between the two 

MFCs anodic component as confirmed by t-test, p>0.05). This reflects the environment 

condition of the chosen inoculum: sulfate is abundant in sea water and SRB are widely 

distributed in anoxic marine sediments, as members of microbial communities, and at 

hydrothermal vents [53]. Although most marine bacteria and Archea can assimilate sulfate 

for biosynthesis of cellular compounds, SRB have the ability to link the oxidation of 

substrates to adenosine triphosphate (ATP) generation, using sulfate as electron acceptor. 

While SRB are found in several phyla of the bacteria, the most important types are member 

of the δ-proteobacteria, and their activities are highly significant in the sulfur cycle in anoxic 

marine environments, where their utilize organic compound or hydrogen as electron donors 

[53]. The big variety of bacteria could be attributed to the “poor selective” anaerobic 

enrichment procedure, which contains different carbon sources (acetate, glucose and 

fructose) and therefore can promote distinct metabolisms and bacteria. This choice was 

made in order to see how the marine resident population can electrochemically behave 

inside MFC. In fact, taking advantages from living-cells, MFC can be used in natural 

environment (e.g. seawater) as biological sensors or to power electronics/commercial 

sensors for environment parameters monitoring directly into the sea. In our case, even if 

Geobacter nor Shewanella grow fermentatively, other bacteria have fermentative 

metabolisms, such as Clostridium, that produce acetate, electrons and protons starting from 

glucose. Therefore, acetate in its turn is used for other species, as Geobacter or Shewanella, 
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showing how is important the “bacteria-cooperation” in natural environment. Moreover, 

another kind of “cooperation” in natural environment regards the electrons transfer gained 

from the carbon sources to the electrode from plankton to the electrode: if the mediators 

are produced in considerable quantities, other bacteria could use them as electron shuttles 

[75,76]. 

3.4 Electrochemical Impedance Spestroscopy analysis 

The obtained LSV results (Figure 5) were successfully confirmed by EIS analysis for both 

types of cells, as reported in Figure 6a. As expected from the polarization data, the 

impedance values for the carbon felt-MFC are lower with respect to the graphitized Berl 

saddles one. In view of a quantitative evaluation of the internal MFC resistances, the 

experimental data were fitted through the equivalent circuit reported in Figure 2, and the 

fitted curves are reported in Figure 6a superimposed to the measured spectra. As it can be 

clearly seen, a good match was obtained, meaning an effective choice of the equivalent 

circuit [24,77]. The resistance values extracted from the fitting procedures are reported in 

Table II. By comparing these values, a significant difference in the anodic resistances of the 

two cells can be noted, while series and cathodic ones present similar values. It is worthy to 

note that the effect of such a high Ran is responsible for the masking of the Warburg feature 

in the impedance plot of the saddles-based MFC. As evident in Figure 6a, the low frequency 

straight line that is clearly visible in the felt-based MFC (associated with the diffusion), is not 

observable in the other cell spectrum (for this reason the ZW value is not reported for this 

cell in Table II). Different reasons can contribute to the larger anode impedances observed 

for saddles-based MFCs. First of all, the intrinsic lower conductivity of the graphitized Berl 

saddles with respect to the felt (as reported in Section 3.1). In addition, in the case of Berl 



  

19 
 

saddles, the particular 3D-packed structure is capable to kept also dead bacteria adhered to 

the anode material, while in the case of felt-based cells only live biofilm tends to remain 

attached on the surface. The presence of such non-active layer can likely inhibit to a certain 

extent the effective charge transfer in the anodic compartment of saddle-based MFCs. The 

impedance measurements were repeated for all the period of investigation, and they always 

present similar characteristic for both MFCs (data not shown). However, a slight decrease of 

the series and cathode resistances occurred after 10 days of operation for both type of cells. 

The anode resistances experienced the largest reduction: in the case of Berl saddles-based 

MFC, after 10 days its value is lower than the half of the initial one, while for the felt-based 

cell the reduction is of 30%. This decrease has a positive effect in the current density 

production, in accordance to the polarization curves of Figure 5, and it is compatible with 

the biofilm growth. Finally, the series resistance values, calculated from the EIS analysis, do 

not match the exact values calculated from the CI method, even if they qualitatively agree. 

