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Abstract 

Despite the increasing spread of standardized assessments of student learning, longitudinal data on 

achievement data are still lacking in many countries. This article raises the following question: Can we 

exploit cross-sectional assessments held at different schooling stages to evaluate how achievement 

inequalities related to individual-ascribed characteristics develop over time? This is a highly policy relevant 

issue, as achievement inequalities may develop in substantially different ways across educational systems. 

We discuss the issues involved in estimating dynamic models from repeated cross-sectional surveys in this 

context; consistently with a simple learning accumulation model, we propose an imputed regression 

strategy that allows to ‘‘link’’ two surveys and deliver consistent estimates of the parameters of interest. 

We then apply the method to Italian achievement data of fifth and sixth graders and investigate how 

inequalities develop between primary and lower secondary school. 

 

Keywords: achievement inequalities, dynamic models, pseudo-panel estimation, repeated cross sections, 

standardized assessments 
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1. Introduction 

The expansion of standardized learning assessments at the national and international level has 

fostered the study of educational inequalities in terms of achievement and acquired competences. 

International surveys like PISA, TIMSS and PIRLS1 have also given the opportunity to highlight 

remarkable cross-country variability in the extent to which ascribed individual characteristics such 

as gender and family background affect learning (OECD, 2010a: OECD 2010b; Mullis et al. 2012; 

Mullis et al. 2012), and to relate these differences to schooling policies and features of the 

educational systems (eg. Hanushek and Woessmann, 2006; Ammermueller, 2007; Fuchs and 

Woessmann, 2007; Schuetz et al., 2008).  

International assessments and many national studies, however, are cross-sectional. In this 

context, inequalities can only be investigated at specific grades or children’s age. Yet, as 

emphasized by Cunha et al. (2006), learning processes are cumulative. Thus, greater knowledge 

of how differentials across socio-demographic groups evolve throughout childhood in different 

institutional contexts could help the design of effective educational policies to contrast 

inequalities. 

This article raises the following question: in the absence of longitudinal data, can we exploit 

cross-sectional standardized assessments held at different stages of the schooling career to evaluate 

how learning inequalities develop over children’s life course? This is a highly policy relevant issue, 

as achievement inequalities may develop in substantially different ways across educational 

systems.    

Since different assessments are often not directly comparable, the existing literature has 

addressed this issue by computing standardized scores and comparing the average z-score of 

individuals of different backgrounds as children age (Goodman et al., 2009; Jerrim and Choi, 

                                                           
1 PISA (Programme for International Student Assessment) is conducted by OECD. TIMSS (Trends in Mathematics 

and Science Study) and PIRLS (Progress in International Reading Literacy Study) are promoted by IEA, the 

International Association for the Evaluation of Educational Achievement. PIRLS evaluates children of grade 4, 

TIMSS focuses on grades 4 and 8, PISA on children of age 15, regardless of the grade attended. 
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2013). Widening z-scores differentials across socioeconomic backgrounds are interpreted as 

evidence of increasing inequalities. Yet, this method does not allow distinguishing between direct 

effects of socio-demographic characteristics operating at each stage of schooling and carryover 

effects of preexisting gaps. Hence, we need to estimate dynamic models where achievement at a 

given time point is related to previous achievement and socio-demographic variables.  

In the absence of panel data, individuals cannot be traced over time. The econometric literature 

offers a number of contributions on the estimation of models for panel data from repeated cross-

sections (Deaton, 1985; Moffitt, 1993; Verbeek and Vella, 2005); as shown by Verbeek and Vella 

(2005), the conditions for consistent estimation are unrealistic in many contexts.  

Drawing from this body of work, we discuss the issues involved in estimating dynamic models 

from repeated standardized cross-sectional surveys on educational achievement, with the aim to 

estimate how inequalities across socio-demographic groups develop over stages of schooling. We 

argue that the model allowing to address this research question is very simple, and therefore the 

conditions for consistent estimation are met. Coherently with a basic learning accumulation model, 

we propose an imputed regression strategy that allows to “link” two assessments held at different 

grades. In essence, true lagged values are substituted with appropriate estimates derived from the 

first survey. The main drawback of imputed regression, however, is that due to this substitution, 

standard errors of the estimates are greatly inflated. Imputed regression has a nice property: by 

explicitly addressing the issue of measurement error, it provides consistent estimates of the 

parameters of the model of interest even with an additional source of error, i.e. test scores 

imperfectly measuring achievement. 

