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Abstract
Dynamic contrast-enhanced study in magnetic resonance imaging (DCE-
MRI) is an important tool in oncology to visualize tissues vascularization
and to define tumour aggressiveness on the basis of an altered perfusion
and permeability. Pharmacokinetic models are generally used to extract
hemodynamic parameters, providing a quantitative description of the contrast
uptake and wash-out. Empirical functions can also be used to fit experimental
data without the need of any assumption about tumour physiology, as in
pharmacokinetic models, increasing their diagnostic utility, in particular when
automatic diagnosis systems are implemented on the basis of an MRI multi-
parametric approach. Phenomenological universalities (PUN) represent a novel
tool for experimental research and offer a simple and systematic method
to represent a set of data independent of the application field. DCE-MRI
acquisitions can thus be advantageously evaluated by the extended PUN class,
providing a convenient diagnostic tool to analyse functional studies, adding
a new set of features for the classification of malignant and benign lesions
in computer aided detection systems. In this work the Tofts pharmacokinetic
model and the class EU1 generated by the PUN description were compared
in the study of DCE-MRI of the prostate, evaluating complexity of model
implementation, goodness of fitting results, classification performances and
computational cost. The mean R2 obtained with the EU1 and Tofts model
were equal to 0.96 and 0.90, respectively, and the classification performances
achieved by the EU1 model and the Tofts implementation discriminated
malignant from benign tissues with an area under the receiver operating
characteristic curve equal to 0.92 and 0.91, respectively. Furthermore, the EU1
model has a simpler functional form which reduces implementation complexity
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and computational time, requiring 6 min to complete a patient elaboration
process, instead of 8 min needed for the Tofts model analysis.

(Some figures may appear in colour only in the online journal)

Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an indispensable
tool in oncology for assisting with clinical drug trials and diagnosis (Orton et al 2007).
This technique can be used to characterize microvasculature, providing information about
the tumour microvessel structure and function (Neeman et al 2001). In fact DCE-MRI is
sensitive to a variety of contrast mechanisms, including blood flow, microvessel permeability
and diameter, tissue oxygenation and metabolism, which may give useful information about
the tumour microenvironment (Padhani 2002).

The ability to extract reliable quantitative information from DCE-MRI data is therefore
of great importance and it is typically achieved by applying mathematical pharmacokinetic
models (Brix et al 1991, Daldrup et al 1998, Tofts et al 1999) which have a direct relationship
with key biological processes of interest such as perfusion, blood volume and capillary
permeability (Fan et al 2007). This is a distinct advantage over the semi-quantitative approach
where descriptive statistics of the kinetic curve (maximum signal intensity, uptake rate, wash-
out rate, area under the curve) are estimated, but lack direct tissue or vascular information
(Schmid et al 2005).

However, pharmacokinetic model implementation typically involves assuming some
prior knowledge and requires measuring the arterial input function (AIF). Inaccuracy in the
theoretical model and related assumptions lead to potentially large errors in pharmacokinetic
parameter estimation. This has clear implications for clinical applications (Orton et al
2007).

Recent studies showed an increasing interest in developing automatic diagnosis systems
to detect and characterize prostate cancer on the basis of a multi-parametric MR imaging
approach (Vos et al 2012, Niaf et al 2012, Sung et al 2011). The aim was to assist radiologists
in making correct diagnosis decisions by providing an objective and reproducible malignancy
score for suspicious targets (Niaf et al 2012, Shah et al 2012). In such a framework, in
which CAD aims to automatically highlight cancer suspicious regions within a malignancy
likelihood map, there is no longer the need of displaying images reporting direct tissue or
vascular information (e.g. Ktrans or kep maps) because lesion candidates are directly accessible
to the radiologist through cancer probability maps as the output of the CAD. This way it is
possible to study DCE-MRI data by empirical approaches, overcoming problems associated
with pharmacokinetic model assumptions and AIF determination. Empirical functions can
thus be used to accurately describe DCE-MRI curves without making any assumption about
tumour physiology (Fan et al 2007). It was recently demonstrated that the empirical approach
based on phenomenological universalities (PUN) is able to reproduce experimental data from
a DCE-MRI acquisition (Gliozzi et al 2011).

