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PI3K-C2g is a Rab5 effector selectively controlling
endosomal Akt2 activation downstream of insulin
signalling
Laura Braccini1, Elisa Ciraolo1,*, Carlo C. Campa1,*, Alessia Perino1,*,w, Dario L. Longo1,w, Gianpaolo Tibolla2,

Marco Pregnolato1, Yanyan Cao3, Beatrice Tassone1, Federico Damilano1,w, Muriel Laffargue4, Enzo Calautti1,

Marco Falasca5, Giuseppe D. Norata2, Jonathan M. Backer3 & Emilio Hirsch1

In the liver, insulin-mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt

pathway is at the core of metabolic control. Multiple PI3K and Akt isoenzymes are found in

hepatocytes and whether isoform-selective interplays exist is currently unclear. Here we

report that insulin signalling triggers the association of the liver-specific class II PI3K isoform

g (PI3K-C2g) with Rab5-GTP, and its recruitment to Rab5-positive early endosomes. In these

vesicles, PI3K-C2g produces a phosphatidylinositol-3,4-bisphosphate pool specifically

required for delayed and sustained endosomal Akt2 stimulation. Accordingly, loss of

PI3K-C2g does not affect insulin-dependent Akt1 activation as well as S6K and FoxO1-3

phosphorylation, but selectively reduces Akt2 activation, which specifically inhibits glycogen

synthase activity. As a consequence, PI3K-C2g-deficient mice display severely reduced liver

accumulation of glycogen and develop hyperlipidemia, adiposity as well as insulin resistance

with age or after consumption of a high-fat diet. Our data indicate PI3K-C2g supports an

isoenzyme-specific forking of insulin-mediated signal transduction to an endosomal pool of

Akt2, required for glucose homeostasis.
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D
ownstream insulin receptor activation, phosphatidylino-
sitol 3-kinases (PI3Ks) cause the acute accumulation on
the plasma membrane of two lipid second messengers:

phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) and
phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2). These
two molecules act as docking sites for signal amplifiers like the
serine/threonine kinase Akt that, upon its association to either
PtdIns(3,4,5)P3 or PtdIns(3,4)P2, is phosphorylated on two key
residues (Thr308/309 and Ser473/474 in Akt1/Akt2, respectively)
and activated1. Akt, in turn, promotes multiple insulin-dependent
cellular responses by phosphorylating a plethora of target
proteins modulating glucose and triglyceride hepatic
metabolism2. Although this acutely occurs at the plasma
membrane and mainly involves class I PI3Ka3, a delayed but
sustained response can propagate from internal membranes as
well. After agonist binding, the activated insulin receptor is
internalized into endosomes from which it is either recycled to
the plasma membrane or degraded through lysosome activity.
Although internalization is a key event for signal termination,
endocytosis also contributes to prolong Akt phosphorylation
beyond PI3K activation at the plasma membrane4. In line with
this view, the depletion of Rab5, a master regulator of endosome
biogenesis, significantly reduces phosphorylation of Akt upon
insulin stimulation5. Downstream of Rab5, Akt phosphorylation/
activation outside the plasma membrane further requires the
adaptor protein containing PH domain, PTB domain and Leucine
zipper motif (APPL1) that acts as a Rab5 effector promoting Akt
recruitment and activation on early endosomes (EEs)6. APPL1 is
thought to release Akt from the endogenous inhibitor protein
tribble 3 (TRB3) and to target it to endosomal membranes6.
Nonetheless, the precise nature of the lipid and the PI3K involved
in endocytosis-dependent Akt activation is still unclear.

Although class I PI3Kb is involved in insulin signalling7,8 and
acts as a Rab5 effector9–11, its function appears related to the
production of a PtdIns(3,4,5)P3 pool that is rapidly converted
into PtdIns3P, which in turn induces APPL1 release from
endosomes, thus terminating the signalling cascade10,12. Given
the preferential localization of PtdIns(3,4,5)P3 at the plasma
membrane, the PI3K product promoting Akt activation in
endosomes appears to be PtdIns(3,4)P2, which is known
to be abundant in early endocytic membranes13. Although
PtdIns(3,4)P2 can be produced from PtdIns(3,4,5)P3 by the
action of the enzyme 5-phosphatase, Src homology 2 domain
containing inositol phosphatase 2 (SHIP2), other potential
sources of this lipid are the three class II PI3Ks (PI3K-C2a,
b and g), which are known to produce in vitro both PtdIns(3,4)P2

and PtdIns3P. In line with this view, PI3K-C2a has been found to
promote endocytosis by producing a pool of PtdIns(3,4)P2 on
clathrin-coated pits that is crucial to recruit Sorting nexin 9 and
dynamin, two key elements supporting the maturation of pits into
endocytic vesicles14. Although this indicates that class II PI3Ks
can produce PtdIns(3,4)P2 in vivo, this ubiquitous class II PI3K is
not known to participate in Akt activation but rather in other
pathways of insulin signalling such as GLUT4 translocation in
muscle cells15,16, or unrelated processes such as exocytosis of
insulin granules in pancreatic cells17 as well as organization of the
recycling compartment18. Similar to PI3K-C2a, PI3K-C2b has as
yet not been reported to play major role in Akt activation.
Although PI3K-C2b can be activated downstream of several
tyrosine kinase receptors, such as the EGFR, ErbB2 and
PDGFR19, this isoform is only weakly involved in insulin
signalling20, and consistently, PI3K-C2b-deficient mice are not
prone to insulin resistance21. On the other hand, little is known
about PI3K-C2g that, differently from the ubiquitous PI3K-C2a
and PI3K-C2b, is specifically enriched in liver parenchyma
cells22,23. Like other class II PI3Ks, PI3K-C2g catalyses the

synthesis of PtdIns3P and PtdIns(3,4)P2 in vitro24 but the specific
lipid produced in vivo is still unclear. However, human genetics
studies link the PI3K-C2g gene with insulin signalling, showing
an association between a polymorphism in the PI3K-C2g-
encoding gene (PIK3C2G) Pik3c2g and increased incidence of
type 2 diabetes mellitus in a set of Japanese patients25.

Here we show that PI3K-C2g is dispensable for insulin-
dependent acute Akt phosphorylation but that this lipid kinase
plays a major role to selectively support long-term Akt2
activation in intracellular vesicles. PI3K-C2g is recruited by
Rab5-GTP to EEs where it promotes PtdIns(3,4)P2 accumulation
and the activation of Akt2. This impacts on the signalling to
specific subcellular targets such as glycogen synthase (GS but not
to other Akt substrates like S6K or FoxO1-3 transcription
factors). In the absence of this specific signal transduction branch,
the mouse liver fails to accumulate glycogen and promotes a
shunt towards triglycerides production, thus triggering age- or
diet-related insulin resistance and adiposity.

Results
PI3K-C2c is preferentially expressed in the liver. A mouse
carrying the lacZ reporter gene in frame with the first ATG codon
of the Pik3c2g gene was generated by standard gene targeting
technology (Pik3c2gþ /lacZ, Supplementary Fig. 1a,b). In agree-
ment with previous gene expression studies22, Pik3c2gþ /lacZ mice
displayed b-galactosidase expression restricted to the liver
(Fig. 1a). Traces also appeared in the pancreas (Supplementary
Fig. 1c). No expression was detected in classical insulin-sensitive
tissues such as skeletal muscle and fat deposits (Fig. 1a) or in
several other organs, including the brain (Supplementary Fig. 1c).
Histological analysis of liver sections revealed that b-galactosidase
expression was localized to hepatic parenchyma (Fig. 1b). In the
pancreas, prolonged LacZ staining revealed expression in
exocrine acinar cells but not in insulin producing islets of
Langerhans (Supplementary Fig. 1d). Reverse transcription
(RT)–PCR analysis confirmed hepatic expression but no traces
of the Pik3c2g transcript were found in the other major
insulin-sensitive tissues like skeletal muscle and adipose tissue
(Fig. 1c).