In the empirical application we exploit the dataset of the Italian learning assessment of reading 

and math literacy, carried out by the National Evaluation Agency (INVALSI) on 5th and 6th graders 

in 2010 and 2011 on a sample of more than 30.000 pupils. We investigate gender, socioeconomic, 

immigrant background and territorial inequalities at the transition between primary and lower 
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secondary school. This is a relevant turning point, as secondary school becomes much more 

demanding in terms of achievement requirements.   

Our contribution to the existing literature is threefold. Firstly, we provide a reflection on the 

advantages of pseudo-panel modelling for the study of the development of learning inequalities as 

children progress through school, and the conditions for consistent estimation. If repeatedly 

applied to different segments of the schooling career, this technique allows to investigate how 

inequalities develop over children’s educational life course, moving the focus of the literature on 

achievement inequalities from a static to a dynamic perspective. Secondly, we substantiate our 

theoretical arguments with simulations, and show that large samples and good instruments are 

needed to obtain reliable results. Thirdly, by exploiting a large scale national standardized 

assessment held at different grades, we analyze how inequalities evolve between primary and 

lower secondary school in Italy and show that socio-demographic differentials amplify in reading, 

while the North-South divide severely widens in math.     

The paper is organized as follows. In section 2 we define the model. In section 3 we show that  

the comparison of cross-sectional regression coefficients is not a valid means to study  the 

dynamics of achievement inequalities. In section 4 we present and discuss the imputed regression 

estimation strategy. Our data and case-study are presented in section 5. Conclusions follow. In the 

Appendix we present a simulation study designed to evaluate the order of magnitude of standard 

errors of the estimates obtained with the imputed regression strategy, assess the behavior of 

alternative estimation strategies and evaluate results in the presence of children repeating grades.    

2. The model 

Consider two cross-sectional surveys assessing students’ learning at different stages of the 

educational career, t=1 and t=2. A stylized model of learning development and observed 

performance scores, consistent with the idea of a cumulative process where abilities build up over 

time, is depicted in Figure 1. Innate ability could be independent of individual characteristics, but 
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this condition is not necessary. True unmeasured ability follows a Markov process, as ability at 

time t depends on ability at time t-1, but not on previous ability. Test scores (measured ability) are 

additive functions of true ability and an independent measurement error. True ability is affected 

by individual variables such as gender and family background (say, socioeconomic status and 

immigrant origin).  

Children from advantaged backgrounds perform better on average because they usually live in 

more culturally stimulating environments and receive more parental support, but also because they 

may attend better schools2. School attendance may also be driven by children’s ability. We assume 

that school characteristics at t=1 do not directly affect ability at t=2, given ability at t=1.3 

Figure 1. A stylized dynamic model of cognitive skill  

 
 
 
 
 
 
 
NOTE. Solid boxes represent observable variables, dashed boxes unobservables. Solid arrows represent well-

established causal relations. Dashed arrows stand for causal relations which might exist or not (depending for 

example on the educational system). Curved dashed lines represent possible correlations between variables.     

 

 

 

                                                           
2 School enrollment rules vary across countries. In some countries, children are required to enroll into the school of 

residence; here neighborhoods generally differ with respect to residents’ socio-economic and ethnic background. In 

other countries, there is freedom of choice; due to information asymmetries, children of advantaged backgrounds are 

likely to select higher quality institutions or schools with better peers. In Italy, in primary and lower secondary school 

children normally attend the public school of residence, but they may also apply to a different public or private 

institution. Evidence that that more experienced teachers are more likely to choose schools attended by students of 

more advantaged family backgrounds is found by Barbieri et al. (2010). 
3 This model applies at the transition between educational levels (for example, between primary and lower secondary), 

where children change schools between t=1 and t=2. A simpler picture is obtained if children remain in the same 

school.  
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In the above framework, let us consider the following underlying linear autoregressive model: 

 �
� = 
� + ���
��� + ���
 + �
�                                                 (1)    

where �� and  ���� represent performance scores at two moments of the schooling career, and � 

is a vector of all relevant socio-demographic individual variables. School characteristics are not 

included among the explanatory variables, the reason being that our interest rests on inequalities, 

i.e. on the total effect of socio-demographic variables, given by direct effects and indirect effects 

through school features. If children from advantaged backgrounds attend better schools, adding 

school variables would capture part of the desired effect. Similarly, we deliberately exclude other 

intervening variables such as intentions, aspirations, learning strategies, behaviors. Therefore, the 

set of explanatory variables of interest consists of (nearly) time-invariant socio-demographic 

characteristics. The error term is independent of explanatory variables and of the lagged score, and 

independent over time. Moreover, to simplify the exposition, we assume that it is independent 

across individuals; this assumption will be relaxed in section 4.3. 

