
KSGM: Keynode-driven Scalable Graph Matching

Xilun Chen, K. Selçuk Candan
Arizona State University

Tempe, AZ, USA
{xilun.chen, candan}@asu.edu

Maria Luisa Sapino
University of Torino

Torino, Italy
marialuisa.sapino@unito.it

Paulo Shakarian
Arizona State University

Tempe, AZ, USA
shak@asu.edu

ABSTRACT
Understanding how a given pair of graphs align with each other
(also known as the graph matching problem) is a critical task in
many search, classification, and analysis applications. Unfortu-
nately, the problem of maximum common subgraph isomorphism
between two graphs is a well known NP-hard problem, rendering
it impractical to search for exact graph alignments. While there
are several heuristics, most of these analyze and encode global and
local structural information for every node of the graph and then
rank pairs of nodes across the two graphs based on their structural
similarities. Moreover, many algorithms involve a post-processing
(or refinement) step which aims to improve the initial matching
accuracy. In this paper 1 we note that the expensive refinement
phase of graph matching algorithms is not practical in any appli-
cation where scalability is critical. It is also impractical to seek
structural similarity between all pairs of nodes. We argue that a
more practical and scalable solution is to seek structural keynodes
of the input graphs that can be used to limit the amount of time
needed to search for alignments. Naturally, these keynodes need to
be selected carefully to prevent any degradations in accuracy dur-
ing the alignment process. Given this motivation, in this paper,
we first present a structural keynode extraction (SKE) algorithm and
then use structural keynodes obtained during off-line processing
for keynode-driven scalable graph matching (KSGM). Experiments
show that the proposed keynode-driven scalable graph matching al-
gorithms produce alignments that are as accurate as (or better than)
the state-of-the-art algorithms, with significantly faster online exe-
cutions.

1. INTRODUCTION
Graphs have been used to represent a large variety of complex

data, from multimedia objects, social networks, hypertext/Web,
knowledge graphs (RDF), mobility graphs,to protein interactions.
LetD be a set of entities of interest, a graph,G(V,E), defined over
V = D describes the relationships between pairs of objects in D.
The elements in the set V are referred to as the nodes or vertices of
the graph. The elements of the setE are referred to as the edges and

1This work is supported by NSF Grants #1339835 and #1318788.
This work is also supported in part by NSF grant #0856090.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CIKM’15, October 19–23, 2015, Melbourne, Australia.
c© 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806577.

!"#$%&'& !"#$%&(&

Figure 1: Graph matching/alignment problem seeks a maxi-
mum common subgraph isomorphism between two input graphs

they represent the pairwise relationships between the nodes of the
graph. Edges can be directed or undirected, meaning that the rela-
tionship can be non-symmetric or symmetric, respectively. Nodes
and edges of the graph can also be labeled or non-labeled. The
label of an edge, for example, may denote the name of the rela-
tionship between the corresponding pair of nodes or may represent
other meta-data, such as the certainty of the relationship or the cost
of leveraging that relationship within an application.

Due to the success of the graph model as a powerful and flex-
ible data representation, graph analysis and search tasks are also
increasingly critical in many application domains. In particular,
understanding how a given set of graphs align with each other (also
known as the graph matching/alignment problem, Figure 1) forms
the core task in many search, classification, and analysis applica-
tions. Unfortunately, the problem of maximum common subgraph
isomorphism between two graphs is a well known NP-hard prob-
lem [24], making it impractical to search for exact or maximal
graph alignments. As a result, while there are some attempts to
improve the performance of exact maximum common subgraph
matching solutions [23], most of the recent efforts in the area have
focused on seeking approximate/inexact graph alignments [3, 18,
22, 19, 29].

While these algorithms differ in their specific techniques, most
of them rely on a four phase process:

1. First, the matching algorithm analyzes and encodes the
global structural information (for example a spectral signa-
ture [23]) corresponding to the nodes of the graph.

2. Secondly, the algorithm analyzes and encodes the local struc-
tural information (such as neighborhood degree distribu-
tion [29]) for the nodes of the graph.

3. Once these global and local signatures are encoded, the
matching algorithm compares the signatures of pairs of
nodes across the given graphs to rank these pairs of nodes
(for example using a stable matching algorithm, like the Hun-
garian algorithm [16]) based on their overall structural simi-
larities.

1101

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302010347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

!"#$%&'& !"#$%&(&

)&)&

)&

)&

)&

)&

)&

)&
)&

)&)&
)&

)&

)&

)&

)&

)&*&

Figure 2: Keynode selection problem for scalable graph match-
ing: the nodes marked with "*" are keynodes of the input
graphs that can be used to reduce the amount of time needed to
search for alignments

4. Finally, a post-processing, or refinement, step (involving, for
example, a vertex cover operation) is used to improve the
accuracy of the initial matching [29].

Unfortunately, many of these steps result in significant scalability
challenges in terms of the matching time needed to compare the
pairs of nodes:

• In particular, the expensive refinement phase of graph match-
ing algorithms is not practical in applications where scalabil-
ity of the graph matching operation is critical.
• Moreover, especially in very large graphs, it is also imprac-

tical to seek pairwise structural similarities for all node pairs
during the graph matching process.

1.1 Contributions of this Paper
Based on these observations, in this paper, we argue that a more

practical and scalable solution would be to seek structural keyn-
odes of the input graphs that can be used to reduce the amount of
time needed to search for alignments (Figure 2). Of course, these
keynodes must be selected carefully to prevent any degradations in
accuracy during the alignment process, especially because, as men-
tioned above, refinement post-processes are detrimental to scalabil-
ity of matching algorithms.

Given this motivation, in this paper, we first present a highly ef-
ficient and effective structural keynode extraction (SKE) algorithm.
The SKE algorithm, which is executed off-line, relies on a 3-step
process:

1. In the first step, a PageRank algorithm [7] is ran to associate
a structural score to each node in the graph.

2. In the second step, a scale-space (based on a difference-of-
Gaussians (DoG) function defined over different scales of the
graph) is constructed.

3. In the third step, keynode candidates are extracted by ana-
lyzing the resulting scale-space for extrema of the DoG func-
tion and a subset of these candidates are selected as structural
keynodes.

We then propose a graph matching algorithm that uses these struc-
tural keynodes (obtained during off-line processing) for keynode-
driven scalable graph matching (KSGM). In particular, KSGM ex-
tracts only local signatures and relies on the structural keynodes for
fast node-to-node similarity searching. In addition, we also show
that this keynode-driven approach not only reduces the number of
comparisons that need to be performed online, but it also enables
effective matching, even without having to rely on an expensive as-
signment algorithm, like the Hungarian algorithm (with O(|V |3)
complexity). Experiment results show that the proposed structural
keynode extraction and keynode-driven scalable graph matching
algorithms produce alignments that are as accurate as (or better
than) the state-of-the-art algorithms, while requiring significantly
less online execution time without refinement.

1.2 Organization of this Paper
The paper is organized as follows: in the next section, we first

introduce basic concepts and review existing graph matching algo-
rithms. In Section 3, we provide overviews of the general graph
matching process as well as the proposed keynode-driven scalable
graph matching (KSGM) algorithm. Then, in Section 4, we present
our structural keynode extraction (SKE) algorithm. In Sections 5
and 6, we discuss how to use these structural keynodes for ob-
taining graph alignments. We discuss the complexity of the pro-
posed algorithms and parallelization opportunities in Section 7. We
present experimental evaluations with various real and synthetic
data sets in Section 8. These confirm that the proposed approx-
imate graph matching algorithm is highly effective and efficient.
Finally, we conclude the paper in Section 9.