To gain deeper insight into the function of PI3K-C2g,
heterozygous mice (Pik3c2gþ /lacZ) were mated to obtain homo-
zygous offspring (Pik3c2glacZ/lacZ). Pik3c2glacZ/lacZ mice were
born at the expected Mendelian ratio and were confirmed to lack
Pik3c2g mRNA expression (Fig. 1d). Pik3c2glacZ/lacZ (for
simplicity, further referred to as Pik3c2g� /� ) mice appeared
indistinguishable from their wild-type littermates at birth, did not
show any growth retardation and normally reached adulthood.
Furthermore, microscopic architecture of the liver parenchyma
appeared normal and assessment of a marker of hepatic function,
such as albumin, did not show any difference between 2-month-
old mutant and control mice (Pik3c2g� /� 3.01±0.07 g dl� 1

versus Pik3c2gþ /þ 3.13±0.10 g dl� 1).

Defective insulin response in Pik3c2g� /� mice. Histopatho-
logical assessment of liver sections revealed reduced positivity
to periodic acid–Schiff staining in mutant samples (Fig. 1e),
suggesting a decrease in glycogen deposits in Pik3c2g� /� livers.
In further agreement, a significant 25% reduction in glycogen was
observed by biochemical determination (Fig. 1f). This was
accompanied by B20% reduction in liver weight (1.12±0.067 g
in Pik3c2g� /� versus 1.419±0.063 g in Pik3c2gþ /þ mice;
Supplementary Fig. 1e). Given that reduction of glycogen deposits
is often associated to insulin resistance26–28, mutant mice were
tested for alterations in the insulin response. In agreement with a
role of Pik3c2g in insulin-mediated control of glucose
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metabolism, the insulin tolerance test (ITT) in 2-month-old
Pik3c2g� /� mice showed significantly lower insulin sensitivity
than in wild-type controls (Fig. 1g).

In addition to abnormal ITT and reduced glycogen deposits,
mutant mice showed increased fat storage, as epididymal fat pads
from mutant mice were B30% heavier than those from wild-type
controls (0.24±0.018 g in Pik3c2g� /� versus 0.1620±0.011 g in
Pik3c2gþ /þ mice; Supplementary Fig. 1e). This was specific to
adipose tissue as other insulin responsive organs, such as skeletal
muscles, did not show weight changes (Supplementary Fig. 1e).
Furthermore, sections of epididymal fat pads showed a 30%
enlargement of the adipocyte area in mutant cells (Supplementary
Fig. 1f). This difference was unrelated to changes in food intake
(3.4±0.4 g per day in Pik3c2g� /� versus 3.6±0.1 g per day
in Pik3c2gþ /þ mice, P¼ not significant (Student’s t-test))
or physical activity (69,501±7,077 in Pik3c2g� /� versus
73,930±3,054 in Pik3c2gþ /þ mice, reported as movements over
a 24-h period in an activity cage). In line with altered lipid
metabolism, although plasma cholesterol levels were unchanged,
triglyceride levels were significantly higher in Pik3c2g� /� mice
than in controls (Supplementary Fig. 1g). These observations thus
indicate that PI3K-C2g plays a specific role in hepatic glycogen
accumulation. In its absence, a modification in lipid production
and storage occurs as a likely compensatory effect, in response to
impaired insulin responses in the liver.

PI3K-C2c sustains hepatic Akt2 phosphorylation. Given the
role of the PI3K/Akt axis in insulin signalling, the defective
insulin-dependent responses detected in 2-month-old mutant
mice suggest a role for PI3K-C2g in Akt activation. To test if
PI3K-C2g was involved in the control of Akt activation, Akt
phosphorylation in response to insulin was studied in liver
extracts derived from 2-month-old mutant and control mice
stimulated in vivo with insulin and collected at different time
points after agonist administration. At 5 min after stimulation,
Akt phosphorylation at the hydrophobic motif (Ser473 or 474 in
Akt1 and 2, respectively) showed a similar increase in both
Pik3c2g� /� and Pik3c2gþ /þ samples (Fig. 2a). On the contrary,
Akt phosphorylation rapidly declined in Pik3c2g� /� livers at
15 and 30 min after stimulation, whereas it kept increasing over
time in wild-type controls (Fig. 2a).

The liver expresses two Akt isoforms (Akt1 and 2) and to better
explore the role of PI3K-C2g in Akt activation, the effect of
PI3K-C2g depletion on isoform-specific Akt phosphorylation
was next examined using validated isoform-selective antibodies
(Supplementary Fig. 2a). Unexpectedly, the lack of PI3K-C2g in
either livers (Fig. 2b) or isolated primary hepatocytes (Fig. 2c) did
not affect the phosphorylation of Akt1, either at early or at
late time points. On the contrary, the time course of Akt2
phosphorylation was significantly altered in insulin-stimulated
Pik3c2g� /� livers and primary hepatocytes (Fig. 2b,c). Similar to
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the observed profile of global Akt activation, phosphorylation
of Akt2 at 5 min was comparable in both Pik3c2g� /� and
Pik3c2gþ /þ samples. However, phosphorylated Akt2 rapidly
declined in mutant livers that showed a significantly faster
inactivation rate with a 50% reduction in Akt2 phosphorylation at
15 and 30 min (Fig. 2b,c). As shown in Supplementary Fig. 2b,
mutant samples confirmed a reduced phosphorylation of Akt on
Thr308/309 at later time points. Consistently, a significant
reduction in the phosphorylation on Thr309 of Akt2 was
detected in mutant livers at 30 min after insulin stimulation
(Supplementary Fig. 2c). Analysis of insulin-evoked residual Akt
phosphorylation of Ser473 of Akt1 in liver extracts of Akt2-
deficient mice confirmed that Akt2 is the major hepatic isoform
activated at 30 min after insulin stimulation (Fig. 2a and
Supplementary Fig. 3a), thus indicating that the decrease in total
pAkt observed in Pik3c2g� /� mice is in line with a selective
impairment of Akt2 activation at late time points. This result was
clearly restricted to the liver of mutant mice, as the insulin-
dependent Akt phosphorylation was normal in both skeletal
muscles and adipose tissue (Supplementary Fig. 3b,c). Taken

together, these findings indicate that PI3K-C2g is not involved in
acute insulin-dependent Akt activation but selectively supports
prolonged phosphorylation of hepatic Akt2.