The objective of this work was to compare the Tofts pharmacokinetic model and the class
EU1 (Gliozzi et al 2011), derived from the extended PUN description, when applied to a DCE-
MRI study of the prostate. Different parameters were exploited in this analysis: complexity
of model implementation, fitting results, classification performances and computational time
efforts.
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Material and methods

Study population and MRI protocol

A series of 28 patients who ranged in age from 47.4 to 75.6 years (mean ± SD age,
64.7 ± 7.5 years), with a prostate specific antigen (PSA) level greater than 4 ng ml−1 and
a confirmed prostate tumour by transrectal ultrasonography guided biopsy, were included in
this study. MR imaging was performed with a 1.5 T scanner (Signa HDx, GE, Milwaukee,
USA) using an endorectal coil. Conventional T1-w and T2-w MRI series were used to
locate the prostate and to exhibit its morphologic characteristics. After these preliminary
series, a precontrast sagittal 3D spoiled gradient recalled acquisition (SPGR) sequence
(TR/TE/NEX/FA: 3.6 ms/1.3 ms/0.5/20◦, bandwidth: 83.3 kHz, slice thickness: 3 mm,
acquisition matrix: 256 × 192, reconstruction matrix: 512 × 512, field of view: 20 × 20 cm)
was used as the baseline image for DCE-MRI acquisitions. After the precontrast sequence,
patients were given 0.1 mmol kg−1 gadobutrol (Gadovist, Bayer Schering, Berlin, Germany)
intravenously through a peripheral line at 0.7 ml s−1, using a power injector (Medrad Spectris,
Maastricht, The Netherlands), followed by an infusion of 20 cc normal saline at the same
velocity. In the contrast sequence, a multiphase sagittal 3D SPGR was applied with parameters
identical to those used during the precontrast sequence. For each patient a total of 25 phases
were acquired sequentially, each lasting 13 s, for a total acquisition time of approximately
6 min.

Reference standard

All patients underwent radical prostatectomy treatment for prostate cancer within 3 months
from the MR imaging session. Each prostate was divided into axial sections of the same
thickness and orientation of the MR images. Foci of cancer were contoured on each slice
by the pathologist who evaluated the presence of cancer. The Gleason scores of the detected
cancers in this study population were 6 (8 patients), 7 (19 patients) and 8 (1 patient). Images
collected during DCE-MRI exams and digitalized histopathology sections were stored in a
workstation for data analysis. Regions of interest (ROIs) were manually drawn for each patient
on MR images by an experienced radiologist on the basis of foci marked by the pathologist
on the prostate specimens. When the tumour extended on more slices, multiple ROIs were
considered, covering the whole lesion. Benign prostate regions were also selected for each
patient to sample benign tissues behaviour on DCE-MRI curves.

Data pre-processing and noise filtering

Signal intensity over the acquisition time course was considered for each pixel belonging the
ROIs drawn by the radiologist. The dynamic curve dataset was normalized to the corresponding
pixel precontrast value.

A noise filtering operation was performed on resulting curves with a discrete stationary
wavelet transform: a four-level signal decomposition using the Daubechies filter (Coifman
and Donoho 1995) was applied with hard thresholding on wavelet coefficients and a level-
dependent threshold selection method (Zhong and Cherkassky 2000). Finally the inverse
wavelet transform was performed to obtain corresponding denoised signals. The filtering
operation was introduced in the post-processing steps to reduce noise contribution and to get
more reliable results during the fitting procedure and parameter extraction.
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Signal-to-noise ratio (SNR) was computed according to equation (1):

SNR = 10 log

(
Psignal

Pnoise

)
(1)

where Psignal is the power of the signal without the filtering step and Pnoise the power of the
noise computed as

Psignal =
∑

i

s2
i ; Pnoise =

∑
i

r2
i (2)

in which si is the ith original signal point, ri is the difference between the ith original and
filtered points. SNR estimation was useful to discard noisy curves before fitting procedure; in
fact only curves satisfying the condition SNR > 10 dB were included in statistical analysis.