2. BACKGROUND AND RELATED WORK
In this section, we review key concepts related to the graph

matching problem and discuss the existing algorithms.
Graph Isomorphism: Given two graphs G and H , G is isomor-
phic to H if there exists a bijective mapping from the nodes of G
to the nodes H that preserves the edge structure [13]: for any two
vertices that are adjacent on G, the vertices they are mapped to are
also adjacent on H , and vice versa.
Subgraph Isomorphism: Subgraph isomorphism seeks a bijective
function, f , such that there is a subgraph G′ of G and a subgraph
H ′ of H , such that G′ is isomorphic to H ′, with respect to f .
Maximum Common Subgraph Isomorphism: Maximum com-
mon subgraph isomorphism seeks the largest subgraph of G iso-
morphic to a subgraph of H [24]. Intuitively, the larger the max-
imum common subgraph of two graphs is, the more similar the
graphs are to each other.

One of the first exact graph matching algorithms was proposed
by Ullman [24]. An alternative way to search for a matching be-
tween two graphs is to rely on graph edit distance algorithms:
given two graphs the corresponding graph edit distance is the least
cost sequence of edit operations that transforms G1 into G2. Com-
monly used graph edit operations include substitution, deletion, and
insertion of graph nodes and edges. Unfortunately, the graph edit
distance problem is also known to be NP-complete [24]. In fact,
even approximating graph-edit distance is very costly; the edit dis-
tance problem is known to be APX-hard [8]. [8] shows that graph
isomorphism, subgraph isomorphism, and maximum common sub-
graph problem are special instances of the graph edit distance com-
putation problem. Many subgraph isomorphism search algorithms
have been developed, such as [15, 29, 14].
Approximate Graph Matching: In order to be applicable to large
graphs, many heuristic and approximate graph matching algorithms
have been proposed.

While, as we discussed above, graph matching through edit dis-
tance computation is an expensive task, there are various heuristics
that have been developed to perform this operation more efficiently.
GraphGrep [14] is one such technique, relying on a path-based
representation of graphs. GraphGrep takes an undirected, node-
labeled graph and for each node in the graph, it finds all paths that
start at this node and have length up to a given, small upper bound,
lp. Given a path in the graph, the corresponding id-path is the list
of the ids of the nodes on the path. The corresponding label-path is
the list of the labels of the nodes on the path. The fingerprint of the
graph, then, is a hash table, where each row contains the hash of the
label-path and the corresponding number of id-paths in the graph.
Irrelevant graphs are filtered out by comparing the numbers of id-
paths for each matching hash key and by discarding those graphs
which have at least one value in its fingerprint less than the corre-
sponding value in the fingerprint of the query. Matching sub-graphs
are found by focusing on the parts of the graph which correspond
to the label-paths in the query. After, the relevant id-path sets are

1102

selected and overlapping id-paths are found and concatenated to
build matching sub-graphs.

A common method to obtain an approximate graph matching
is to use the eigenvectors derived from the adjacency matrix of
the graph [23]: intuitively, two similar graphs should have simi-
lar eigenvectors; moreover, if we construct a |V | × |V | matrix (for
example the Laplacian of the graph or a matrix encoding node dis-
tances) and decompose it into three matrices of |V | × c, c × c,
and c× |V | elements using an eigen-decomposition technique like
SVD, the c-length vector corresponding the node v ∈ V can be
used as a global-signature corresponding to node v. Once node-to-
node similarities are computed, an assignment is usually found us-
ing an assignment algorithm, such as the Hungarian algorithm [16],
which uses a primal-dual strategy to solve this problem in O(|V |3)
time. This simple observation, led to several works leveraging dif-
ferent global-signatures for identifying node matches across differ-
ent graphs [3, 18, 22, 19, 29]. [28] formulates the labeled weighted
graph matching problem in the form of a convex-concave program,
which searches for appropriate permutation matrices by solving a
least-square problem. In addition, feature selection techniques are
used for more accurate calculation [11, 12, 20]. In order to improve
matching accuracy, [29] proposes to enrich the global-signatures
associated to the graph nodes with local-signatures, encoding the
properties of the immediate neighborhood of each node.

3. OVERVIEW OF KEYNODE-DRIVEN
GRAPH MATCHING

Given a set G = {G1, G2, ..., Gg} of graphs and a query graph
Gq ∈ G, in this paper, we seek the maximum graph matching be-
tween Gq and all Gi ∈ G (i 6= q). Note that the exact solution for
this problem is NP-hard [24]. Since we treat scalability as a key
constraint, we consider inexact solutions and rely on the match-
ing quality measure proposed in [29] to evaluate the accuracies of
the resulting alignments: Let Gq(Vq, Eq) be a query graph and let
Gi(Vi, Ei) be a graph in G. Let Mq,i(Vq,i, Eq,i) be a subgraph of
bothGq andGi, returned by an inexact subgraph search algorithm.
[29] defines the matching quality function as follows:

quality(Mq,i) =
|Eq,i|

min(|Eq|, |Ei|)
,

Intuitively, the quality function describes how similar the given
query graph Gq and known graph Gi are by using the ratio of
matched edges and the maximum number of edges that can be pos-
sibly matched, which is equal to the minimum number of edges be-
tween two graphs. In other words, the larger the number of edges
in the graph Mq,i, the better is the quality of the matching (or the
more similar the two graphs are).

3.1 Challenges
Given a query graph Gq , our goal is to rank the graphs in G ac-

cording to their matching similarities against Gq (and eventually
return the top few matches to the user). [29] solves this problem by
relying on a 6-step process, common to many graph search algo-
rithms:

1. [29], first, analyzes the global structure of each graph
through eigen-decomposition of the graph Laplacian matrix
and encodes this in the form of a c-length vector associated
to each node in the graph.

2. Secondly, [29] encodes the structural information local to
each node, vj , in the form of an sj-length degree distri-
bution vector, where sj is the number of nodes in the k-
neighborhood of the node.

3. Given the global and local signatures of all nodes in Gq and
Gi, [29] then computes the global and local similarities for
each pair of nodes from the two graphs, inO(|Vq|×|Vi|×c)
and O(|Vq| × |Vi| ×maxvj (sj)) time, respectively. It then

Algorithm 1 Overview of keynodes based graph matching
Input:

A set G = {G1, G2, ...Gg} of graphs
A query graph Gq ∈ G.

Output:
Rank Gi ∈ G in terms of matching quality
Offline process:

1: for all Gi ∈ G (including Gq) do
2: Perform structural keynode extraction (SKE) for Gi
3: Extract local-signatures for all nodes in Gi
4: (Optional) Extract global-signatures for all nodes in Gi
5: end for

Online process:
6: for all Gi ∈ G do
7: Compute local similarities for keynode pairs from Gi and

Gq .
8: (Optional) Compute global similarities for keynode pairs

from Gi and Gq and combine these with local similarities.
9: Select anchors to obtain a base matching

10: Expand the base matching to obtain Mq,i

11: Compute matching quality, quality(Mq,i)
12: end for
13: Rank Gi ∈ G in terms of quality(Mq,i)

combines (by multiplying) the global and local similarities
of each pair of nodes into a single value, thereby quantifying
the overall similarity of the pair.

4. Once the overall similarities for |Vq| × |Vi| pairs of nodes
are computed, [29] drops node pairs with small degrees and,
then, expands the remaining set of anchor pairs by adding,
in an iterative manner, immediate good nearby pairs to this
anchor set.

5. When no more pairs can be added to the anchor set, [29] uses
the Hungarian algorithm to identify an initial node matching
in O(max{|Vq|, |Vi|}3) time.