PI3K-C2c regulates a specific subset of Akt effectors. The
propagation of Akt-mediated signals involves the modulation of
multiple direct and indirect downstream targets including
forkhead box O (FoxO), S6K and glycogen synthase29. The
potential impact of the altered Akt2 activation kinetics on the
phosphorylation of such key downstream mediators was thus
evaluated. In liver samples of insulin-stimulated mutant mice, the
phosphorylation of the transcription factors FoxO1-3 was
unaltered at all time-points assessed (Fig. 3a,c). Similar results
were obtained studying the response in isolated hepatocytes
(Fig. 3b,h). Likewise, S6K phosphorylation was unaltered both in
livers after insulin administration in vivo and in primary
hepatocytes (Fig. 3c,d,e,h), indicating that loss of PI3K-C2g
does not perturb activation of the mammalian target of
rapamycin complex 1 (mTORC1) pathway. Conversely, in
mutant liver and hepatocytes, phosphorylation of glycogen
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synthase kinase 3 (GSK3) on the Akt-dependent Ser9 slightly but
significantly declined at later time points (Fig. 3c,f,g,h).
Consistent with their normal FoxO1-3 activation status, mutant
mice displayed no difference in FoxO-dependent expression of
glucokinase (Gck), as well as gluconeogenic genes, such as
phosphoenolpyruvate carboxykinase (Pck1) and glucose 6-
phosphatase catalytic subunit (G6pc; Fig. 4a). Furthermore, the
analysis of the effects of the loss of PI3K-C2g on glycogen
synthase phosphorylation failed to determine a significant
alteration in GSK3-dependent GS phosphorylation in both
fasted and refed livers (Fig. 4b), in line with a regulation of the
enzyme in the liver independent of the phosphorylation of
classical GSK3 sites28. Nonetheless, Akt2-mediated hepatic GS
activation can occur independently of GSK3 (refs 27,28) and, in
agreement, the assessment of GS activity, in livers after overnight
fasting followed by 1 h refeeding, showed that the loss of PI3K-
C2g caused a 30% decrease in GS activity (Fig. 4c). Overall, these
results indicate that PI3K-C2g specifically controls a subset of
Akt2 substrates and that is critically involved in the activation
of GS.

Given that normal regulation of gluconeogenic genes but the
impaired activation of glycogen synthesis might increase the

abundance of diffusible glucose within hepatocytes, mutant mice
were challenged in a pyruvate-induced stimulation of glucose
production in the liver. In this test, mutant mice showed a mild
but significant increase of hepatic glucose output (Fig. 4d). As this
could not be attributed to changes in the abundance of the liver
glucose transporter GLUT2 (Supplementary Fig. 3d), the loss
of PI3K-C2g caused an impairment of the insulin-dependent
hepatic glucose output inhibition likely due to decreased
conversion of glucose into glycogen. This is consistent with
studies on mice lacking Akt2 in the liver27,28 and further confirms
PI3K-C2g as a key determinant of hepatic Akt2 activation.

Loss of insulin-dependent PtdIns(3,4)P2 in Pik3c2g� /� livers.
Insulin-stimulated Akt activation requires the presence of the
two PI3K products phosphatidylinositol-3,4,5-trisphosphate
(PtdIns(3,4,5)P3) and phosphatidylinositol-3,4-bisphosphate
(PtdIns(3,4)P2), membrane lipids that constitute docking sites
for PH domain-mediated protein anchoring required for Akt
activating phosphorylation events30. Although PtdIns(3,4,5)P3 is
a potent Akt activator, class II PI3Ks are usually reported not to
produce this mediator in vitro or in vivo31. To confirm this
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hypothesis, PtdIns(3,4,5)P3 levels were assayed in vivo by
immunofluorescence, using specific antibodies to stain sections
of livers, before and after insulin stimulation. Although staining
of baseline PtdIns(3,4,5)P3 in fasted Pik3c2g� /� and Pik3c2gþ /

þ mice was, as expected, very low, production of this mediator,
5 min after the insulin bolus, equally increased in hepatocyte
sinusoidal plasma membranes of both genotypes, hence
supporting the view that PI3K-C2g is not involved in
PtdIns(3,4,5)P3 production in vivo (Fig. 5a). The two genotypes
also showed a similarly negligible baseline of PtdIns(3,4)P2

(Fig. 5b). However, 15 min after insulin administration, a clear
PtdIns(3,4)P2 signal was detectable in wild-type liver samples and
localized in intracellular vesicular structures. Although the
number of Rab5-positive vesicles was comparable in the two
genotypes (Supplementary Fig. 4a), the number of PtdIns(3,4)P2-
positive vesicles appeared overtly decreased in Pik3c2g� /� liver
samples (Fig. 5b). Quantification of fluorescence showed a
significant fourfold reduction in mutant livers (Fig. 5c). To
exclude the possibility that, in our experimental conditions,
PtdIns(3,4)P2 staining was unspecific, competition experiments
were performed by pre-incubating the PtdIns(3,4)P2 antibody on
liposomes containing synthetic PtdIns(3,4)P2. This procedure
abolished the signal on liver sections of wild-type mice stimulated
with insulin (Supplementary Fig. 4b). On the contrary, pre-
incubation of the PtdIns(3,4)P2 antibody on liposomes containing
the unrelated control lipid PtdIns(4,5)P2 did not modify the
staining pattern of wild-type control sections (Supplementary

Fig. 4b). In further agreement, immunodetection of PtdIns(3,4)P2

in wild-type and mutant primary hepatocytes showed that 15 min
after insulin stimulation the number of PtdIns(3,4)P2-positive
vesicles was significantly reduced in PI3K-C2g-deficient cells
(Supplementary Fig. 5). These results overall demonstrate that,
in response to insulin, PI3K-C2g is crucially involved in the
generation a PtdIns(3,4)P2 pool spatially localized on endosomal
membranes.

Insulin triggers PI3K-C2c localization on EEs. The nature of
the PI3K-C2g-positive endosomes was explored in HEK293
subcellular fraction expressing a Myc-tagged PI3K-C2g, as
specific antibodies against murine PI3K-C2g were not available,
even despite extensive immunization attempts with different
peptides and fusion proteins. Cell fractionation showed that, before
and after insulin stimulation, Myc-PI3K-C2g was undetectable in
Rab7þ /APPL1� late endosomes (LEs; Supplementary Fig. 6a).
Conversely, Myc-PI3K-C2g was found on Rab5þ /APPL1þ EEs
in basal conditions as well as in response to insulin
(Supplementary Fig. 6b). The amount of Myc-PI3K-C2g and
APPL1 in Rab5þ EEs was significantly higher after insulin
stimulation than in resting conditions, suggesting an insulin-
dependent recruitment of PI3K-C2g to this specific cellular
compartment (Supplementary Fig. 6c). In agreement, a mCherry-
PI3K-C2g fluorescent reporter was dispersed in resting COS7
cells (Fig. 6a) but, upon insulin stimulation, it co-localized with
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GFP-Rab5 on Rab5þ EEs (Fig. 6b). On the other hand, the
expression of a dominant negative GFP-Rab5S34N led to a diffuse
cytoplasmic distribution of mCherry-PI3K-C2g and abrogated
the insulin-dependent PI3K-C2g/Rab5 co-localization (Fig. 6c).
Similar results were obtained in wild-type primary hepatocytes
transfected to express a Myc-tagged PI3K-C2g and co-labelled
with Myc and Rab5 antibodies (Supplementary Fig. 7).
In agreement with Rab5-dependent endosomal recruitment of
PI3K-C2g, expression of a constitutively active GFP-Rab5Q79L led
to insulin independent, constitutive localization of mCherry-
PI3K-C2g to the giant Rab5þ endosomes induced by the
expression of the Rab5 mutant (Fig. 6d). Similarly, expression of
an untagged Rab5Q79L caused the co-localization of mCherry-
PI3K-C2g and APPL1þ to typical Rab5Q79L-dependent endo-
somes (Fig. 6e). Next, cell fractionation studies were repeated
after transfection of either GFP-Rab5 or GFP-Rab5Q79L. As
shown in Fig. 6f, Rab5Q79L but not Rab5 induced the enrichment
of Myc-PI3K-C2g in Rab5þ /APPL1þ early endosomal fraction.

To test whether PI3K-C2g is a direct Rab5 effector, binding of
in vitro translated 35S-labelled PI3K-C2g to purified Rab5 was
assessed in pull-down experiments with inactive GDP-bound and
active GTP-gS-bound Rab5. As indicated in Fig. 6g,h, labelled
PI3K-C2g directly bound Rab5-containing beads and this
interaction was significantly enhanced by the presence of active
Rab5 to an extent similar to the known Rab5 effector Vps15
(ref. 32). Altogether, these data indicate that PI3K-C2g directly
acts downstream of Rab5 during the process of insulin receptor
internalization in EEs.