Tofts pharmacokinetic model application

The first model implemented in this study to describe DCE-MRI curves was the Tofts
pharmacokinetic model. It is based on some basic assumptions related to concepts in tracer
kinetics and MR theory (Patlak et al 1983, Tofts 1997). The principal assumption is that human
body tissues may be represented by one or more ‘compartments’, into and out of which the
contrast agent (CA) dynamically flows. A compartment may be defined as a bounded space
that the CA can occupy and whose volume remains constant on the time scale of the DCE-MRI
experiment (Yankeelov and Gore 2009). A second assumption is that each compartment is
assumed to be ‘well-mixed’ in the sense that the CA entering the compartment is immediately
distributed uniformly throughout it (Yankeelov and Gore 2009). In this work two compartments
were considered: the first was the extracellular–extravascular space (EES) and the other the
intravascular space. After intravenous injection, the CA is rapidly distributed throughout
the vasculature volume and extravasated into the EES in a reversible process characterized
by a distribution rate constant (Ktrans) and a redistribution rate constant (kep). Since there is
evidence that no metabolic trapping of CA occurs within the body (Radjenovic et al 2008), it is
completely eliminated in an unchanged form by renal excretion. Pharmacokinetic parameters
Ktrans and kep, therefore, reflect the process of CA transfer across the capillary walls and are
thus related to their permeability. The functional form of the implemented Tofts model is
reported in equation (3) (Tofts 1997, Cheng 2009):

Ct (t) = vpCp(t) + Ktrans
∫ t

0
Cp(τ ) e−kep(t−τ ) dτ, (3)

where Ct is the tracer concentration in tissue, vp the blood plasma fractional volume per unit
volume of tissue and Cp the tracer concentration in blood plasma (AIF). The first term denotes
the vascular tracer, and the second one the tracer in EES as a result of an exchange between
the two compartments.

A technically demanding portion of the data acquisition process in DCE-MRI is acquiring
an estimate of CA concentration in blood plasma as a function of time, Cp(t). A method to
obtain the AIF is from the DCE-MRI dataset itself, simultaneously measuring signal intensity
changes (due to the CA passage) in both blood and tissues. A second method assumes that the
AIF is similar for all subjects: it is first measured via blood samples in a cohort of subjects
and the resulting average AIF is then assumed to be valid for subsequent studies (Yankeelov
and Gore 2009). In our study the AIF was obtained using a previously published population
AIF (Parker et al 2006).

According to equation (3), there are three unknowns (vp, Ktrans and kep), whileCt andCp are
inputs of the model. Signal intensities of both malignant and benign ROIs (Ct) were considered
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pixelwise. Conversion of signals to concentrations was performed using the methodology
described by Medved et al (2004) and summarized in equation (4):

Ct (t) ≈ 1

r1

S(t) − S(0)

T1refSref(0)
, (4)

where r1 denotes the relaxivity of the CA, T1ref the value of T1 in the reference tissue, and S(0)

and Sref(0) are the initial (precontrast) signals in the tissue of interest and the reference one,
respectively. In our study r1 was set to 5.2 mM−1 s−1 (Rohrer et al 2005) and T1ref = 1.020 s
for urine content in bladder as reference (Rosenkrantz et al 2011). For each curve, the Tofts
pharmacokinetic model was fitted to concentration data points by nonlinear regression using
the Levenberg–Marquardt optimization method with initial parameters estimate by the grid
search algorithm.

Application of the PUN formalism to DCE-MRI

The second model implemented to study DCE-MRI curves was based on the PUN approach
proposed by Delsanto and collaborators (Castorina et al 2006, Delsanto 2007). Such a method
is a convenient empirical tool to analytically represent the experimental data of any given
dataset, independently of the application field. This procedure found applications in a wide
range of applied science: auxology (Delsanto et al 2008), tumour growth (Gliozzi et al 2010,
2009), nonlinear elasticity (Delsanto et al 2009) and others (Pugno et al 2008, Barberis et al
2010).