We consider time-varying parameters, firstly because assessments administered at different 

grades are not necessarily separated by a uniform time span; more importantly, because there is 

no reason to assume that the relation between scores of subsequent assessments and the effect of 

explanatory variables are constant over the schooling career. Indeed, our aim is to study how 

inequalities develop over time. 

The fact that parameters are allowed to change over time implies that (unless we make strong 

assumptions on how they evolve) we must consider two assessments at a time, and estimate the 

model for each pair of subsequent assessments. Considering a scalar explanatory variable to 

simplify the exposition, with two waves, the general model (1) reduces to: 

�
� = 
� + ��
 + �
�                                                                   (2) 

�
� = 
� + ��
� + ��
 + �
�                                                                   (3) 

The error terms include a random component with the usual properties and measurement error, 
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assumed independent of true scores. �� also captures innate ability; �� is an independent random 

component operating on top of the effect of individual characteristics and previous achievement.4 

� and � are measures of learning inequality. The parameter of main interest is �, representing 

differentials developing between times t=1 and t=2, on top of those already in place at t=1.5 If �≠0 
and �=0 the explanatory variable affects achievement up to t=1, but given achievement at t=1, on 

average at t=2 children of different backgrounds reach the same performance level. On the other 

hand, if � and � have the same sign inequalities widen; if they have opposite signs, they weaken 

or change direction.  
Notice that we do not assume a conventional static model for panel data with individual fixed 

effects such as �
� = 
� + �
 + ���
 + �
�, because the autoregressive model is theoretically better 

suited to represent a cumulative learning process where competencies build up over time. In 

addition, at t=2 this model is a particular case of (3) with � = 1. We do not consider a dynamic 

model with fixed-effects either, firstly because with two points in time the model would be 

unidentified, secondly because the fixed effect component is redundant if we conceive it as innate 

ability (the assumed Markov structure posits that ability at t=2 does not depend on innate ability 

given ability at t=1). 

2.1 An alternative derivation of the model 

In the previous section we specified the panel data model as conventionally done in econometrics. 

We now derive the model from the perspective of individual growth models.6 Consider first a set 

of cross sectional assessments using a unique scale to measure achievement as children age, i.e. 

scores are “vertically equated”.7 In this case subsequent scores follow the relation: �
� = �
� + �
, 

                                                           
4 According to (1), �
,��� = 
� + �����
,��� + �����
 + �
,���. Going backwards and making repeated substitutions,  

���� can be expressed as a function of innate ability �� that, being unobservable, enters the error term. Hence, the 

resulting equation (2) should be intended as a reduced form model for ��. 
5 � correctly identifies the total effect of x on �� , given by the sum of direct effects and indirect effects through school 

characteristics at t=2. This can be easily demonstrated analytically, and by means of simulations (see Appendix A). 
6 Growth models analyze an outcome variable measured at repeated occasions and model it as a function of time 

(Singer, Willett, 2003). They are often used in the statistic-educational literature for accountability purposes, to 

evaluate school effectiveness and assess the impact of specific educational programs.   
7  To create a vertical scale, scores from two tests are linked statistically through a process known as calibration, so 
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where �
  is achievement growth. If growth is individual-specific and depends on explanatory 

variables and previous achievement, �
  = ∆ + ��
 + ��
� + �
�  and thus �
� = ∆ + �1 +
� �
� + ��
 + �
�.  