PI3K-C2c loss impairs Akt phosphorylation on EEs. Next, to
test if the Rab5-dependent localization of PI3K-C2g to EEs was
functionally relevant, constitutively active Rab5 (Rab5Q79L) was
transfected with a GFP-TAPP1 PtdIns(3,4)P2 fluorescent probe in
the presence or absence of mCherry-PI3K-C2g. As shown in
Fig. 7a, the expression of Rab5Q79L induced the presence of giant
endosomes but was not sufficient to induce endosomal accumu-
lation of PtdIns(3,4)P2 in cell lines expressing undetectable levels
of endogenous PI3K-C2g-encoding mRNA like COS7 cells.
On the other hand, the concomitant expression of mCherry-
PI3K-C2g in the same Rab5Q79Lþ /GFP-TAPP1þ COS7
promoted the targeting to giant endosomes of the GFP-TAPP1
PtdIns(3,4)P2 fluorescent probe (Fig. 7b). This demonstrates
that PI3K-C2g is a downstream effector of Rab5 inducing
PtdIns(3,4)P2 accumulation on EEs.

To further assess the role of PI3K-C2g-dependent
PtdIns(3,4)P2 production on EEs on Akt phosphorylation, cell
fractionation studies were performed in intact livers of wild-type
and mutant mice before and 15 min after insulin stimulation. In
response to insulin administration, the Rab5-positive endosomal
fraction of wild-type samples displayed a marked phosphoryla-
tion of Akt on Ser473 (Fig. 7c). On the contrary, in the
corresponding Rab5-positive fraction from Pik3c2g� /� liver
samples, phosphorylation of Akt at 15 min after insulin admin-
istration appeared significantly reduced, thus supporting the
hypothesis that PI3K-C2g plays a crucial role in regulating the
Rab5-dependent endocytic Akt activation. In keeping with a
preferential role of PI3K-C2g in the activation of Akt2 in Rab5þ

EEs, antibodies specifically distinguishing the phosphorylation of
Ser473 of either Akt1 or Ak2 showed that Akt2 but not Akt1
phosphorylation is significantly decreased in EEs of insulin-
stimulated Pik3c2g� /� livers (Fig. 7d).

Increased obesity and fatty liver in HFD-fed Pik3c2g� /� mice.
These results indicate that PI3K-C2g represents a branch point in
endosomal insulin signalling, balancing fat and glucose metabolism,

Insulin (0′) Insulin (5′)

Insulin (0′) Insulin (15′)b

a
PtdIns(3,4,5)P3
DNA

PtdIns(3,4)P2
DNA

Pik3c2g +/+

Pik3c2g +/+

Pik3c2g –/–

Pik3c2g –/–

c

15

20

25

10

30

0

 P
td

In
s(

3,
4)

P 2
(f

.i.
 o

ve
r 

co
nt

ro
l)

**

0 15 0 15
Time (min)

*** ***

Pik3c2g +/+(2 mo)

Pik3c2g –/–(2 mo)

5

n = 40

Figure 5 | Reduced insulin-dependent PtdIns(3,4)P2 production in

Pik3c2g� /� livers. (a) Immunohistochemical detection of PtdIns(3,4,5)P3

in liver cryosections obtained from fasted Pik3c2gþ /þ and Pik3c2g� /�

2-month (mo)-old mice before (insulin 00) and 5 min after insulin

stimulation (insulin 50). Images are representative of similar results

obtained in seven independent experiments. Scale bar, 20mm.

(b) Immunohistochemical detection of PtdIns(3,4)P2 in liver cryosections

obtained from fasted Pik3c2gþ /þ and Pik3c2g� /� 2-mo-old mice before

(insulin 00) and 15 min after insulin stimulation (insulin 150). Images are

representative of similar results obtained in eight independent experiments

per condition and genotype. Scale bar, 10mm. Insets indicate vesicular

accumulation of PtdIns(3,4)P2. Scale bar, 2mm. (c) Quantification of

PtdIns(3,4)P2 immunofluorescence obtained from ten independent images

(per genotype) of the experiments shown in b (n¼40). Results represent

mean±s.e.m for the given number (n) of images. *Po0.05, **Po0.01,

***Po0.001 fasted versus insulin-stimulated or mutant versus the

respective wild-type controls. P values were determined using one-way

analysis of variance followed by Bonferroni post-hoc test. F.i., fold induction.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8400 ARTICLE

NATURE COMMUNICATIONS | 6:7400 | DOI: 10.1038/ncomms8400 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


and suggest that this enzyme might be required to maintain
homeostasis in response to stress conditions. To assess this possi-
bility, the potential metabolic derangement occurring with age and
in response to a diabetogenic high-fat diet was studied.

First, the circulating levels of glucose were measured in
2-month-old Pik3c2g� /� and Pik3c2gþ /þ mice. At this age, the
ablation of Pik3c2g did not affect either blood glucose or insulin
levels, in fasting as well as in fed conditions (Fig. 8a). Similarly,
glucose reduction rates in a glucose tolerance test (GTT) appeared
comparable in both homozygotes and 2-month-old wild-type
controls (Fig. 8b). In agreement with normal glucose tolerance,
2-month-old Pik3c2g� /� mice did not show any change in
serum insulin levels (Fig. 8c). On the contrary, mutant mice had
increased circulating glucose levels during aging; 8-month-old
Pik3c2g� /� mice showed a mild but significant blood glucose
increase, in both fasted and fed conditions (Fig. 8d). Together
with the presence of glucose intolerance (Fig. 8e), this defect
suggests that PI3K-C2g ablation might contribute to the onset
of age-dependent insulin resistance. In support of this view,
8-month-old mutant mice displayed about four- and twofold
increases in serum insulin under fasted and fed conditions,
respectively (Fig. 8f).

To further check if this propensity to insulin resistance with
age could be accelerated by diet, 1-month-old Pik3c2g� /�

mutants and control mice were fed with a fat-rich diet (high-fat
diet (HFD), 60% kcals derived from fat) for 4 months. The impact
of such treatment on glucose homeostatic responses was next
evaluated. Glycaemia, in fasted and fed conditions, appeared

30% and 17% higher in Pik3c2g� /� than in wild-type controls,
respectively (Fig. 9a). This was accompanied by significant 21%
and 19% increases in insulinemia in both conditions (Fig. 9b) that
was comparable to that of aged mutant homozygotes (Fig. 8f).
In line with this observation, HFD-fed Pik3c2g� /� mice
displayed a mild but significant impairment in glucose tolerance,
whereas age-matched controls on normal diet were still normal
(Supplementary Fig. 8a,b). Furthermore, HFD-fed, but not
chow-diet fed, Pik3c2g� /� mice showed increased body weight
gain compared with control mice (Supplementary Fig. 8c,d), and
after 4 months of treatment, they were 18% heavier than their
wild-type counterparts (39.26±6.50 g in Pik3c2g� /� versus
33.35±4.03 g in Pik3c2gþ /þ ; Po0.01 (by Student’s t-test)). This
body weight increase was associated with dyslipidemia, increased
plasma concentrations of cholesterol and triglycerides (Fig. 9c).
Consistently, histopathological assessment of livers derived
from HFD-fed mutant mice showed increased lipid droplets
deposition, a hallmark of hepatic triglyceride accumulation
(Fig. 9d), whereas livers of mice on normal chow remained
unaffected (Supplementary Fig. 8e). In agreement with these
observations, the hepatic mRNA levels of lipogenic genes such as
Sterol regulatory element-binding protein-1 (Srebp-1), Steaoryl-
CoA desaturase-1 (Scd-1) and fatty acid synthase (Fasn) were
60%, 42% and 40% higher in Pik3c2g� /� mice than in wild-type
controls, respectively (Supplementary Fig. 8f). Conversely, genes
promoting fatty acid catabolism such as PPARg coactivator-1a
(Pgc1a) and b (Pgc1b) were 63% and 64% lower in Pik3c2g� /�

mice, respectively (Supplementary Fig. 8g). Furthermore, HFD-
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fed mutant mice showed defective hepatic glycogen accumulation
(Supplementary Fig. 8h). In line with abnormal glucose
homeostatic responses and with increased liver-mediated
triglyceride production, epididymal fat from HFD-fed mice was
significantly heavier in mutant mice than in wild-type controls
(0.77±0.16 g versus 0.38±0.05 g; Po0.05 (Student’s t test)).
This was further confirmed by the analysis of the percentage of
body fat and lean mass by magnetic resonance imaging (MRI).
This analysis evidenced a strikingly higher fat mass in
HFD-fed Pik3c2g� /� than in Pik3c2gþ /þ mice (Fig. 9e), further
confirming Pik3c2g as a gene controlling insulin sensitivity,
glucose homeostasis and adiposity.

Discussion
Although the specific function of PI3K-C2g has long remained
unexplored, our study provides evidence that this enzyme is
critically required for delayed and sustained Akt2 activation
downstream of insulin stimulation, and is necessary for the fine
tuning of metabolic responses in the liver (Fig. 10).

Evidence for a role of PI3K-C2g in the control of insulin
metabolism emerged from the observation that Pik3c2g� /� mice
develop age-dependent glucose intolerance and marked hyper-
insulinemia. Although this phenotype peaked in older animals,
less pronounced impaired insulin sensitivity was already present
in 2-month-old PI3K-C2g-deficient mice that were characterized
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by reduced GS activation after refeeding and consequent
decreased hepatic glycogen accumulation. Such a condition can
be sufficient to trigger insulin resistance, as mice with hetero-
zygous loss of protein targeting to glycogen, a scaffold protein
involved in glycogen synthesis, show significant reduction in liver
glycogen and an attenuated insulin receptor signalling26.
Nonetheless, the mild insulin resistance detected in PI3K-C2g-
deficient mice was likely due to impaired inhibition of hepatic
glucose output as suggested by the results of the pyruvate
challenge. This effect might seem in contrast with the observed
normal regulation of gluconeogenetic genes like Pck1. However,
such findings are in line with what was previously reported in
mice with liver-specific ablation of Akt2; these mice show normal
Pck1 transcriptional regulation but, due to impaired GS
activation, they fail to induce rapid glucose diversion into
glycogen27 and they develop insulin resistance28. Given that
hepatic GS is mainly driven by an insulin-dependent glucose-6-
phosphate-mediated allosteric activation33, our results further
confirm Akt2 activation as a key insulin-evoked event redirecting
glucose-6-phosphate to glycogen and required to effectively
suppress glucose output28.

Consistent with these observations, the loss of PI3K-C2g
specifically reduced delayed and sustained insulin-dependent
Akt2 phosphorylation. This isoform-selective class II PI3K-
mediated Akt2 modulation indicates the existence of a so far
unforeseen signalling process involving a specialized interplay
between selected PI3K and Akt isoenzymes. Similarly, the absence
of PI3K-C2g appeared to specifically impact on GS activation,
while leaving unaffected the modulation of other Akt effectors,
such as the mTORC1/S6K axis and the FoxO1-3 transcription

factors. In support to this view, the lack of PI3K-C2g maintained
an intact insulin/mTORC1-dependent Srebp upregulation as
well as FoxO1-3-mediated transcriptional activation of genes
controlling gluconeogenesis.

Despite such effects, younger mutant mice maintained
normoglycemia and unaltered body weight. This likely occurred
in response to the activation of compensatory processes: for
example, Pik3c2g� /� mice showed increased serum triglycerides
and abnormally enlarged adipocytes starting from 2 months of
age, thus indicating that storage of calories-rich molecules is
diverted from glycogen to triglycerides. This situation might
mimic the classical overfeeding response where an excess of
glucose in a context of saturated glycogen storage causes the
surplus glucose to be converted by the liver into fat that is
subsequently stored in adipose tissue34. This is consistent with the
observation that reduced insulin receptor function frequently
leads to decreased liver mass and increased fat deposits35–37.

The bifurcation of insulin signalling into PI3K-C2g-
independent signalling versus PI3K-C2g-dependent prolonged
activation of Akt2 suggests the involvement of a spatially restricted
subcellular compartmentalization. In agreement with this model,
our studies in insulin-stimulated livers showed that, in the absence
of PI3K-C2g, a specific pool of endosomal PtdIns(3,4)P2 is
severely reduced, thus supporting a role for PI3K-C2g in spatial
and temporal regulation of insulin signalling38–41. Within the first
5 min after insulin receptor activation, an acute wave of Akt
phosphorylation occurs at the plasma membrane in response to a
spike of PtdIns(3,4,5)P3, mainly produced by PI3Ka3. Although
PtdIns(3,4,5)P3 is then rapidly removed by the phosphatases
phosphatase and tensin homolog (PTEN) and SH2 domain-
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containing inositol 5’-phosphatase (SHIP)42, eliminating the
phosphate on position 3 and 5, respectively, persistence of Akt
phosphorylation is supported by PI3K pathway induction
following endocytic internalization of the active insulin receptor
complex6. Interestingly, studies on the ubiquitously expressed
inositol polyphosphate 4-phosphatase A, which dephosphorylates
position 4 of the inositol ring and acts on endosomes, show that
this process relies on PtdIns(3,4)P2 rather than on PtdIns(3,4,5)P3.
Indeed, inositol polyphosphate 4-phosphatase A depletion from
EEs causes severe prolongation of Akt phosphorylation after
growth factor stimulation13,43. The rapid action of this
phosphatase also implies that the endosomal pool of
PtdIns(3,4)P2 is short lived and, in line with this view, an HPLC
analysis in wild-type and Pik3c2g� /� primary hepatocytes failed
to provide PtdIns(3,4)P2 in amounts amenable to quantification.
Although a plethora of lipid kinases and phosphatase can
contribute to PtdIns(3,4)P2 accumulation in endosomes42, our
results point to a specifically localized function of PI3K-C2g in the
concomitant production of PtdIns(3,4)P2 and isoform-selective

Akt2 activation. This is likely orchestrated by Rab5, a critical
controller of endosomal system organization in the liver44

that is activated in insulin-stimulated cells45. Our subcellular
localization studies showing that insulin induces the co-
localization of PI3K-C2g and Rab5 in vesicles corroborate this
view. Furthermore, the finding that PI3K-C2g directly binds
Rab5-GTP together with the ability of a constitutively active
Rab5Q79L mutant to induce PI3K-C2g localization as well as
PI3K-C2g-dependent PtdIns(3,4)P2 accumulation on EEs, support
the view that PI3K-C2g is a direct Rab5 effector. As Rab5 can
promote Akt activation5, our results indicate that PtdIns(3,4)P2

produced by PI3K-C2g plays a role in this process. Rab5
contributes to the selective activation of Akt2 through the
endosomal targeting of the adaptor protein APPL1 (refs 46,47),
which promotes the preferential association/activation with this
specific Akt isoform6,48,49. Our observations that PtdIns(3,4)P2 co-
localizes with PI3K-C2g in response to Rab5 activation support a
model where PI3K-C2g is critically required for the production of
a lipid-activating Akt2 on EEs.