6. Finally, as a post-processing step, [29] applies a vertex cover
based refinement, which explores different subsets of the
nodes and searches for better alignments than the one ini-
tially identified. In particular, the algorithm seeks small ver-
tex covers, which are likely to give the mismatched nodes ad-
ditional chances to be refined. Note that since the minimum
vertex cover problem is known to be NP-hard, the algorithm
searches for minimal vertex covers inO(m×n3) time, where
m = min{|Eq|, |Ei|} and n = max{|Vq|, |Vi|}.

This process includes a number of very expensive steps: The first
two steps, involving global and local analysis are expensive, but can
be performed off-line and indexed for later reuse assuming that the
graphs are available ahead of time. The last four steps, however,
need to be performed on-line, yet they consist of operations that
are quadratic or higher. In particular, the last refinement step, with
O(m× n3) time cost is impractical for most large data graphs.

In this paper, we note that Step 3 can be significantly sped up
if the similarity computations are limited to only a small subset of
the vertices in Vq and Vi (which we refer to as keynodes of Vq and
Vi). However, the use of keynodes for node similarity computation
is not sufficient to reduce the overall complexity as, once the keyn-
odes are identified and the keynode pairs set is expanded, solving
the assignment problem needed to return the matching would still
take O(max{|Vq|, |Vi|}3) time, if we were to apply the Hungarian
algorithm on the extracted keynodes. Therefore, we also need to re-
duce the time complexity of this step significantly. It is especially
important that the initial keynode based similarity computation is
accurate as we cannot afford a cubic algorithm like Hungarian al-
gorithm to return a high-quality matching.

1103

3.2 Outline of KSGM

Algorithm 1 illustrates an overview of the keynode-driven scal-
able graph matching (KSGM) process. In the rest of the paper, we
study each step in detail. First, in the next two sections, we focus on
the offline steps of KSGM, which involve identifying keynodes and
extracting local-signatures. The online steps of the KSGM algorithm
are discussed in Section 6.

4. STRUCTURAL KEYNODE EXTRAC-
TION

In this section, we propose an off-line structural keynode ex-
traction (SKE) algorithm which identifies Θ% (where Θ is a user
provided parameter) of the nodes in V as the keynode set, K, of
a given graph, G(V,E) to support scalable graph matching. The
proposed SKE algorithm has a number of advantages: (a) First of
all, the identified keynodes are robust against noise, such as ran-
dom edge insertion/removal; and (b) the identified nodes represent
structural features of the graph of different sizes and complexities
(i.e., correspond to neighborhoods of different sizes).

4.1 Naive Solution - Selecting Structural
Keynodes based on Node Significance

As described above, the keynodes of the graph need to represent
the structural properties of the graph well (i.e., extracted keynodes
need to be structurally significant in the graph) to support effective
matching. Therefore, the first alternative is to rely on traditional
node significance measures.

Measures like betweenness [26] and the centrality/cohesion [5],
help quantify how significant any node is on a given graph based on
the underlying graph topology. The betweenness measure [26], for
example, quantifies the number of shortest paths that pass through
a given node. The centrality/cohesion [5] measures quantify how
close to a clique the given node and its neighbors are. Other au-
thority, prestige, and prominence measures [4, 7, 5] quantify the
significance of the node in the graph through eigen-analysis or ran-
dom walks, which help measure how reachable a node is in the
graph. PageRank [7] is one of the most widely-used random-walk
based methods for measuring node significance and has been used
in a variety of application domains, including web search, biology,
and social networks. The basic thesis of PageRank is that a node
is important if it is pointed to by other important nodes – it takes
into account the connectivity of nodes in the graph by defining the
score of the node vi ∈ V as the amount of time spent on vi in a suf-
ficiently long random walk on the graph. Given a graph G(V,E),
the PageRank scores are represented as ~r, where

~r = αTG~r + (1− α)~t

where TG is a transition matrix corresponding to the graph G, ~t is
a teleportation vector (such that ~t[i] = 1

|V |), and α if the residual
probability (or equivalently, (1 − α) is the so-called teleportation
probability). Unless the graph is weighted, the transition matrix,
TG, is constructed such that for a node v with k (outgoing) neigh-
bors, the transition probability from v to each of its (outgoing)
neighbors will be 1/k. If the graph is weighted, then the transi-
tion probabilities are adjusted in a way to account for the relative
weights of the edges.

Therefore, as the first alternative, we consider a PageRank based
keynode selection scheme: in this scheme, given a graph G(V,E),
we would (a) first identify the PageRank scores, p(vi), of all vi ∈
V , then (b) we would rank the nodes in non-increasing order of
PageRank scores, and finally, (c) we would return the top Θ% of
the nodes in V as the keynode set, K.

4.2 Proposed Solution - Robust Keynode Ex-
traction through Scale Space Analysis

We note that the above alternative has a number of disadvan-
tages:
• First of all, many of the structural significance measures,

such as PageRank, are not entirely robust against modifica-
tions in the graph. The PageRank score of a node, for ex-
ample, can jump significantly, if a new edge connects the
sub-graph in which the node is contained to a high PageR-
ank node in the graph.
• Secondly, common structural significance measures, like

PageRank, capture the significance of a node in the whole
graph and favor nodes that are overall central. However, this
may be disadvantageous as there is a possibility that smaller
scale, but distinct (and, therefore, useful for matching) struc-
tural features of the graph may be missed.

We therefore argue that we need a better alternative, which is both
robust and multi-scale. We build the proposed SKE algorithm based
on three key insights:
• Robustness: Even when the PageRank scores of the nodes

themselves vary due to graph transformations, such as edge
insertions and removals, a given node’s PageRank score rel-
ative to the scores of the nodes in its neighborhood is likely
to be stable.
• Structural distinctiveness: A node is structurally distinctive

in its neighborhood, if "the relationship between its PageR-
ank score to the PageRank scores of its neighbors" is dif-
ferent from the "relationships between the node’s neigh-
bors’ PageRank scores and the PageRank scores of their own
neighbors".
• Multi-scale: Since we do not know the scale of the struc-

turally distinctive features of the graph, we need to search
for features of potentially different sizes.

It is important to note that similar requirements also exist in
other application domains. For example, algorithms for extract-
ing such robust, local features have been developed for 2D images
(SIFT [21]), uni-variate time series [9], and multi-variate time se-
ries [25]. In this paper, we argue that a similar process can be used
to identify keynodes (corresponding to robust, multi-scale struc-
tural features) of a graph, if the nodes are annotated with PageRank
scores ahead of the time. Let G(V,E, p) be a PageRank-labeled
graph, where p() is a mapping from the nodes to the correspond-
ing PageRank scores. What makes the problem of extracting lo-
cal features from PageRank-labeled graphs challenging is that the
concepts of neighborhood, gradient, and smoothing are not well-
defined for graphs.

Therefore, before we describe the keynode extraction process,
we describe how to smooth a PageRank-labeled graph. Intuitively,
smoothing the graph with respect to the scores associated to the
graph nodes creates versions of the given graph at different reso-
lutions and, thus, helps identify features with different amounts of
details.

4.2.1 Gaussian Smoothing of a PageRank-Labeled
Graph

1D or 2D data are commonly smoothed by applying a convo-
lution operation with a Gaussian window. For example, if Y =
〈t0, t1, . . . , tl〉 is a time series data and σ is a smoothing parameter,
its smoothed version, Ỹ (t, σ), is obtained through G(t, σ) ∗ Y (t)
where ∗ is the convolution operation in t and G(t, σ) is the Gaus-
sian function

G(t, σ) =
1√
2πσ

e
−t2
2σ2 .