On the contrary, if achievement scores are not equated, the relation between subsequent scores 

would be: �
� = �!
� + �
 , where �!
� = " + #�
� represents achievement at t=1 in the measure-

ment scale employed at t=2. Since " and # are not known and not identifiable, we cannot measure 

absolute growth, but only evaluate individuals’ position relative to each other. In the general case, 

the model then becomes: 

�
� = "�1 + � + ∆ + #�1 + � �
� + ��
 + �
�                                    (4) 

The resulting model has the structure of (3), with � = #�1 + � . Hence, � does not describe the 

dynamics of the learning process, as it depends on a rescaling factor that allows to translate scores 

at t=1 into scores at t=2. Moreover, since � is unidentified, without vertically equated scores we 

cannot test whether the achievement of well performing children grows more (or less) than that 

of lower performing ones.8 

3. Cross-sectional strategies: comparison of regression coefficients 

Model (2) can be estimated with conventional methods using the cross-sectional survey at t=1.9 

Can � in model (3) be consistently estimated with a simple fully cross-sectional strategy – the 

comparison of achievement gaps between children of different backgrounds (or the corresponding 

regression coefficients) as children progress through school? 10  

                                                           

that scores can be expressed on a common scale. TIMSS provides horizontally equated scores (scores of surveys of a 

given grade at different occasions are equated), but does not equate scores of assessments of different grades. The 

Italian survey employed in our empirical analysis does not equate scores, neither horizontally, nor vertically. 
8 Due to the issue of “regression to the mean”, in the presence of measurement error in test scores the effect of previous 

performance would be difficult to identify even with equated scores (Jerrim and Vignoles, 2013). Ceiling effects may 

also operate (Betebenner and Linn, 2010). 
9 If innate ability is independent of x, �1 captures the effects of family background related to environmental and cultural 

factors. If, as maintained by some scholars, the assumption is not valid, �1 will also capture genetic effects. Note that 

this issue is not relevant for the estimation of (3), as in this case innate ability is entirely captured by ��. 
10 The arguments traced in this section are detailed in a recent paper by the authors.  
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Consider the expression: 

�23��|� + 15 − 23��|�5 − �23��|� + 15 − 23��|�5 . 

In the general case, this quantity can be decomposed as: 

 � + #��23��|� + 15 − 23��|�5 + �# − 1  �23��|� + 15 − 23��|�5                                  (5) 

Hence, the above differential equals � only in the simplest situation, where scores are vertically 

equated (# = 1   and growth does not depend on previous achievement (� = 0  . It is worth 

noticing that the first two terms of (5) represent the overall achievement growth differential:11 

�23��|� + 15 − 23�!�|� + 15 − �23��|�5 − 23�!�|�5           

� is the differential developed between the two assessments that can be directly ascribed to x, 
while #��23��|� + 15 − 23��|�5  captures the effect driven by the preexisting achievement gap. 

The last term of (5), instead, has no substantive meaning. Therefore, the cross-sectional regression 

coefficient differential on absolute scores does not convey useful information on the development 

of inequalities, as it fails to identify � – which accounts for new inequalities developed between 

t=1 and t=2 – but also the overall achievement growth differential – which incorporates carryover 

effects of preexisting gaps.  

3.1 Regression coefficient difference on standardized scores 

The main strategy adopted in the existing literature to overcome the difficulties in comparing test 

scores of different assessments is to standardize scores and compare the average z-scores of 

individuals of different backgrounds as children age (Goodman et al., 2009; Jerrim and Choi, 

2013).12 Results are typically illustrated by simple graphs: widening z-scores differentials across 

socioeconomic backgrounds are interpreted as evidence of increasing inequalities.  

                                                           
11 �23��|� + 15 − 23�!�|� + 15 − �23��|�5 − 23�!�|�5 = �23��|� + 15 − 23��|�5 − �23�!�|� + 15 − 23�!�|�5 = 
� + �1 + � �23�!�|� + 15 − 23�!�|�5 − �23�!�|� + 15 − 23�!�|�5 = � + #��23��|� + 15 − 23��|�5 . 
12 Note that applying regression coefficients difference on international scores is not equivalent to applying regression 

coefficients difference on standardized scores. International assessments PIRLS, PISA and TIMSS do provide 

standardized scores (with mean 500 and st.dev. 100), but the standardization is performed with reference to a set of 

countries, varying over time and across surveys. 
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Indeed, standardized scores are invariant to the metric employed to measure achievement. 