Fed (HFD)

0

25

50

75

100

125

150

175 **

B
lo

od
 g

lu
co

se
 (

m
g 

dl
–1

)

 Fasted (HFD)

0

0.25

0.50

0.75

1.00

S
er

um
 in

su
lin

 (
ng

 m
l–1

)

*

Fed (HFD)

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 ***

S
er

um
 in

su
lin

 (
ng

 m
l–1

)

a bFasted (HFD)

0

25

50

75

100

125

150

175

**

B
lo

od
 g

lu
co

se
 (

m
g 

dl
–1

)

Pik3c2g +/+

Pik3c2g –/–

00

c

125

150 ***

B
lo

od
 tr

ig
ly

ce
rid

es
 (

m
g 

dl
–1

)

25

50

75

100

25

50

75

100 *

B
lo

od
 c

ho
le

st
er

ol
 (

m
g 

dl
–1

)

d
Pik3c2g +/+(HFD) Pik3c2g –/–(HFD)

e
**

0

15

30

45

%
 F

at

Pik3c2g
+/+

Pik3c2g
–/–

Pik3c2g+/+(HFD)

Pik3c2g –/–(HFD)

Figure 9 | Insulin resistance and dysfunctional lipid metabolism in Pik3c2g� /� mice after 16 weeks of high-fat diet (HFD). (a) Blood glucose levels in

Pik3c2gþ /þ and Pik3c2g� /� measured after 16 weeks of feeding with HFD, in fasted (n¼ 15 and n¼8, respectively) and fed conditions (n¼ 13 and n¼ 8,

respectively). (b) Serum insulin levels in HFD-fed Pik3c2gþ /þ and Pik3c2g� /� mice were measured in fasted (n¼ 9 and n¼ 6, respectively) and fed

conditions (n¼ 7 and n¼ 6, respectively). (c) Assessment of blood cholesterol (n¼ 11 and n¼ 5, respectively) and triglycerides (n¼ 12 and n¼6,

respectively) in Pik3c2gþ /þ and Pik3c2g� /� mice fed HFD for 16 weeks. (d) Representative images of Oil red O-stained liver sections, obtained

from HFD-fed Pik3c2gþ /þ and Pik3c2g� /� mice (n¼ 10 and n¼6, respectively). Scale bar, 40 mm. (e) Representative Coronal T1-weighted spin-echo

whole-body magnetic resonance imaging (MRI) scans of HFD-fed Pik3c2gþ /þ and Pik3c2g� /� mice (left) and fat mass quantification (right). Results in

a–c represent mean±s.e.m. Quantification of body fat percentage (e) was performed by segmenting images into three intensities using a k-means

clustering algorithm, with the volumes of highest intensities corresponding to adipose regions. The horizontal bar represents the mean value. *Po0.05,

**Po0.01, ***Po0.001 mutant versus the respective wild-type controls. P values were determined using Student’s t-test.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8400 ARTICLE

NATURE COMMUNICATIONS | 6:7400 | DOI: 10.1038/ncomms8400 | www.nature.com/naturecommunications 11

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


The ultimate outcome of the loss of PI3K-C2g, together with
the reduction in prolonged Akt2 activation, was insulin resistance
and adiposity. This was particularly evident in response to high-
fat diet, as PI3K-C2g-deficient mice developed insulin resistance,
dyslipidemia, fat mass increase and fatty liver. These conditions
might be explained by the upregulation of the transcription
factor Srebp1 and the concomitant downregulation of hepatic
expression of b-oxidative enzymes (PGC1a and b). These results
are in line with the finding that patients with severe insulin
resistance linked to an Akt2 point mutation develop increased
de novo lipogenesis and fatty liver50. Nonetheless, the Srebp
transcriptional upregulation found in PI3K-C2g-deficient mice
appears in contrast with what was observed in liver-specific
Akt2-null mouse mutants51. This discrepancy might lie in the
partial Akt2 signalling impairment in Pik3c2g� /�mice, which
did not affect the acute activation of Akt2 at the plasma
membrane. This residual Akt2 activation appears sufficient to
drive the increased pathway activation typically observed in the
presence of high serum insulin levels.

Overall, our data indicate that loss of PI3K-C2g induces the
development of a condition frequently preceding the onset of
type II diabetes mellitus. This is consistent with the report of the
association between a nucleotide polymorphism in the human
PIK3C2G gene and type II diabetes mellitus25. Therefore, our
results linking PI3K-C2g with Akt2 and metabolic control in the
liver provide a molecular mechanism for this association and
suggest this PI3K-C2g as a key element protecting from
age-associated and diet-related insulin resistance.

Methods
Generation of PI3K-C2c knockout mice. We created a knockout construct by
insertion of lacZ reporter gene into the Pik3c2g exon1 downstream to the ATG
codon Pik3c2g by homologous recombination strategy. The targeting construct
following lacZ gene contained a neomycin-resistant cassette, thus permitting the
G418 selection of transfected ES cells. The specific insertion in Pik3c2g locus was
determined by Southern blot analysis and one of the positive ES clones was injected
in blastocysts. The chimeric mice obtained were mated with C57BL/6 mice.

The heterozygous Pik3c2gþ /lacZ mice were mated to obtain knockout littermates.
Akt2-deficient mice52 were purchased from Jackson Laboratories.

Mice and genotype analysis. For all analysis, mice were maintained on a
129Sv-C57BL/6 mixed background and were handled according to institutional
animal welfare guidelines and legislation, as approved by the local Animal Ethics
Committee (Comitato di Bioetica e Valutazione, Torino, Italy). Phenotypes were
confirmed in both male and females either at the specified age. Genotyping was
performed by PCR using genomic DNA isolated by tails. The presence of the
wild-type allele was detected using the following primers: wtc2gfor 50-AGTGAG
CAACCCAAGCACTTGC-30 and wtkoc2grev 50-ACAGCAGGATTAAAACCAA
TGGCTG-30 . For the detection of the mutant allele with insertion of neomycin
cassette, the following primers were employed: koc2gfor 50-TATCAGGACATAG
CGTTGGCTACCCGTG-30 and wtkoc2grev 50-ACAGCAGGATTAAAACCAAT
GGCTG-30 .

Plasmid vectors and constructs. Myc-tagged and mCherry-tagged PI3K-C2g
constructs were made starting from I.M.A.G.E. full-length cDNA clone of human
PIK3C2G (ID 40146308; Source BioScience LifeSciences). N-terminal Myc-tagged
PI3K-C2g cDNA was inserted into the mammalian expression vector pcDNA3.1
(Invitrogen). mCherry sequence was inserted at N-terminus of PI3K-C2g cDNA
into pcDNA3.1 plasmid.

Reverse transcription–PCR. The expression analysis of wild-type and mutated
alleles was performed by RT–PCR. Briefly, total RNA was extracted using TRI
Reagent (Ambion) accordingly with manufacture’s instruction. cDNA was
synthesized starting from 500 ng of RNA.