This is a well known issue for the current interrupt method, since MFCs are bio-

electrochemical systems in which the polarization resistance associated with the microbial 

activity is not negligible if compared to the ohmic one. As a consequence, the CI method 

(essentially based on the Ohm’s law) is not able to accurately evaluate the internal 

resistance [77]. This result confirms once more that EIS technique is a powerful tool for an 

accurate analysis of the MFCs behavior. 

Starting from the fitting of the EIS spectra collected all over the start-up period under open 

circuit condition, the characteristic time constant of each electrode was calculated 

exploiting the following formula [78]: 
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where R and Q represent the resistance and the CPE related to one electrode (i.e. anode or 

cathode) and β is the CPE index. The calculated values as a function of the time are reported 

in Figure 6b. It can be observed a sensible decrease of the anode characteristic time τan for 

both types of cells: about one order of magnitude for the graphitized Berl saddles and more 

than two orders for the carbon felt anode. This behavior is in perfect agreement with the 

already observed enhancement of the cell performances due to the improved properties of 

the anodic biofilm over time. Moreover, in accordance to the previous discussed 

measurements, also in this case the carbon felt-based cell exhibits better performances, as 

evidenced by the lower τan values, meaning a faster charge transfer mechanism. On the 

other hand, quite stable values were observed for the cathodic characteristic times, since 

the counter electrode performances are not affected by the biofilm growth. In addition, as 

expected, these values are practically identical for the two MFCs, being the cathodic 

compartments equal for the two different cells. 

3.5 Feeding operation 

In order to assess the effectiveness of the feeding operation, LSV measurements were 

carried out before and 1 h after the replacement of fresh organic substrate media and 

cathode solution, when the power generation returned to a steady value. As shown in 

Figures 7a and 7b for the Berl saddles cell, the good maintenance of fresh reagents in both 

chambers results extremely important, even if anolyte and catholyte recirculation was 

continuously guaranteed and the operating conditions, such as substrate concentration and 

pH were maintained constant. Figure 7a shows for example that the short circuit current 

density (Jsc) in MFC with Berl saddles increases of about 2 times after refill (reaching 0.39 

A/m2), and OCV goes from 0.59 V to 0.73 V. The huge increase of current is due to the 
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reactivation of bacteria metabolisms after famine conditions for the depletion of the fuel 

(which is mainly glucose, acetate and peptone), with the consequent releasing of electrons 

to the anode electrode. Consequently, also the power output (Figure 7b) increases, reaching 

85 mW/m2. Vice versa, the increase in the voltage is mainly attributable to the refill of 

catholyte, as demonstrated from cathode polarization curves before and after refill (data 

not shown). 

Also EIS analysis was carried out before and after the feeding operation. The measured 

spectra and the corresponding fitting curve (obtained through the equivalent circuit of Fig. 

2) are reported as an example in Figure 7c for the Bell saddles cell. For both types of cell, the 

refill operation reflects a reduction of the measured impedances, meaning that the inlet of 

fresh media is effective in reducing the charge transfer resistances, in agreement with 

previously reported results [79,80]. From the analysis of the cell parameters obtained from 

the fitting procedure (reported in Table III) it can be seen that the feeding operation leads to 

a decrease of the anodic resistances while the ohmic and the cathodic ones are quite 

unaffected. These findings are of particular interest in the field of MFCs, because they open 

the way for EIS as a tool that can be exploited for the monitoring of cell faults under 

continuous operation conditions. In fact, on-line impedance measurements make possible 

the observation of physical effects like the glucose concentration decreasing, as in this case, 

by monitoring the dynamic evolution of the cell performances. 

3.6 Investigation of MFCs under external load  

Even if MFC with carbon felt gives the highest power density as measured by LSV (see for 

example Figure 5), it is well known in the literature that this kind of measurement does not 

completely reflect the real behavior of the cell when a load is applied between its electrodes 
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[81]. For this reason, the voltage output of both kinds of cell was monitored along time 

while applying different resistors. In Figure 8 the potential and the calculated power are 

reported together with the applied resistance values. As visible in the graphs, both MFCs 

show similar voltage values, even if the saddle-based MFC seems having more stable voltage 

values, resisting better in correspondence of nutrients depletion (Figure 8). The explanation 

of this behavior resides on the better filling of the conductive electrode, niches and 