However with this strategy the sources of change remain unclear. Take standardized scores 7�
 =
89:�8;9

<=9   and 7�
 = 8>:�8;>
<=> . According to (2) and (3), and considering x as a random variable: 

2�7�|� + 1 − 2�7�|� = �
?89

= �
@��?A� + ?B9�

  

2�7�|� + 1 − 2�7�|� = �� + �
?8>

= �� + �
@��� + � �?A� + ��?B9� + ?B>�

 

In the simplest case, with no direct effects of the explanatory variables (� = 0), no carryover 

effects of previous inequalities (� = 0), and the same metric used at  t=1 and t=2  (# = 1):  

32�7�|� + 1 − 2�7�|� 5 − 32�7�|� + 1 − 2�7�|� 5= C
@C><D>E<F9> E<F>> − C

@C><D>E<F9> < 0 

Here the average distance between children of different backgrounds narrows, simply because at 

t=2 there is higher (unexplained) variability. Yet, we could observe the same result if, given 

previous scores, children of disadvantaged backgrounds perform better (� < 0  or if achievement 

growth is negatively related to performance at t=1 (� < 0 .  

Summing up, strategies based on the comparison of regression coefficients on cross-sectional 

data do not allow distinguishing between the relevant sources of the observed changes in the 

position of groups of pupils relative to each other. To do so we need to estimate the dynamic model 

(3) directly. 

4. Estimation of the dynamic model 

The problem we address here is how to estimate (3) in the absence of genuine longitudinal data, 

where the data derive from independent cross-sectional surveys held at different stages of 

schooling, each being a random sample of the same underlying population of children.  
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Consider individuals interviewed at t=2 (CS2): even if their own lagged scores ��  are 

unobserved, we can obtain �� for different but “similar” children – i.e. sharing the same observed 

characteristics – by exploiting individuals interviewed at t=1 (CS1). A simple strategy would be 

to randomly select for each child in CS2 a similar child in CS1, and use her score �′� instead of 

true �� . This strategy, however, leads to severely biased results, because the lagged score is 

affected by (large) measurement error. Conventional methods to correct for measurement error 

(Fuller, Hidiroglou; 1978) are not appropriate here, because they assume the CEV (classical error 

in variables) condition, i.e. that measurement error is independent of true values. In this case, 

however, the error is related to both true and observed values. In fact, if �
� = 

 + I
� and �′
� =


 + I′
� (where 

 is the mean score of an individual with given �), measurement error is �
� −
 �′
� = I
� − I′
�. 

An alternative strategy could be the estimation of a regression model for cell means, where cells 

are defined as groups of similar individuals. In this case, instead of matching individuals from 

different cross-sections, we match cells, i.e. groups of children sharing the same characteristics.13 

The main advantage of this strategy over individual matching is that measurement error of group 

means is smaller. If the number of cells is fixed, the sampling variance of the cell means tend to 

zero as the overall sample size expands. Hence, OLS estimates are consistent. In any particular 

sample, however, the presence of measurement error in �� will lead to biased estimates. When 

applying (2) and (3) to cell means, we obtain:   

�;J� = 
� + ��J + �J̅�                                                              

�;J� = 
� + ��;J� + ��J + �J̅�                                                            

Yet, since the model for achievement at t=1 is estimated from CS1 instead of CS2, what we 

actually estimate is: 

                                                           
13 Cell mean regression has been applied in a variety of contexts to analyze repeated cross-sectional data. Card and 

Lemieux (1996), for example, use it to analyze changes in returns to skill and wage inequalities. 
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�;J� = 
� + ��;J�L + ��J + ���;J� − �;J�L  + �J̅�                        

where �;J�L  is the mean value of ��  in cell c in CS1.  Since measurement error �;J� − �;J�L  is 

correlated with �;J�L , OLS estimates are biased. Again, since the error is not CEV, the method 

proposed by Fuller, Hidiroglou (1978) does not solve the problem.14  

Note also that if the explanatory variables are the same at t=1 and t=2, the model for t=2 is 

unidentified because ��  cell means are a linear function of �. Therefore, as we will also argue for 

the imputed regression technique described below, we need to find a variable affecting �� but not 

��, and define cells by taking this auxiliary variable into account.  

4.1 Imputed regression 

The conditions for identification and consistent estimation of general linear dynamic panel data 

models with repeated cross-sections are discussed in Moffitt (1993) and later developed by 

Verbeek, Vella (2005). The basic idea is that the lagged dependent variable can be replaced by a 

predicted value from an auxiliary regression using individuals observed in previous cross-sections: 

the resulting measurement error will generally be uncorrelated with estimated lagged performance 

and therefore will not lead to inconsistent estimates, as is the case with CEV errors. Measurement 

error, however, must be uncorrelated also with all other explanatory variables. Whether these 

conditions are met depends crucially on the nature of the dynamic model and of the model 

employed to predict lagged values. Verbeek and Vella (2005) argue that these requirements are 

unrealistic in many contexts; they show, however, that they hold if there are no time-varying 

exogenous variables or the time-varying exogenous variables are not auto-correlated. Our context 

is particularly simple: in first place, because the only source of dynamics in the process is the 

autoregressive component, while individual fixed effects are not included; secondly, because the 

explanatory variables of interest are all time-invariant socio-demographic characteristics. 