The following primers were used for RT–PCR: Pik3c2g (RTc2gex1-for: 50-ATT
CGATGCTCTACCTCCATC-30 and RTc2gex3-rev: 50-TAGCGTGTGGCATAAG
AAGG-30), lacZ (forward: 50-CTGGCGTAATAGCGAAGAGG-30 and reverse:
50-TATGCAGCAACGAGACGTC-30); and actb primers (forward: 50-TGTTACCA
ACTGGGACGACA-30 and reverse: 50-TCTCAGCTGTGGTGGTGAAG-30) were
used as control RT–PCR. For real-time RT–PCR quantification of gluconeogenesis
mRNA levels, male mice were fasted overnight and intraperitoneally injected with
glucose solution (2 g kg� 1 of body weight). Total RNA was extracted as above. The
following primers were used for Real-Time PCR: Pck1 (forward: 50-GAAGAAATG
CTTTGCGTTGC-30 and reverse: 50-TGCCTTCGGGGTTAGTTATG-30), Gck
(forward: 50-GTGAGGTCGGCATGATTGT-30 and reverse: 50-TCCACCAGCTC
CACATTCT-30), G6pc (forward: 50-TCTGTCCCGGATCTACCTTG-30 and
reverse: 50-GAAAGTTTCAGCCACAGCAA-30), Fbp1 (forward: 50-TATACCCC
GCCAACAAGAAA-30 and reverse: 50-AAGCTATGGGGTTGCACTCA-30),
Srebp1c (forward: 50-CCAGAGGGTGAGCCTGACAA-30 and reverse: 50-AGCCT
CTGCAATTTCCAGATCT-30), Scd (forward: 50-CCAGAATGACGTGTACGAA
TGG-30 and reverse: 50-GCCACACGGCCCAGTTT-30), Fas (forward: 50-AGAGA
CGTGTCACTCCTGGACTT-30 and reverse: 50-GCTGCGGAAACTTCAGAA
AAT-30), Pgc1a (forward: 50-TGCCTTCATGCTGTGGTAAGTACT-30 and
reverse: 50-AAAACCCCGCATTTCTAAAGC-30) Pgc1b (forward: 50-CCTCTCCA
GGCAGGTTCAAC-30 and reverse: 50-GGCCAGAAGTTCCCTTAGGATAG-30)

Histological and biochemical analysis. For body mass and organ weight,
2-month-old male mice were allowed to eat ad libitum, were killed and weight
of fresh organs was measured.

White adipose tissue was isolated from anaesthetized mice and fixed in 4%
paraformaldehyde in PBS, 4 mm paraffin sections were stained by haematoxylin and
eosin. Cross-sectional areas of adipocytes were measured using Metamorph
software by counting 250 individual cells from random field in the section, per
animal. For haematoxylin and eosin and periodic acid-Schiff (PAS) staining, livers
were fixed in 4% paraformaldehyde and sectioned in 4 mm paraffin slides. For Oil
red O analysis, liver samples from HFD-fed mice were frozen in OCT compound
(VWR BDH Prolabo) and 8-mm thick sections were cut using a cryostat. Cut frozen
sections were fixed in formalin, stained with Oil red O (Sigma) solution and
counterstained with haematoxylin.

For glycogen determination hepatic glycogen was measured as previously
described53.

X-gal staining. Fresh tissues were directly frozen in cryostat and sectioned at
8 mm. The sections were fixed with 2% formaldehyde, 0.2% glutaraldehyde,
1� PBS for 5 min. After fixation, tissue samples were incubated in staining
solution (5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, 2 mM MgCl2, 0.01% Triton,
1 mg ml� 1 X-gal, 0.1� PBS) at 37 �C, in the dark, overnight. The sections were
subsequently washed with PBS and counterstained with nuclear fast red for 5 min.

Liver extracts preparation. Animals were fasted overnight and insulin (Actrapid,
Novo Nordisk) was administrated intraperitoneally (0.75 UI kg� 1 diluted in PBS
solution). Five, 15 or 30 min after injection, tissues were removed, frozen in liquid
nitrogen and homogenized in lysis buffer (50 mM Tris-HCl, pH¼ 8, 150 mM
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NaCl, 1% Triton X-100) supplemented with 50 mM NaF, 2 mM sodium orthova-
nadate, 1 mM sodium pyro-phosphate and protease inhibitor cocktail (Roche).

Immunoblotting and immunoprecipitation. Proteins from total liver or cellular
lysates or immunoprecipitated were separated by SDS– polyacrylamide gel
electrophoresis (SDS–PAGE), and probed with different primary antibodies as
specified in each figure legend. The specific signals were amplified by addition of
horseradish peroxidase-conjugated secondary antibodies and visualized with
enhanced chemiluminescence (ECL from Millipore). Western blotting images were
processed using a ChemiDoc XRS digital imaging system with Quantity One 1-D
analysis software (Bio-Rad Laboratories, Inc.).

Antibodies from Cell Signaling Technology (working dilution 1:1,000) were
the following: phospho-Akt (Ser473) (#4060), phospho-Akt (Ser308) (#13038),
phospho-Akt2 (#8599) phospho-GSK3 (Ser9)(#9327), phospho-FoxO1-3
(Thr24/32) (#9464), phospho-p70S6K (Thr389) (#9234), phospho-Glycogen
Synthase (Ser641) (#3891), total Akt1 (#2967), total Akt2 (#3063, #5239), total
Glycogen Synthase (#3893), total FoxO3 (#12829), total GSK3 (#12456), total
p70S6K (#2708), APPL1(#3858), Rab5(#2143) (#3547), Rab7(#2094), Myc-Tag
(#2272). Antibody to Glut2 (working dilution 1:1,000) was from Santa Cruz
Biotechnology Inc (sc-9,117). Original gel images are shown in Supplementary
Fig. 9.

PtdIns(3,4)P2 and PtdIns(3,4,5)P3 localization. Mice were fasted overnight
and insulin (Actrapid, Novo Nordisk) was administrated intraperitoneally
(0.75 UI kg� 1 diluted in PBS solution). Fifteen minutes after injection (or 5 min for
PtdIns(3,4,5)P3 detection), liver left lobe was removed and perfused with PBS,
followed by 4% paraformaldehyde perfusion. Liver samples were additionally fixed
overnight in 4% paraformaldehyde, followed by 25% sucrose overnight at 4 �C.
Following fixation, liver samples were frozen in OCT compound (VWR BDH
Prolabo) and 8-mm thick sections were cut using a cryostat. Liver sections were
equilibrated 5 min in PBS at room temperature and incubated 5 min with 0.02%
saponin and then 15 min with 50 mM NH4Cl. After 1 h blocking with 10%
goat serum at room temperature, sections were incubated with mouse
anti-PtdIns(3,4)P2 antibody (Z-P034b, Echelon Biosciences) at a 1:200 dilution
in 0.1% goat serum. For PtdIns(3,4,5)P3 detection, mouse anti-PtdIns(3,4,5)P3

antibody (Z-P345, Echelon Biosciences) at a 1:100 dilution was used. After washing
with PBS, Alexa 568-conjugated secondary antibody (Alexa Fluor 568 Goat Anti-
Mouse IgG, Invitrogen), 1:200 diluted in PBS 0.1% goat serum, was added and
incubated 1 h at room temperature. After washing with PBS, the sections were
counterstained with 4,6-diamidino-2-phenylindole and mounted.

To test antibody specificity against selected phosphoinositide, liposomes
containing both 95% (mol� 1) phosphatidylserine (PS) and 5%
phosphatidylinositol-3,4-bisphosphate diC16 (PtdIns(3,4)P2diC16; P3416,
Echelon Biosciences) or 5% phosphatidylinositol-4,5-bisphosphate diC16
(PtdIns(4,5)P2diC16; P4516, Echelon Biosciences) were prepared by drying under
nitrogen flux the lipid mixtures and resuspending it in 10 mM HEPES, pH 7.5, and
EDTA 1 mM, followed by sonication. The anti-PIP(3,4)P2 antibody (Z-P034b,
Echelon Biosciences) was pre-incubated with (PS/PtdIns(3,4)P2diC16) or (PS/
PtdIns(4,5)P2diC16) liposomes (100 mg) for 1 h at room temperature in PBS at a
1:200 dilution. Following pre-incubation, the antibody was added to the
cryosections as above described. To visualize PtdIns(3,4)P2 in cultured cells,
a GFP-TAPP1 probe was used as previously described54.