Recently, the formalism described in PUN theory has been applied for the evaluation of
DCE-MRI studies (Gliozzi et al 2011) in which it was demonstrated that the class EU1 is
capable to reproduce all curve types one can obtain in a DCE-MRI session (van Rijswijk et al
2004). The application of a PUN description to experimental points is then a valid alternative
to pharmacokinetic models, since it is based on an empirical approach and without the need
of any assumptions about tumour physiology or AIF determination (Gliozzi et al 2011).

The EU1 class is characterized by three fitting parameters, a0, β and r, and the model
implemented is reported in equation (5):

yEU1(t) = exp

[
rt + 1

β
(a0 − r)(exp βt) − 1

]
, (5)

in which a0 controls the steepness of the curve at t = 0 and together with β it primarily affects
the growth rate of the curve in its first part; β is in inverse proportion to the time the system
takes to reach the knee of the curve and r determines the behaviour of the second part of the
curve: its absolute value is linked to the rapidity of the change and for r > 0 one can observe a
further enhancement of the signal intensity, while for r < 0 there is a wash-out phase (Gliozzi
et al 2011).

The same fitting procedure as for the Tofts model was applied for the EU1 model on
concentration curves, and parameters were saved for each patient.

Statistical analysis

Goodness of fit was tested pixel by pixel employing the standard R2 criterion for both Tofts
and EU1 models, measuring mean R2 values (μ) and standard deviations (σ ).

After the fitting procedure, Tofts features (vp, Ktrans, kep ) and EU1 ones (a0, β, r) were
associated with each pixel, classified belonging either to a malignant or a benign ROI. The
area under the receiver operating characteristic (ROC) curve was evaluated for each single
parameter to assess the ability of each model to correctly classify a pixel as belonging to a
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Table 1. Means and standard deviations for the parameter Ktrans (Tofts model) and a0 (EU1 model)
computed on both tumoural and benign tissues; p-values are also reported for each parameter.

Parameter Tumoural tissue Benign tissue p-value

K trans (0.34 ± 0.12) min−1 (0.19 ± 0.06) min−1 <0.001
a0 (18.64 ± 9.84) min−1 (4.58 ± 4.41) min−1 <0.001

malignant tumour. According to the ROC analysis, the parameter displaying the highest area
under the ROC curve was selected among Tofts features and EU1 ones. Means and standard
deviations for these two parameters were calculated, distinguishing between the tumoural and
the benign datasets. The Kolmogorov–Smirnov normality test was carried out on the two
features with the highest area under the ROC curve. Both of them did not reject the hypothesis
of normality, with a 5% significance level. The presence of a difference between benign and
malignant groups of pixels was then assessed by the Student’s t-test, considering p < 0.05 as
a statistically significant result.

A logistic regression was constructed using two risk estimation models to compare their
performance in predicting prostate cancer. Both models used the presence or absence of cancer
as the dependent variable and the pair

(
Ktrans, kep

)
or (a0, r) as the independent variable. To

quantify the quality of the predictors based on each model, the ROC curves were generated
and the areas under the ROC curves were computed.

The relationship between the parameters of the pairs
(
Ktrans, a0

)
and (kep, r) was evaluated

with Pearson’s correlation coefficient. Finally the computational time was evaluated to
determine the cost needed for a complete exam analysis applying the Tofts as well as EU1
model.

Results

A total number of 99 140 curves were analysed with a resulting SNR equal to
(19.15 ± 5.49) dB. Approximately 92% of the dataset had an SNR > 10 dB and corresponding
R2 of such dataset was 0.902 ± 0.090 for the Tofts model and 0.957 ± 0.073 for the EU1
description. The best performing parameter among the Tofts triplet was Ktrans with an area
under the ROC curve equal to 0.873 ± 0.068; among EU1 fitting parameters, a0 displayed
the greatest ROC area equal to 0.897 ± 0.061. The mean value and standard deviation for
the Ktrans parameter (Tofts model) and a0 (EU1 model), distinguishing between tumoural and
benign tissues, are reported in table 1. A statistically significant difference in parameter values
between benign and malignant regions was found (p < 0.05).