                                                           
14 As shown in a simulation exercise in Appendix A (Table A3). 
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Yet, if the set of independent variables is identical for �� and �� – a likely occurrence when we 

focus on performance differentials across ascribed individual characteristics – model (3) is 

unidentified when substituting �� with �1�. Hence, in order to bypass collinearity, we must find a 

variable M affecting performance at t=1 but not directly related to later performance.  

Assuming the following model for ��: 

�
� = 
� + ��
 + �M
 + ��
                                                                                                   (6) 

we substitute �� with its OLS estimate �1�L  derived from CS1. Expressed in terms of �1�L , model (3) 

becomes: 

�
� = 
� + ��1
�L  + ��
 + 3���
� − �1
�L  + ��
5                         (7) 

Since in large samples �1�L  and �1� (the estimate that would be derived from CS2 if longitudinal data 

were available) are nearly coincident, the estimation of (7) is basically equivalent to the estimation 

of �
� = 
 + ��1
�  + ��
 + 3���
� − �1
� + �
�5. As seen above, measurement error derived from 

using �1� instead of true �� is not CEV: however, for OLS properties ��� − �1�  is uncorrelated 

with �1�. Thus, OLS estimates of (7) are consistent.15 However, the resulting standard errors are 

larger than with longitudinal data. In Appendix A we describe a simulation study designed to 

evaluate the bias associated with the matching strategies outlined above and to provide an order of 

magnitude of the standard errors obtained with imputed regression. As for the latter, the main 

result is that standard errors are largely inflated, and their magnitude strongly depends on sample 

size and on the predictive power of the instrument w.16 

Another notable feature of the imputed regression strategy is that by explicitly addressing the 

measurement error issue, it provides consistent estimates also if test scores are imperfect measures 

                                                           
15 In principle, using �1�L  instead of �1� (i.e. the OLS estimate derived from an independent sample) does induce a small 

correlation between the error term and explanatory variables. Let us further inspect (7): �
� = 
 + ��1
�L   + ��
 +
�N��
� − �1
� + ��1
� − �1
�L  O + ��
. The term ��1
� − �1
�L   is not independent of � and �1
�L ; however, with reasonable 

sample size it accounts for a negligible share of the total error term. As shown in the simulation study in Appendix A, 

this caveat has no relevant practical implications.  
16 If � explains a large portion of the variance of �� while M does not, residuals might be small, but �1�and � will be 

nearly collinear and the resulting standard errors of the estimates large. 
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of achievement. Let observed scores �� = ��∗ + P� , with true scores ��∗  independent of 

measurement error P�. The estimation of equation (2) poses no problems, as measurement error 

affects the dependent variable. As for model (3), consider the equation for true scores: �
�∗ = 
� +
��
�∗ + ��
 + �
�∗ . The equation for observed scores when the predicted value of �� is introduced 

is �
� = 
� + ��1
� + ��
 + �
�∗ + P
� + ���
�∗ − �1
� . The composite error term is independent of 

all explanatory variables: in particular, ���∗ − �1�  is independent of �1�  because the regression 

coefficients of (2) are unbiased in spite of measurement error. Thus, aside from the effect of 

sampling variability, predicted lagged values are the same if estimated on true or observed scores.  

4.2 Choice of the variables allowing identification   

Our main aim is to estimate consistently model (3). We may therefore use equation (2) to predict 

�� as precisely as possible, regardless of the nature of explanatory variables. In this perspective, 

however, two conditions are necessary: 

(i) Additional predictors M  cannot be relevant variables for achievement at t=2. 

In other words, they must be valid instruments. For example, assume there are two or more 

indicators of family background, each capturing different features that affect learning throughout 

schooling life. If in the attempt to avoid collinearity we exclude either one from the model for ��, 

we get biased estimates, because the omitted variable, entering the error term in equation (7), is 

correlated with �1�. 