“anchorage” for bacteria within anodic chamber, that facilitate electron transfer from 

bacteria to the electrode, both in direct and indirect way, by contact or endogenous 

electron transfer, respectively. In accordance with the above reported consideration, the 

energy productions of the cells under resistances (calculated by integrating the output 

power over time) were found to be 355 and 376 J for carbon felt and graphitized saddles, 

respectively. Finally, by comparing Figures 5 and 8, it is worthy to note that the responses of 

the cells to a voltage slope equal to 1 mV/s by LSV bring to performances which are one 

order of magnitude higher than under external resistances, showing that LSV slightly 

overestimates the current production and therefore the obtainable power density. 

 

4. Conclusions 

The electrode configuration plays an important role on the dynamics of microbial fuel cells. 

In this work, we presented a study on two different anode materials: a carbon felt (with a 

planar structure) and a random network of graphitized Berl saddles (with a 3D-packed 

structure). A detailed exam of the dynamical behavior of the two cells was performed by 

monitoring the evolution of both the bacteria communities composition and electrical 

properties of MFCs over a time interval of 31 days. The different electrochemical behaviors 
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were studied through impedance spectroscopy. This technique has proven to be a very 

useful tool for monitoring the onset of MFC faults, when performed on-line under 

continuous operation conditions. The results obtained for commercial carbon felt and 

graphitized Berl saddle are comparable for the obtained electrical performances as well as 

for the investigated population established in the anodic chamber. However the graphitized 

saddles open a new possibility for designing cost-effective and easy-manufacturing anodes, 

promising for large-scale practical applications. In fact, this strategy allows obtaining, by an 

easy procedure, a good packing material for bacteria growth and proliferation, which helps 

in reducing biofouling and exhibits low electrical resistance for the direct recovery of 

electrons by bacteria metabolisms. In addition, the efficient nutrients and gas diffusion 

permits to obtain a biofilm reactor with good recovery of electricity, towards an energy-

sustainable wastewater treatment plant realization. 
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Figure Captions 

 

Figure 1: Schematic view (a) and picture (b) of the experimental set-up. In (b), from left to 

right there are the multi-channel syringe pump, an MFC, the anode and cathode 

recirculation vessels and the storage vessel; behind the MFC the multi-channel peristaltic 

pump is visible. 

Figure 2: Equivalent circuit exploited for the fitting of the impedance spectra of Microbial 

Fuel Cells. 

Figure 3: (a) Image of carbon felt, (b,c) FESEM images of carbon felt, (d) image of carbon-

coated Berl saddles and (e,f) FESEM images of graphitized Berl saddles. 

Figure 4: Quantification in gene copies/mL of planktonic samples from Carbon felt (a) and 

graphitized Berl saddles MFCs (b) for each strain by each probe during the time (logarithmic 

scale) on the top, and relative percentage values in the tables below. 

Figure 5: Polarization curve (a) and power density (b) for the MFCs with Carbon Felt and Berl 

Saddles as anode electrodes, at initial time, and at 10 and 17 days running test. 

Figure 6: EIS spectra of MFC based on carbon felt (a) and carbon-coated Berl saddles (b) 

anodes at 10-days running test. The points are experimental data and the continuous lines 

are fitting curves. The inset shows the high frequency region at larger magnification. (c) 

Charge transfer times at cathode and anode in MFC with carbon felt and graphitized Berl 

saddles as anode electrode, evaluated from EIS analysis. 

Figure 7: Polarization curve (a), power density (b) and EIS spectra (c) of MFCs based on 

carbon-coated Berl Saddles anode before and after the refill operation. In (c) the points are 

experimental data, the continuous lines are fitting curves. 