The distributions of the pair (Ktrans, kep) for the Tofts and (a0, r) for the EU1 model
are shown in the scatter plots reported in figure 1. The results of the logistic regression,
implementing a multi-parametric analysis, distinguished the data as benign or malignant with
an area under the ROC curve equal to 0.913 ± 0.093 for the Tofts and 0.921 ± 0.085 for the
EU1 model. Correlation coefficients between the features

(
Ktrans, a0

)
and (kep, r) were equal

to 0.83 and −0.90, respectively.
The mean time for the Tofts curve fitting was (0.0296 ± 0.0050) s per pixel. The EU1

model required (0.0231 ± 0.0049) s per pixel, approximately 20% less time than Tofts
implementation. The time needed for a complete patient elaboration was approximately 8 min
for the Tofts model and 6 min using the EU1 model, considering a mean number of 10 000 pixels
per patient and including the time required to give the initial parameters’ estimate.
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Figure 1. Features distributions in the parametric planes (Ktrans, kep) for (a) the Tofts
pharmacokinetic model and (a0, r) for (b) the EU1 empirical model. Both benign (circles) and
malignant (crosses) markers are shown. The ellipses summarize the two clusters by fitting a
bivariate normal distribution and displaying the outline at two times standard deviation radius. The
clustering of features found in the Tofts parametric plane is also well defined in the EU1 description
of dynamic curves.

Discussion

The differentiation between non-malignant and malignant tissues is a recurring clinical
challenge in diagnostic radiology (Rudisch et al 2005). Advances in MR image acquisition have
led to an increasing use of parametric or calculated images, designed to display physiological
features of tissues rather than simply anatomical structures (Jackson 2004). One common
type of dynamic imaging data is the DCE-MRI technique which is increasingly applied for
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the non-invasive characterization of tumour microvasculature, improving detection, staging,
treatment planning and early evaluation of response to anti-cancer treatments (Aerts et al 2011,
Fan et al 2007, Padhani 2002, Yankeelov et al 2005).

Methods for quantifying change in enhancement can be broadly classified into two
categories: pharmacokinetic models and empirical parametric models. The former attempt to
quantify the observed CA kinetics in terms of physiologically meaningful parameters whilst
the latter seek to reproduce the shape of the CA time course in terms of simple quantitative
parameters (Jackson et al 2005). Each enhancement kinetic curve is characterized by three
distinct features: the wash-in phase, the maximum enhancement and the wash-out rate. Wash-in
is associated with high perfusion and/or high permeability; maximum enhancement is related
to the total uptake in the interstitial space; and the wash-out rate is associated with the CA
clearance and may be related in part to vascular permeability (Su et al 2003). Pharmacokinetic
models (Tofts et al 1999, Jackson et al 2004) describe the wash-in and wash-out phases of
a CA from the microvasculature into the surrounding interstitial space in both tumour and
normal tissue (Aerts et al 2011). Interest in DCE-MRI was stimulated by early observations
that both high increases in enhancement and fast rates of signal enhancement correlate with
well-vascularized, viable tumour regions, compared to more moderate rates and extents of
signal increase in many normal tissues and benign lesions (Taylor and Reddick 2000, d’Arcy
et al 2006, Yankeelov et al 2005). Pharmacokinetic parameters are quantitative insofar as
their potential to measure true physiology, such as blood flow and endothelial permeability.
However, this potential is difficult to realize in practice due to several challenges, including
parameter coupling, measuring the AIF, water exchange and model fit instability (Cheng 2009).
Many clinical investigations usually do not analyse DCE-MRI using a pharmacokinetic model,
but rather have extracted a variety of empirical parameters as measures (Taylor and Reddick
2000, Mehnert et al 2010). Another attempt to describe the signal intensity versus time curves
is using an empirical mathematical model (EMM) to accurately fit contrast uptake and wash-
out behaviours (Fan et al 2007, Gal et al 2007). It was demonstrated that parameters derived
from EMM distinguish between metastatic and non-metastatic rodent prostate tumours more
reliably than the two-compartment model approach (Fan et al 2004).