Essentially, the Gaussian smoothing process takes a weighted
average of values of the points in the vicinity of a given point, t.

1104

The closer a point to t, the higher is the weight. Therefore, in order
to implement a similar Gaussian smoothing of the given graph, we
first need to define a distance function to measure how close dif-
ferent nodes are to each other. Common applicable definitions of
node distance include the hop distance (determined by the shortest
edge distance between the nodes on the given graph) or hitting dis-
tance [10]. In this paper, we use hop distance to measure how far
nodes are to each other:

DEFINITION 1 (NODE DISTANCE MATRIX). Let us be given
a graph G(V,E) with n nodes. The ordering among the nodes is
described through a set of node distance matrices, Nj, where

• Nj, for j ≥ 0, is an n × n 0, 1-valued matrix, where for a
given node vi in the graph, G, the ith row in the matrix, Nj

is 1 only for nodes that have node distance exactly j from the
node vi, and

• Nj, for j ≤ 0, is an n × n 0, 1-valued matrix, where for a
given node vi, the ith column in the matrix, N(j,G) = 1
only for nodes that have distance exactly j on the inverted
graph, where all edges are inverted. �

Intuitively, the cell Nj[v1, v2] = 1 if the node v2 is exactly j hops
from v1. When j is positive the hop-distance is measured following
outgoing edges, whereas when j is negative, incoming edges are
followed. Given this, we construct multiple scales of the given
graph G by using a Gaussian graph smoothing function defined as
follows.

DEFINITION 2 (GAUSSIAN GRAPH SMOOTHING FUNCTION).
Let us be given a labeled graph G(V,E, x) and let

• σ be a smoothing parameter.
• X = 〈x(v1), x(v2), ..., x(vn)〉 be a vector encoding the la-

bels associated with the nodes, vi ∈ V .

Then, if G is a directed graph, the non-normalized Gaussian graph
smoothing function, S�G,σ() is defined as

S�G,σ(X) = G(0, σ)IX +

n∑
j=1

G(j, σ)NjX

+

n∑
j=1

G(j, σ)NjX,

where G(0, σ) is a Gaussian function with zero mean and σ stan-
dard deviation. If, on the other hand,G is an undirected graph, then
the non-normalized Gaussian graph smoothing function is

S�G,σ(X) = G(0, σ)IX +

n∑
j=1

2G(j, σ)NjX.

Intuitively, S� applies Gaussian-based weighted averaging to the
entries of vector X based on the hop-distances2. However, unlike
the basic Gaussian smoothing, during (non-normalized) relation-
ship smoothing, there may be more than one node at the same dis-
tance and all such nodes have the same degree of contribution. As
a consequence, the sum of all contributions may exceed 1.0. There-
fore, the normalized Gaussian graph smoothing function, S(G, σ),
discounts weights based on the number of nodes at a given distance:

SG,σ(X) =
(
S�G,σX

)
÷
(
S�G,σ1(n)

)
,

where 1(n) is an n-vector such that all values are 1 and “÷” is a
pairwise division operation. �
2In practice, since the Gaussian function drops fast as we move
away from the mean, we need to consider only a small window, w,
of hops

!"#$%"&'()"*+$,(,-../0$1(23/0(4-3&(

!"#$%"&'()"*+$,(,-../0$1(23/0(45(

65(77(6.8(9$)$*(5(

6:(77(6.8(9$)$*(:(

!"#$%"&'()"*+$,(,-../0$1(23/0(4!75(

6!75(77(6.8(9$)$*(;!75<(

6!"77(6.8(9$)$*(!"

!"#$%"&'()"*+$,(,-../0$1(23/0(4#$%"&'4!"((

!
"""""#

!
#

Figure 3: Computing the Difference-of-Gaussian (DoG) series
of the PageRank values of a graph

Intuitively, the smoothing function S applies Gaussian smoothing
on the X values (associated with the nodes, vi ∈ V) based on the
hop-distances between nodes and returns a vector

SG,σ(X) = 〈x̃(v1), x̃(v2), . . . , x̃(vn)〉

encoding the smoothed X values associated with the graph nodes.
Note that, since at a given hop distance there may be more than
one node, all the nodes at the same distance have the same degree
of contribution and the degree of contribution gets progressively
smaller as we get further away from the node for which the smooth-
ing is performed.

Therefore, given a PageRank-labeled graph, G(V,E, p), and a
corresponding PageRank vector, P = 〈p(v1), p(v2), ..., p(vn)〉,
encoding PageRank scores associated with the nodes, vi ∈ V , the
vector

SG,σ(P) = 〈p̃(v1), p̃(v2), . . . , p̃(vn)〉,
encodes the σ-smoothing of the PageRank-annotated graph,
G(V,E, p). We also say that SG,σ(P) encodes the PageRank
scores of G at scale σ.

We next describe how to construct a scale-space for the given
graph through an iterative smoothing process leveraging the PageR-
ank vector and the structure of the graph.

4.2.2 Graph Scale-Space Construction
The first step in identifying robust graph features is to generate a

scale-space representing versions of the given graph with different
amounts of details. In particular, building on the observation that
features are often located where the differences between neighbor-
ing regions (also in different scales) are large, we seek structural
features of the given graph at the extrema of the scale space defined
by the difference-of-the-Gaussian (DoG) series. More specifically,
given
• a PageRank-labeled graph, G(V,E, p),
• the corresponding vector, P = 〈p(v1), p(v2), ..., p(vn)〉 en-

coding the scores associated with the nodes, vi ∈ V ,
• a minimum smoothing scale, σmin,
• a maximum smoothing scale, σmax,
• the number, l, of levels of the scale space,

then, we compute a difference-of-Gaussians (DoG) series,
D(G,P, σmin, σmax, l) = {D1, D2, ..., Dl}, where each Di en-
codes the differences of two nearby scales separated by a multi-
plicative factor k:

Di = SG,kiσmin(P)− SG,ki−1σmin
(P),

1105

!"#$%&'()'

!"#$%&'()*+'

!"#$%&'(),+'

-+' -.' -/'

-0' -1'

-2' -3' -4'

56'

7)869'

Figure 4: Extrema detection

where k = l

√
σmax
σmin

. Figure 3 visualizes the process:

• On the left hand side of the figure, we have the incremen-
tally smoothed versions of the PageRank vector, P . Here,
the lowest level, SG,σmin(P), corresponds to the most de-
tailed version of the graph (with the least amount of smooth-
ing), whereas SG,σmax(P) corresponds to the least detailed
(most smoothed) version of the graph. In other words, σmin
determines the sizes of the smallest structural features we
can locate and σmax = klσmin determines the sizes of the
largest structural features we can identify. In particular, since
under Gaussian smoothing, a diameter of 6σ would cover
∼ 99.73% of the weights, the diameter of the smallest struc-
tural feature that can be identified using SKE is ∼ 6σmin
hops, whereas the diameter of the largest feature would be
∼ 6σmax hops.

The number of levels, l, denotes the number of detail levels
(or scales) we explore between σmin and σmax. Intuitively,
each of these levels corresponds to a different target size for
the structural features of the graph.

• On the right hand side of the figure, we have the resulting
Difference-of-Gaussian (DoG) series, consisting of vectors,
D1 through Dl.

Note that, intuitively, Di[j] measures how different the PageRank
values of the neighborhood around vj at scale σi−1(= ki−1σmin)
are from the PageRank values of the neighborhood around vj at
scale σi(= kiσmin).

Therefore, a large Di[j] value would indicate a major structural
change when neighborhoods of different size around vj are con-
sidered (e.g., a node with a high PageRank score is included when
considering a neighborhood of larger scale). In contrast, a small
Di[j] indicates that there is minimal structural change when con-
sidering neighborhoods of different scales.