Figure 8: Voltage and power monitoring under external load in MFC with carbon felt and 

graphitized Berl saddles. The arrows indicate fed-batch of nutrients and change of cathode 

solutions. 
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Figure 3 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

Carbon felt

Relative percentage of microorganisms (%)

SRB & SOB 20.892 15.154 19.313 18.080

Shewanella 2.7030 2.9122 2.3226 2.8072

Geobacter 0.3856 0.1412 0.5840 0.2744

Acetobacter 0.0160 0.0259 0.0188 0.0155

Saccharomyces 0.0119 0.0104 0.0076 0.0102

Clostridium 0.0006 0.0003 0.0005 0.0007

Time (days) 0 10 17 26

Graphitized saddles

Relative percentage of microorganisms (%)

SRB & SOB 5.755 25.025 17.245 16.196

Shewanella 2.217 3.654 1.690 1.851

Geobacter 0.292 0.458 0.137 0.205

Acetobacter n.a. 0.020 0.036 0.037

Saccharomyces 0.024 0.013 0.007 0.006

Clostridium 0.040 0.020 0.002 0.001

Time (days) 0 10 17 26
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Figura 6 
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Figure 8 
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Table Captions 

 

Table I: Microorganisms, Primers, Genomic Standards and total number of bases in the 

genomic DNA (bp), genes and number of copies of gene in µL of solution, tested in MFC 

biological analysis. 

Table II: Characterization of MFCs after 10 days (stationary conditions), in terms of 

maximum power density Pmax and Internal Resistances calculated by Current Interrupt 

method (RΩ) and by EIS.  

Table III: Characterization of saddle-based MFC before and after refill in anode chamber, in 

terms of maximum power density Pmax and Internal Resistances calculated by Current 

Interrupt method (RΩ) and by EIS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

41 
 

Table I 

Microorganism 
Primer name  

(gene target) 

Primer (5’ --> 3’) 

 

Genomic 

Standard 

(ATCC code) 

Gene pb Ref. 

Acetobacter 

 

Ace F 
 

CGCAAGGGACCTCTAACACA 
Acetobacter 

diazotrophicus 

(49037D-5) 

110 [55]  

Ace R 
 

ACCTGATGGCAACTAAAGATAGGG 

Total Bacteria 

 

 

16S RNA F 

 

 

AGAGTTTGATCMTGGCTCAG 
Desulfovibrio 

vulgaris 

(29579D-5) 

About 

600 
[56] 

16S RNA R 

 

 

TTACCGCGGCKGCTGGCAC 

probe 
 

CCAKACTCCTACGGGAGGCAGCAG 

Clostridium 

Clo F 
 

ATTAGGAGGAACACCAGTTG 

Clostridium 

difficile 

(9689D-5) 

307 [57] 

Clo R AGGAGATGTCATTGGGATGT 

Geobacter 

 

Geo F 
 

AAGCGTTGTTGTTCGGAWTTAT 
Geobacter 

metallireducens 

(53774D-5) 

313 [58] 

Geo R 
 

GGCACTGCAGGGGTCAATA 

Saccharomyces 

Sac F 
 

GCGGTAATTCCAGCTCCAATAG 

Saccharomyces 

cerevisiae 

(9763D) 

151 [55] 

Sac R GCCACAAGGACTCAAGGTTAG 

Shewanella 

She F GCCTAGGGATCTGCCCAGTCG Shewanella 

oneidensis 

(700550D) 

108 [59] 
She R CTAGGTTCATCCAATCGCG 

Total Sulfate 

Oxidizing and 

Reducing Bacteria 

AprA F GGGYCTKTCCGCYATCAAYAC 

Desulfovibrio 

vulgaris 

(29579D-5) 

About 
300 

 

[60-63] 
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Table II  

MFCs Pmax  

(mW/cm2) 

RΩ (Ω) Rs (Ω) Ran (Ω) Rcat (Ω) Zw 

(Ω/√s) 

Carbon felt 0.23 8 3.2 1.3 0.9 50.2 

Graphitized saddles 0.08 20 4.3 162.8 4.1 --- 
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Table III 

 

MFCs Pmax 

(mW/cm
2
) 

RΩ (Ω) Rs (Ω) Ran (Ω) Rcat (Ω) 

Before refill 0.04 18 5.9 362.5 2.7 

After refill 0.09 16 5.8 287.2 2.6 
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Dynamical analysis of Microbial Fuel Cells based on planar and 3D-

packed anodes 

 

HIGHLIGHTS 

 

1. Comparison of performances of two anode configurations, planar and 3D-packed  

2. Berl saddles were covered by a graphite layer and used as packed electrode 

3. Microbial consortia coming from sea-water used to catalyze biological oxidation 

4. RT-qPCR protocol detects the presence of electrogens as Shewanella and Geobacter 

5. Graphitized saddles satisfy electrical requirements and promote bacterial adhesion 

 

 

 

 