GS activity assay. GS activity was measured as previously described55. Briefly,
cleared liver extracts (300 mg of total protein) were incubated with a buffer
containing and 0.2 ml of UDP-(14C)Glucose (Perkin Elmer, NEC403010UC) in a
final volume of 90ml in the presence or absence of 6.7 mM glucose-6-phosphate.
The reaction was incubated for 20 min, spotted on 3M filter paper (Whatman-GE
Healthcare), washed and counted.

EE purification. For subcellular fractionation, liver tissues or cultured cells were
gently homogenized in homogenization buffer (250 mM sucrose, 3 mM imidazole
pH 7.4, plus protease inhibitor cocktail). The samples were centrifuged at
3,000 r.p.m. to remove nuclei and cell debris. Postnuclear supernatant was
subsequently separated by sucrose gradient centrifugation. In detail, the
postnuclear supernatants were adjusted to 40.6% sucrose using a stock solution
(62% sucrose, 3 mM imidazole pH 7.4), loaded at the bottom of centrifugation
tubes (SW55), then sequentially overlaid with 1.5 ml of 35% sucrose solution
(35% sucrose, 3 mM imidazole pH 7.4) followed by 1 ml of 25% solution (25%
sucrose, 3 mM imidazole pH 7.4) and 1 ml of homogenization buffer on top of the
load. After 1 h centrifugation, at 35,000 r.p.m. at 4 �C, EEs were recovered from
interphase between 35 and 25% layers, LEs were recovered from uppermost portion
of 25% phase, and heavy membranes including endoplasmic reticulum, Golgi and
plasma membranes were recovered from lowest interphase. Subsequently proteins
from EE and LE fractions were precipitated with methanol/chloroform and loaded
in SDS–PAGE for western blot analyses.

Active Rab5 binding. GST-Rab5A (Canis lupus) was expressed in BL21 Star
(DE3) bacterial cells (#C6010-03, Life Technologies). Protein was purified with
glutathione beads (Thermo Scientific), analysed by SDS–PAGE and Coomassie
Blue staining, and used for Rab5A pull-down experiments. PI3K-C2g and
Vps15 were synthesized using the TNT Quick Coupled Transcripiton/Translation
Systems (Promega) and Expre35s35s, [35S]-Protein Labeling Mix (Perkin Elmer).
GST-Rab5A beads were loaded with either GDP or GTPgS as described56, and
incubated with the [35S]-labelled proteins at 4 oC for 2 h. After six washes
with 20 mM Tris (pH 7.4), 25 mM NaCl, 5 mM MgCl2, 0.1% NP-40, 1 mM
dithiothreitol, 10mM of either GDP or GTPgS proteins bound to the beads
were analysed by SDS–PAGE and autoradiography.

Immunofluorescence of hepatocytes and cell lines. Hepatocytes were isolated
from livers using a modified version of a previously described protocol57. Briefly
after dissection, liver left lobe was perfused with Hepatocyte Liver Perfusion
Medium (Gibco) and collagenase containing medium, Hepatocyte Liver Digest
Medium (Gibco). Subsequently to the perfusion, a mechanical disruption of the
capsule lobe was performed and the cell suspension was applied over Percoll
1.06 g ml� 1 solution. The cell layer recovered from the bottom of the falcon tube
was washed with Williams’ Medium E with GlutaMAX I (Gibco), 4% of Fetal
Bovine Serum (Gibco) and 1% Penicillin/Streptomycin (Invitrogen). Cell viability
of the enriched hepatocyte preparation was assessed by Trypan blue staining.
Freshly isolated hepatocytes were plated onto collagen-coated 12-well glass plates
(2� 105 cells per well), containing Williams’ Medium E with GlutaMAX I (Gibco),
4% of Fetal Bovine Serum (Gibco) and 1% Penicillin/Streptomycin (Invitrogen).
The following day the medium was changed and hepatocytes were serum-starved
overnight in DMEM medium with 1% Penicillin/Streptomycin (Invitrogen)
without serum. The next day the hepatocytes were starved with DMEM without
glucose, without L-glutamine, without sodium pyruvate, without phenol red
(Gennaxon) and, after 4 h, insulin (Actrapid, Novo Nordisk) was added to the
medium at 100 nM concentration.

For electroporation, the Amaxa Nucleofector was used with the mix specifically
optimized for primary hepatocyte transfection (Amaxa #VPL-1,004) following
instructions from the manufacturer. Cells were analysed by immunofluorescence
24 h after transfection. Immunofluorescence was performed with the antibodies
mentioned above but at a working dilution of 1:100.

Glucose tolerance test. GTT was conducted on 2-month-old male mice or
8-month-old mice, fasted overnight, by intraperitoneal injection of glucose
dissolved in PBS solution (2 mg kg� 1 of body weight). Blood glucose concentration
was determined using glucometer and Accu-Chek Active strips (Roche).

Insulin tolerance test. ITT was conducted on 2-month-old male mice fasted for
6 h before intraperitoneal injection of 0.75 UI kg� 1 of human insulin (Actrapid,
Novo Nordisk) diluted in saline solution. Blood glucose was measured as for GTT.

Pyruvate tolerance test. Pyruvate tolerance test was conducted on 2-month-old
male mice fasted for 6 h before intraperitoneal injection of 2 g kg� 1 pyruvate
diluted in saline solution. Blood glucose was measured as for GTT.

Food consumption and activity cage. For food intake determination,
2-month-old male mice were placed individually in cages with free access to food
and water and the food consumption was measured over 1 week. For physical
activity, horizontal and vertical movements of mice individually placed in activity
cage (Ugo Basile Instruments) were measured over a period of 24 h.

MRI and metabolic analysis on HFD-fed mice. For metabolic analysis on
HFD-fed animals, male mice at 1 month of age were fed ad libitum with fat-rich
diet (60% energy from fats, ETPF4215R0M Mucedola). After 4 months of
treatment, circulating levels of glucose and insulin and GTT analysis were
performed as reported above.

For determination of body composition by MRI, images were acquired on a
1 Tesla M2 system (Aspect, Israel) equipped with a 30-mm transmitter/receiver
(TX/RX) solenoid coil and NRG Console 2.0 software. Mice’s breathing was
monitored with a circular pneumatic pillow under the abdomen (SA Instruments).
A T1-weighted Spin-Echo sequence was used to acquire high-resolution whole-body
coronal images (repetition time/echo time/flip angle/number excitations [TR/TE/
FA/NEX]¼ 400 ms/8.7 ms/90�/3; field of view [FOV]¼ 10 cm, matrix¼ 192� 192,
number of slices: 18, slice thickness: 1.5 mm, in-plane spatial resolution: 521 mm,
acquisition time: 4 min).

All data processing was performed by in-house script implemented in a
commercial software package (MATLAB R2008, The MathWorks Inc.). The
T1-weighted image histogram has three dominating classes, background, lean mass
and fat, so the total fat volume was isolated by segmenting the image into three
categories by using a k-means clustering algorithm.

Plasma glucose and insulin levels. For determination of blood levels of glucose
and insulin, male mice fed ad libitum were analysed. For glucose determination in
fed conditions, measurements in triplicate at the same hour of three different days
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were performed with each animal. For fasted levels of glucose and insulin, mice
were starved overnight. Insulin levels were determined using RIA kit, following the
manufacturer’s instructions (Sensitive Rat insulin RIA, Millipore).

Statistical analysis. Statistical significance was calculated with Student’s t-test and
one- or two-way analysis of variance followed by Bonferroni’s multiple comparison
post-test. Values are reported as the mean±standard error of the mean. Statistical
significance is indicated as: *Po0.05; **Po0.01; ***Po0.001.
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