4.2.3 Identifying Keynode Candidates
As we mentioned earlier, our intuition is that a graph node is

structurally distinctive in its neighborhood, if "the relationship be-
tween its PageRank score to the PageRank scores of its neighbors"
is different from the "relationships between the node’s neighbors’
PageRank scores and the PageRank scores of their own neighbors,
at multiple scales". Therefore, to locate the keynode candidates,
we focus on the local extrema of the difference-of-Gaussian (DoG)
series D. More specifically, we identify 〈vj , σi〉 pairs where the
DoG value for node vj at scale, σi = kiσmin, is an extremium
(maximum and/or minimum) with respect to the neighbors of vj in
the same scale as well as neighbors in the previous and next levels
of the scale space.

In order to verify if the pair 〈vj , σi〉 is an extremium or not,
we compare Di[j] with the values corresponding to eight DoG-
neighbors in the scale-space, as visualized in Figure 4:

• DoG-neighbors numbered #2 and #7 correspond to the
DoG values of the same node at the previous and next lev-
els of the scale space. Therefore, we have

N〈vi,σj〉[2] = Di−1[j] and N〈vi,σj〉[7] = Di+1[j].

• In contrast, DoG-neighbors #3, #5, and #8 correspond to
the (average) DoG values of the forward neighbors of the
node vj , at the previous, current, and next levels of the scale
space, respectively. Therefore, we have

N〈vi,σj〉[3] = (FDi−1) [j],

N〈vi,σj〉[5] = (FDi) [j], N〈vi,σj〉[8] = (FDi+1) [j],

where, F is a row-normalized adjacency matrix accumulating
the (averaged) contributions of the nodes to their neighbors
along the forward edges.

• Similarly, DoG-neighbors #1, #4, and #6 correspond to
the (average) DoG values of the backward neighbors at the
previous, current, and next levels of the scale space. There-
fore, we have

N〈vi,σj〉[1] = (BDi−1) [j],

N〈vi,σj〉[4] = (BDi) [j], N〈vi,σj〉[6] = (BDi+1) [j],

where, B is a row-normalized backward-adjacency matrix
(where all edges are reversed) accumulating the (averaged)
contributions of the nodes to their neighbors along the back-
ward direction of the edges.

Given these, the pair 〈vj , σi〉 is an extremum (i.e., vj is a keynode
candidate at scale σi), iff Di[j] is a local maximum

Di[j] ≥MAX
1≤h≤8

N〈vj ,σi〉[h]

or it is a local minimum

Di[j] ≤MIN
1≤h≤8

N〈vj ,σi〉[h].

Intuitively, since Di[j] measures how different the PageRank val-
ues of the neighborhood around vj at scale σi are from the PageR-
ank values of the neighborhood around vj at scale σi−1, a local
maximum corresponds to a highly scale-sensitive region (amidst
relatively scale-insensitive regions), whereas a local minimum cor-
responds to a scale-insentive region (amidst more scale-sensitive
regions), of the graph.

4.2.4 Selecting the Best Keynodes
In the final step, we need to rank the keynode candidates and

return the top Θ
100
× |V | of them, where Θ is a user provided pa-

rameter, as the keynode set, K. We propose Extremum Ranking to
select the best keynodes.

Since keynodes are located at the local extrema of the DoG se-
ries, we can rank the keynode candidates based on their extremum
score defined as follows: Let the pair 〈vj , σi〉 be a local extremum.
The corresponding extremum score, ξ(〈vj , σi〉), is defined as

Di[j]−
(
MAX
1≤h≤8

N〈vj ,σi〉[h]

)
if 〈vj , σi〉 is max.

(
MIN
1≤h≤8

N〈vj ,σi〉[h]

)
−Di[j] if 〈vj , σi〉 is min.

Intuitively, the higher the extremum score is, the better local ex-
tremum (and, thus, a better keynode) is 〈vj , σi〉.

1106

5. LOCAL NODE SIGNATURES
The next step in the process is to extract the local signatures (to

be used to compute local node similarities) for the nodes in the
graph. Note that this process is also offline.

While there are different local signatures proposed in the liter-
ature, in our work we build on the k-neighborhood degree distri-
bution based local signature proposed in [29] (both because it is
simple and effective and also because this helps us compare our
keynode-driven approach to the approach proposed in [29] more
directly). Briefly, for each node vj ∈ V and for a user provided k,
[29] first identifies the set, Nk(vj) ⊆ V , of nodes that are at most
k hops from vj and extracts a subgraph, Gk(vj) ⊆ G, induced by
vj and its k-hop neighbors. Then the degree sequence,

κj = [dj,1, dj,2, . . . , dj,|Nk(vj)|]

consisting of the degrees of nodes in Gk(vj) (excluding vj), sorted
in non-increasing order, along with the degree of the node vj and
the numbers of vertices and edges in its k-hop neighborhood, form
the local signature of node vj :

local_signature(vj) = 〈κj , degree(vj), νj , εj〉,

where νj = |Nk(vj)∪{vj}| is the number of nodes inGk(vj) and
εj = |Ek(vj)| is the number of edges.

Note that, while we use a local signature similar to that proposed
in [29], we extend the node pair ranking function to better account
for the node degrees as discussed later in Section 6.1.1. As we see
in Section 8, this extension provides a significant boost in accuracy.

6. (KEYNODE-BASED) GRAPH MATCH-
ING

As discussed in Section 3 and outlined in Algorithm 1, once the
keynodes are extracted and local signatures are computed offline,
the next steps of the algorithm are to

• compare the signatures of pairs of nodes across the given
graphs to rank these pairs of nodes,
• select a set of pairs of keynodes (we refer it as anchor set)

that serve as the base matching, and
• expand this base matching to obtain Mq,i.

We now describe how these steps are implemented in the keynode-
driven scalable graph matching (KSGM) algorithm.

6.1 Anchor Set Selection
LetG1(V1, E1) andG2(V2, E2) be two graphs and letK1 ⊆ V1

and K2 ⊆ V2 be the corresponding keynodes identified by the SKE
algorithm proposed in Section 4. The next step is to select a subset,
A, of the pairs of nodes inK1×K2 as the anchor set of alignments
based on a ranking function (a) evaluating how structurally similar
a pair of nodes are and (b) how likely they are to lead to an effective
expansion process to discover other alignments.

6.1.1 Node Similarity Matching and Node Pair
Ranking

As we discussed in Section 5, KSGM uses a local node signa-
ture similar to the one proposed by [29]: 〈κj , degree(vj), νj , εj〉,
where νj is the number of nodes in the neighborhood of
vj , εj is the number of neighborhood edges, and κj =
[dj,1, dj,2, . . . , dj,|Nk(vj)|] consists of the degrees of nodes in the
k-neighborhood of vj (excluding vj), sorted in non-increasing or-
der.

Local Neighborhood Similarity.
Let vi and vj be two nodes (from two different graphs)

and let Gk(vi) and G′k(vj) be the corresponding induced
k−neighborhood graphs. Then, local similarity function

nbhd_sim(vi, vj) proposed by [29] accounts for the alignment be-
tween the degree distributions in these neighborhood graphs3:

nbhd_sim(vi, vj) =
nmin +D(vi, vj)

(νi + εi)(νj + εj)
,

where

dmin = min{degree(vi), degree(vj)}
nmin = min{νi, νj}

D(vi, vj) =
dmin +

∑nmin−1
h=1 min{di,h, dj,h}

2
.