In this work, we compared the Tofts pharmacokinetic model with the EU1 empirical
function derived from the PUN description (Gliozzi et al 2011). We chose to use two functions
characterized by the same number of fitting parameters and implemented a pixel-by-pixel
analysis. The first one was the Tofts two-compartment kinetic model, used to describe the
transport of the CA between vascular and interstitial spaces as a function of time. The three
fitting parameters were the transfer constant (Ktrans, often called the wash-in rate and related
to the forward rate of the contrast medium), the diffusion back into the vasculature (kep, also
called the wash-out rate) from where the CA is excreted by the kidneys and the plasma volume
fraction (vp) (Padhani and Khan 2010).

However, tumours are extremely heterogeneous on a microscopic level and
pharmacokinetic models are frequently incompatible with experimental data (Fan et al 2004).
Application of an empirical model has the advantage of not requiring any assumptions about
tumour physiology or a functional form for the AIF (Yankeelov and Gore 2009, Orton et al
2007), albeit they exhibit flexibility to accurately describe dynamic curves for long periods of
time and in different types of tissues. The extended universalities class was able to reproduce
contrast uptake and wash-out phases giving high R2 values. The class EU1 is then a convenient
analytical curve to represent our dataset and it provides a model to interpret a DCE-MRI
experiment.

The implemented empirical model has the same number of fitting parameters as the
pharmacokinetic model, i.e. three, and one could attempt to correlate them with Tofts features.
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The wash-in phase is responsible for the very first part of the dynamic curve in which Ktrans

is the dominant contribution. In a similar way a0 affects the steepness of the curve at t = 0,
so one can consider that the greater Ktrans, the larger a0 would be. In fact, figure 1 shows that
malignant pixels are characterized by large a0 values, indicating that the enhancement ratio
is a basic clinical tool for assessing tumour vasculature. Analogous similarity can be found
between the wash-out phase and parameter r, responsible for the behaviour of the second part
of the curve, after the enhancement peak, where the CA diffuses back into the vasculature.

The separation power between tumoural and benign pixels was evaluated for both the
Tofts and EU1 models computing the area under the ROC curve, which was equal to 0.91 and
0.92, respectively. These results demonstrated the validity of an empirical curve description
over a pharmacokinetic analysis in a DCE-MRI experiment. Furthermore, the power of the
proposed approach is the ability to describe the whole process arising from vascularization of
a suspected region using a few parameters (whose interpretation is quite simple) and without
making any assumption on tissue physiology. Therefore, the EU1 application to dynamic curve
analysis can be very useful in the diagnosis of a pathology, in particular when the AIF is not
available in the MR field of view.

The pixel-by-pixel analysis was chosen to include the possibility of evaluating
heterogeneities within a lesion in further studies. In fact, although this is a time-consuming
process, it may offer additional information to improve tumour vascular assessment. When a
quantitative evaluation is required, another important issue to account for is whether a better
temporal resolution can improve the determination of vascular parameters and strengthen
the correlation with vascular density. However, in clinical practice, fast sampling conditions
give rise to suboptimal spatial resolution, spatial coverage and signal-to-noise characteristics
and hamper the detection of contrast enhancement and the visualization of the underlying
anatomic details (Aerts et al 2011). Therefore, a better spatial resolution is generally more
important than a better temporal resolution, especially when smaller lesions detection is a
demanding question (Su et al 2003). On the other hand, it was demonstrated that as the
temporal resolution decreases, Ktrans is progressively underestimated and the fractional EES
is progressively overestimated (Heisen et al 2010). Hence a further development of this study
could be the implementation of high-temporal-resolution DCE-MRI to investigate if a shorter
temporal resolution would result in a better separation between malignant tissues and benign
ones, applying both pharmacokinetic and empirical analyses.

Conclusion

The application of an empirical model to DCE-MRI data is a useful alternative to
pharmacokinetic modelling. Empirical models have no need of an AIF, which are known
to affect the accuracy of the fitted parameters in modelling and add to the computational
complexity. The EU1 model is simple to implement and discriminates malignant from benign
tissues as well as an established pharmacokinetic model.
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