Node Pair Ranking with Extended Similarity.
While the local neighborhood similarity computation we use is

similar to the one proposed in [29], we rank pairs of nodes differ-
ently. Let vi and vj be two nodes (from two different graphs). In
particular, [29] ranks the pair 〈vi, vj〉 of nodes based on their neigh-
borhood similarities, nbhd_sim(vi, vj). We, however, argue that
neighborhood similarity is not sufficient for accounting for how ef-
fective the node pair is in supporting expansion. More specifically,
we observe that a pair, 〈vi, vj〉, is likely to be a better anchor for
expansion than the pair 〈va, vb〉 if not only (a) the neighborhoods
of vi and vj are more similar to each other than the pair, va and
vb, but also (b) if vi and vj have degrees that are more aligned with
each other than va and vb. Based on this observation, instead of ap-
plying a degree threshold, we propose that the pair 〈vi, vj〉 should
be ranked based on the ranking function

ρ(vi, vj) = nbhd_sim(vi, vj)×
min{degree(vi), degree(vj)}
max{degree(vi), degree(vj)}

.

Note that [29] simply drops node pairs where the minumum of the
two node degrees is smaller than the larger average degree of the
two input graphs. We, however, argue that such node pairs may
be useful, especially if the degrees in the graph are not uniformly
distributed and the maximum matching occurs at the sparse por-
tions of the graph. Therefore, we keep such pairs as long as they
rank highly based on ρ(). We evaluate this ranking function in Sec-
tion 8.

6.1.2 Keynode pair Selection
[29] uses the Hungarian algorithm to identify an initial node

matching in O(n3) time, where n = max{|V1|, |V2|}. To reduce
the execution time, [29] prunes those node pairs for which the sim-
ilarity is ≤ 0.5. Since, instead of considering the node pairs in
V1 × V2, we only need to consider pairs of nodes in K1 ×K2, and
since |K1| � |V1| and |K2| � |V2|, keynode-driven processing
is likely to be faster even without using the threshold. However,
the cubic time of the Hungarian algorithm is still prohibitive and
impractical for scalable graph matching. Therefore, we propose a
greedy anchor selection algorithm, which (as we see in Section 8)
performs very well when used along with keynodes selected in Sec-
tion 4 and the proposed ranking function, ρ(). In particular, we first
include all keynode pairs in K1 ×K2 into a queue in the order of
their ranks based on ρ(), then, until the queue is empty, we remove
and consider the keynode pair, 〈v, u〉 at the head of the queue. If
neither v nor u has been marked anchored, we include 〈v, u〉 as
an anchor and we mark v and u as anchored, otherwise, we drop
the pair, 〈v, u〉.

Note that this process hasO((|K1|× |K2|)× log(|K1|× |K2|))
time cost (instead of the cubic cost of the Hungarian algorithm) and,
3In addition to using local similarities, [29] also extracts global
signatures along with the local-signatures to compute node similar-
ities. As we see in Section 8, the proposed keynode-driven graph
matching algorithm achieves good results without having to rely on
such global-signatures.

1107

as we see in Section 8, performs very well in practice. Furthermore,
the nature of Hungarian algorithm, which forces to pair all possible
nodes to produce the optimal bipartite matching for the given two
sets of nodes, is not guaranteed to provide a better matching in this
case. Since the extracted keynodes are not all necessarily perfectly
paired with each other, some keynodes can be a unique feature of
the given graph, which does not align with other graphs, by forcing
them to pair with other keynodes, it in fact introduces a bad initial
base matching, and thus expand into an even worse matching. The
proposed greedy matching algorithm, however, only consider the
highly aligned keynodes, which in practice provides better results
than the optimal bipartite matching.

6.2 Matching List Expansion
Because keynodes are inherently sparsely localized, the anchor

set, A, is not necessarily a good final matching for graphs G1 and
G2. We therefore need to expand this anchor list. Here, we fol-
low [29]’s recommendation and expand the list incrementally by
considering the neighbors (and their neighbors) until no effective
expansion is possible (but we use the ranking function ρ() instead
of the node similarity function):

1. we first include all node pairs in A into a ranked queue (i.e.,
max-heap) in the order of their ranks based on the ranking
function, ρ(),

2. then, for each node pair 〈v, u〉 ∈ A, we also include the node
pairs in neighbors(u) × neighbors(v) in the same ranked
queue

3. then, until the ranked queue is empty, we remove and con-
sider the node pair, 〈v, u〉 at the head of the ranked queue

(a) if either v or u has not yet been marked matched, then
i. we include the pair, 〈v, u〉, in the expanded match-

ing list, L,
ii. we mark both v and u as matched, and

iii. then, the pairs in neighbors(u) × neighbors(v)
are included in the ranked queue

(b) otherwise, we drop the pair, 〈v, u〉

Once the anchor list is expanded, [29] relies on a post-process,
with time complexity, O(m × n3), where m = min{|E1|, |E2|}
and n = max{|V1|, |V2|}. This step is not scalable due to its pro-
hibitive time complexity. Therefore, the proposed keynode-driven
scalable graph matching (KSGM) algorithm omits this refinement
post-process, due to its high time complexity4. Instead, the set,
L, of node pairs remaining after the expansion process is directly
returned as the aligned nodes of the matching, M1,2, for the input
graphs, G1 and G2.

7. TIME COMPLEXITY ANALYSIS
7.1 Offline Time Complexity

Let G(V,E) be a graph to be indexed in the database.

7.1.1 Structural Keynode Extraction
The first step in structural keynode extraction is to obtain the

PageRank scores for the nodes of the two graphs. While, this is an
expensive operation (involving a matrix inversion withO(|V |2.373)
complexity for a graph with |V | nodes), there are many efficient,
approximate implementations of PageRank, including sublinear ap-
proximations [6].

The second step is the creation of an l-layer scale-space for
G. To construct the scale space, we first construct a node dis-
tance matrix, which requires an all-pairs shortest path computa-
tion, with complexity O(|V |3) for a graph with |V | nodes, but
4Though, in cases where scalability is not critical, this refinement
can be implemented without any change in the rest of the algorithm.

more efficient randomized algorithms exist [27]. Once the node
distances have been computed, we construct the scale-space in
O(l × |V | ×max_w_nbhd_size), as for each of the l scales, the
score of each node needs to be smoothed considering the scores
of the vertices in its w-hop neighborhood (w is the Gaussian win-
dow size and max_w_nbhd_size is the size of the largest w-hop
neighborhood in G).

Once the scale-space is constructed, next, we identify the keyn-
ode candidates. This involves O(l × |V |) time, because for each
of the l scales, each node needs to be compared with a constant
number (8) of DoG-neighbors in the scale-space.

Finally, we rank the keynode candidates to select the top K =
Θ

100
V many as the keynodes to bootstrap the online matching pro-

cess. Let there be C many keynode candidates. Computing the
ranking scores for these takes O(C) time, because each keynode
candidate needs to be compared with a constant number of DoG-
neighbors and obtaining the top K takes O(C × log(K)) time.

7.1.2 Local Signature Extraction
Since the local signature extraction process needs to extract the

k-hop neighborhoods around the nodes, the complexity of this step
isO(|V |×max_k_nbhd_size), wheremax_k_nbhd_size is the
size of the largest k-hop neighborhood in G. Note that this step
can also leverage the node distance matrix constructed during the
offline keynode extraction process.

7.2 Online Time Complexity
Let G1(V1, E1) and G2(V2, E2) be two graphs. The online pro-

cess includes the following operations.

7.2.1 Local Similarity Computation for Keynodes
This process hasO(|K1|× |K2|× compare_length) complex-

ity, where
compare_length = min{max_k_nbhd_size1,max_k_nbhd_size2})
since signatures (of length are compared for each pair of nodes in
the keynode sets K1 and K2.

7.2.2 Anchor Set Selection
This greedy process has O((|K1| × |K2|)× log(|K1| × |K2|))

time cost as each pair off nodes among the keynode sets need to be
considered only once in ranked order.

7.2.3 Anchor Set Expansion
This has O((|V1| × |V2|) × log(|V1| × |V2|)) worst case time

cost, as in the worst case, all pairs of vertices across the two graphs
may need to be considered for expansion in ranked order.

8. EXPERIMENTS
In this section, we present experimental evaluations of the pro-

posed keynode-driven scalable graph matching (KSGM) algorithm.
In particular, we compare KSGM to the graph matching algorithm
presented in [29] in terms of efficiency and accuracy.

8.1 Data Sets
8.1.1 Facebook Data Graph

The first data set we used is the Facebook social circles data
graph obtained from the Stanford Large Network Dataset Collec-
tion [2]. This is a connected graph with 4039 nodes and 88234
edges. The graph has a diameter of 8 and a 90-percentile effective
diameter of 4.7. For the experiments, we constructed 10 subgraphs
by uniformly sampling connected subsets, containing 60− 70% of
the original graph nodes. Once the subgraphs are obtained, each
of the subgraphs is used as a query against the rest. We report the
averages of execution time and accuracy.

8.1.2 Synthetic Graph Data Sets
In addition to the Facebook graph, we also used synthetic graphs,

where we controlled the topology, size, and node degree to explore

1108

Table 1: Synthetic graph topologies and configurations
Graph topology Number of nodes Average degree
Erdos-Renyi (ER) 5000, 7500 (plus 1 to 10%) 4, 8, 16
Power law (PL) 5000, 7500 (plus 1 to 10%) 4, 8, 16

the advantages and disadvantages of the algorithms under different
scenarios.

We generated the synthetic graphs using the well known random
graph generating tool, NetworkX [1]. We consider two common
graph topologies: the Erdos-Renyi (ER) model and the power law
topology (PL) under the Barabasi-Albert model. Table 1 lists the
number of nodes and average degree settings that we used for as-
sessing our algorithms. For each configuration, we generated 10
graphs. Note that, in addition to the base sizes (of 5000 and 7500),
we randomly created an additional 1 to 10% more nodes to ensure
that the different graphs in the data set have slightly different num-
bers of nodes. As before, once the 10 graphs are obtained for each
configuration, each of the subgraphs is used as query against the
rest. We report the averages of execution time and accuracy.

8.2 Evaluation Criteria
All experiments were conducted using a 4-core Intel Core i5-

2400, 3.10GHz, machine with 8GB memory, running 64-bit Win-
dows 7 Enterprise. The codes were executed using Matlab 2013b
and Visual Studio 2012. To evaluate accuracy, we use the matching
quality defined in Section 3.

8.2.1 Execution Time
We report both offline and online execution times. As shown in

Algorithm 1 in Section 3, for KSGM, the offline execution includes
structural keynode and local-signature extraction steps. Online ex-
ecution includes similarity computation, anchor selection, and ex-
pansion steps. [29] does not perform structural keynode extraction;
instead, offline execution includes eigen-decomposition for global
signatures.

For both KSGM and [29], we omit the refinement step as its com-
plexity is prohibitive for scalable graph matching. For instance, for
the Facebook graph for which KSGM takes ∼ 6 seconds for online
processing for a pair of graphs, refinement takes ∼ 30 minutes –
i.e., it causes a ∼ 260× slowdown5.

8.3 Experiment Parameters
The default parameters for the structural keynode extraction

(SKE) algorithm are as follows:

• PageRank teleportation probability (1−α) = 0.15 (as is com-
monly assumed),

• least smoothing factor (σmin) = 0.275, corresponding to ∼
2-hop neighborhoods,

• maximum smoothing factor (σmax) = 0.777, corresponding
to ∼ 5-hop neighborhoods, and
• number (l) of smoothing levels = 6.

In addition, for KSGM, the default percentage (Θ) of keynodes se-
lected from the graph was set to 3%. Also, for all algorithms, local
signatures were extracted from 2-hop neighborhoods (i.e., k = 2),
as recommended by the authors of [29].

8.4 Results for the Facebook Graph
8.4.1 Default Configuration

Table 2 lists the online and offline processing times and accu-
racy for the Facebook graph under the default parameter settings.
As we see here, while KSGM spends more time in one-time, offline
5For this data configuration, when using expensive refinement post-
processing, KSGM and [29]’s accuracies are 0.72 and 0.696, respec-
tively.

Table 2: Experiment results for the Facebook Graph (default
parameters)

[29] KSGM PR Random
Matching time (online, sec.) 19.2 6.4 7.25 6.0
Accuracy 35.4% 38.0% 34.12% 15.4%

Extraction time (offline, sec.) 11.5 110.4 0.39 -

Table 3: Impact of the keynode percentage, Θ, for the Facebook
Graph

2% 3% 4% 6% 8%

Matching time (online, sec.) 6.5 6.4 6.3 6.4 7.2
Accuracy 37.6% 38.0% 38.7% 36.4% 33.2%

Table 4: Impact of the node-pair ranking function, ρ(), for the
Facebook Graph

ρ() w/o Degree with Global
Matching time (online sec.) 6.4 6.0 4.0
Accuracy 38.0% 31.8% 22.9%

Table 5: Impact of the local-signature neighborhood size, k, for
the Facebook Graph

2 hops (default) 3 hops 4 hops
Matching time (online, sec.) 6.4 5.5 4.3
Accuracy 38.0% 33.9% 23.3%

processing, its online matching time is 3× faster than that of [29].
Moreover, the matching accuracy of KSGM is 1.2× better than that
of the competitor, through it does not use global signatures, nor it
relies on the optimal Hungarian algorithm for anchor selection.

The table also lists the performance of KSGM when using top
PageRank (PR) scored nodes instead of those returned by the SKE
algorithm. As we see here, while the offline process is faster when
using PageRank scoring nodes, the runtime performance (both in
terms of execution time and accuracy) is worse when using SKE
keynodes. In addition, to see whether it is possible to achieve a
competitive accuracy if we were to select a similar percentage of
node randomly, in Table 2, we also include results where random
keynodes are used in the matching online phase. As we can see, the
accuracy drops significantly when we use random keynodes instead
of using robust structural keynodes extracted by the proposed SKE
algorithm6. These indicate that SKE is indeed effective in extracting
structurally distinct and useful keynodes.

8.4.2 Impact of the Keynode Percentage
Table 3 studies the impact of the percentage, Θ, of the nodes used

as keynodes. As we see, up to a point, the more keynodes we use,
the more accurate and faster the matching becomes. Beyond that
point, however, additional keynodes become disadvantageous. This
indicates that top keynodes are the most effective in serving as good
starting points and, as expected, below a certain rank they loose
distinctiveness, resulting in increased cost and loss in accuracy.

8.4.3 Impact of the Node-Pair Ranking Function
Table 4 studies the impact of the node-pair ranking function,

ρ(). In particular, we compare the performance of the ranking
function proposed in Section 6.1.1, to the ranking function without
degree extension and ranking function including additional global-
signature similarity as proposed in [29]. As we see here, the pro-
posed node-pair ranking function provides the best expansion op-
portunities (and thus provides the highest accuracy, with slight ex-
pansion time overhead). Also, the "with Global" optional provides
a much worse matching. Thus, while the algorithm allows, we en-
courage the users not to use "with Global" option.

6The slight time gain when using random keynodes is due to the
fact that random keynodes are not good starting points for expan-
sion and, thus, the expansion process ends earlier.

1109

Table 6: Experiment results for the synthetic data sets (avg.
degree=4, varying models and number of nodes)

PL(5000) PL(7500) ER(5000) ER(7500)
KSGM Online time (sec.) 6.9 13.9 6.5 14.5
[29] Online time (sec.) 99.3 223.7 746.7 745.1
KSGM Accuracy 45.3% 45.1% 45.7% 51.2%
[29] Accuracy 42.9% 42.8% 46.3% 53.0%

KSGM Offline time (sec.) 130.0 284.7 134.8 270.8
[29] Offline time (sec.) 23.8 82.8 24.9 84.5

Table 7: Impact of the average node degree (number of
nodes=5000, power law model)

degree=4 degree=8 degree=16
KSGM Online time (sec.) 6.9 7.5 9.3
[29] Online time (sec.) 99.3 116.7 141.2
KSGM Accuracy 45.3% 25.2% 13.9%
[29] Accuracy 42.9% 25.1% 14.1%

KSGM Offline time (sec.) 130.0 199.1 396.7
[29] Offline time (sec.) 23.8 27.9 53.2

8.4.4 Impact of the Neighborhood Size, k, for Local-
Signatures

Table 5 studies the impact of the neighborhood size, k, for local-
signature extraction. As we see in the table, the highest accuracy is
at 2 hops7, increasing the neighborhood size negatively affects the
accuracy, indicating that unless locally meaningful signatures are
used, the resulting node-pair ranking is not effective for expansion.
This shows the keynode matching process is more accurate when
keynodes are easy to localize and this requires them to be distinct
and locally representative. Large neighborhoods potentially violate
both. Note that this is in line with the observation in Table 4.

8.5 Results for the Synthetic Data Sets
In this subsection, we consider the impacts of graph topology,

size, and node degree using ER and PL topologies. We omit dis-
cussions of the impacts of the other parameters, as they mirror those
presented in Tables 3 through 5.

8.5.1 Default Configurations
Table 6 lists the performances of KSGM and [29] for synthetic

graphs for different topologies and numbers of nodes under the de-
fault parameter settings. As we see here, the online execution time
of KSGM is significantly (10× to 115×) faster than that of [29], es-
pecially for the ER topology. Moreover, on both Erdos-Renyi (ER)
and power law (PL) topologies, the accuracy is highly competi-
tive, with KSGM providing non-negligible accuracy gains for the PL
model (where it is relatively easier to identify effective keynodes).

8.5.2 Impact of Average Node Degree
Table 6 studies the impact of average node degree on matching

accuracies for the power law graph. As we see in the table, both
algorithms see a drop in the matching accuracy with larger node
degrees. However, KSGM stays competitive in terms of accuracy,
whereas it provides more gains in terms of online execution time.

9. CONCLUSIONS
Noticing that existing solutions to the graph matching problem

face major scalability challenges, we argue that it is impractical to
seek alignment among all pairs of nodes. Given these observations,
in this paper, we first presented an offline structural keynode ex-
traction (SKE) algorithm and then discussed how to use these struc-
tural keynodes in a novel keynode-driven scalable graph matching
(KSGM) algorithm. Keynodes are selected carefully especially be-
cause a post refinement step is not feasible due to scalability re-
quirements. Experiment results show that the proposed KSGM al-

7Coincidentally, this also is the scale at which the SKE algorithm
located an overwhelming majority of the keynodes for this graph.

gorithm works faster than the state-of-the-art algorithms without
refinement, yet produces alignments that are as good or better.

Acknowledgments
We thank the authors of [29] for sharing their source code and data.

10. REFERENCES
[1] http://networkx.github.io/
[2] http://snap.stanford.edu/index.html
[3] X. Bai, H. Yu, and E. R. Hancock. Graph matching using

spectrament. ICPR 2004.
[4] A. Balmin, et al. ObjectRank: Authority-based keyword search in

databases. VLDB, 2004.
[5] M.G. Borgatti, et al. Network measures of social capital.

Connections 21(2):27-36, 1998.
[6] C. Borgs, M. Brautbar, J. T. Chayes, S.-H. Teng. Multiscale

Matrix Sampling and Sublinear-Time PageRank Computation.
Internet Mathematics 10(1-2): 20-48, 2014.

[7] S. Brin, et al. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems 30:
107-117, 1998.

[8] H. Bunke. Error correcting graph matching: On the influence of
the underlying cost function. IEEE TPAMI, 21(9):917–922, 1999.

[9] K. S. Candan, R. Rossini, M. L. Sapino, X. Wang. sDTW:
Computing DTW Distances using Locally Relevant Constraints
based on Salient Feature Alignments. PVLDB, 1519-1530, 2012.

[10] M. Chen, J. Liu, and X. Tang. Clustering via random walk hitting
time on directed graphs. AAAI 2008.

[11] Xilun Chen, K. Selcuk Candan. LWI-SVD: Low-rank,
Windowed, Incremental Singular Value Decompositions on
Time-Evolving Data Sets. KDD 2014.

[12] Xilun Chen, K. Selcuk Candan. GI-NMF: Group Incremental
Non-Negative Matrix Factorization on Data Streams. CIKM 2014.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. 2001.

[14] R. Giugno and D. Shasha. Graphgrep: A fast and universal
method for querying graphs. ICPR, pp. 112-115, 2002.

[15] W. S. Han, J. Lee, and J. H. Lee. TurboISO: Towards ultrafast and
robust subgraph isomorphism search in large graph databases.
SIGMOD 2013

[16] R. Jonker and T. Volgenant.Improving the Hungarian assignment
algorithm. Oper. Res. 171-175. 1986.

[17] G. Karypis and V. Kumar "A fast and high quality multilevel
scheme for partitioning irregular graphs". SIAM Journal on
Scientific Computing 20 (1), 1999.

[18] D. Knossow, A. Sharma, D. Mateus, and R. Horaud. Inexact
matching of large and sparse graphs using laplacian eigenvectors.
GbRPR, 2009.

[19] W.-J. Lee and R. P. W. Duin. An inexact graph comparison
approach in joint eigenspace. In SSPR/SPR, 35-44, 2008.

[20] Jundong Li, Xia Hu, Jiliang Tang, Huan Liu. Unsupervised
Streaming Feature Selection in Social Media. CIKM 2015

[21] D. G. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. Int. Journal of Computer Vision, 60, 2, 2004.

[22] K. Riesen, X. Jiang, and H. Bunke. Exact and inexact graph
matching: Methodology and applications. Managing and Mining
Graph Data, pages 217-247, 2010.

[23] S. Umeyama. An eigen decomposition approach to weighted
graph matching problems. IEEE TPAMI, 10(5):695-703, 1988.

[24] J. R. Ullman. An algorithm for subgraph isomorphism, JACM
Vol. 23, No. 1, pp. 31-42. 1976

[25] X. Wang, K. S. Candan, M. L. Sapino: Leveraging metadata for
identifying local, robust multi-variate temporal (RMT) features.
ICDE, 2014.

[26] White D.R., et al. Betweenness centrality measures for directed
graphs. Social Networks, 16, 335-346,1994.

[27] R. Williams. Faster all-pairs shortest paths via circuit complexity.
STOC, 664-673. 2014.

[28] M. Zaslavskiy, F. R. Bach, and J.-P. Vert. A path following
algorithm for the graph matching problem. IEEE Trans. Pattern
Anal. Mach. Intell., 31(12):2227-2242, 2009.

[29] Y. Zhu, L. Qin, J. X. Yu, et al. High Efficiency and Quality: Large
Graphs Matching. CIKM, pp. 1755-1764. 2011.

1110