(ii) Additional predictors M must be observed at both cross-sections CS1 and CS2 

since �1� is introduced in the model for �� for given � and M. As a consequence, natural candidates 

such as school characteristics at t=1 – which could be good instruments as they are liable to affect 

current but not future performance – cannot be employed, because school features at t=1 are 

usually not recorded in CS2.   

It is therefore difficult to find an appropriate instrument. In our empirical analysis we will use 

the month of birth, as there is widespread evidence that in a given grade younger children perform 
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more poorly than their older peers (eg. Lawlor et al. 2006; Crowford et al., 2013), while later 

achievement should not depend on age given previous achievement.   

4.3 Accounting for the hierarchical structure of the data  

Up until now, we have made the simplifying assumption that all observations are independent. 

However, this assumption may be questionable, as children in the same school or class are exposed 

to similar conditions – same environment and school principal, and for children in the same class, 

same teachers. Hence, observations are independent across groups, but not necessarily within 

groups. In this section, we examine how pseudo-panel estimation behaves if school/class effects 

are operating.  

Firstly, we consider the inclusion of unobserved school (or class) effects uncorrelated to 

explanatory variables; secondly, we consider the inclusion of school-level explanatory variables. 

While the first extension is not problematic, the second may lead to biased estimates of all 

regression coefficients. Our conclusion – corroborated by a simulation study described in 

Appendix A – is that the pseudo-panel strategy is not invalidated by hierarchical data, but cannot 

fully exploit the potential of multilevel modeling (see Goldstein 2010 for an extensive account), 

that recognize the nested structure of the data and allow for explanatory variables and error 

components related to units at different levels. 

4.3.1 Unobserved school-effects  

We now relax the assumption of independent observations by considering achievement models 

with unobserved school effects. Consider the following models for test scores at t=1 and t=2: 

�
Q� = 
� + ��
Q + �M
Q + 
Q� + �
Q�.                                                            (8) 

�
Q� = 
� + ��
� + ��
Q + 
Q� + �
Q�.                                                                          (9) 

where 
Q� and 
Q� are school-specific random effects at the two occasions. Under the assumptions 

that unobserved effects at different levels are normally distributed and independent of included 

explanatory variables, OLS estimates of regression coefficients (ignoring the school-level error 
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component) coincide with ML estimates (accounting for the different sources of variance). 

However, the OLS estimates generally underrate standard errors of the estimates, while ML 

evaluates them correctly.   

With imputed regression, we substitute �� with its estimate �1�L  derived from CS1. Expressed in 

terms of  �1�L  model (9) becomes: 

�
J� = 
� + ��1
�L  + ��
J + 3
J� + ���
� − �1
�L  + �
J�5                                                      (10) 

Since OLS and ML estimates of �1�L  coincide, the existence of class effects in the model at t=1 does 

not affect pseudo-panel estimation. Not even the unobserved class effect 
Q�  invalidates the 

strategy, because it is independent of x and  �1�L . Yet, to evaluate correctly the standard error of the 

estimates we should acknowledge the correlation structure of the data in the estimation.  

4.3.2 School-level explanatory variables  

With genuine longitudinal data, a variety of challenging questions involving the effect of 

potentially endogenous variables such as school characteristics can be addressed using value-

added models. Could we do so with pseudo-panel modeling? Unfortunately, the general answer is 

no. Consider the following model, where s2 are observed school characteristics at t=2:  

�
� = 
� + ��
� + ��
 + RS
� + �
�.                                                  

If we substitute �� with its estimate �1
� = 
̂� + �1�
 + �UM
 from CS1, we obtain: 

�
� = 
� + ��1
� + ��
 + RS
� + ����
� − �1
� + �
�                        (11) 

The problem is that school features at t=2 are typically not independent of ��� − �1� , as higher 

ability children are more likely to choose “better” schools. This establishes a correlation between 

S�  and the error term, yielding biased estimates of all regression coefficients (see Table A.5 in 

Appendix A). 17  To obtain consistent estimates of (11) we need to estimate 2���|�, M, S�   

                                                           
17 In most European countries between age 10 and 16 children are tracked into academic and vocational programs, 

usually offered by distinct institutions. The endogeneity problem described above would be particularly severe if the 

first assessment was held before tracking and the second one after, because track choice is strongly related to ability.  
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consistently, but to do so we would need a crystal ball allowing to observe at t=1 the characteristics 

of schools at t=2.18 

As emphasized above, the aim of this paper is to analyze the development of learning 

inequalities over consecutive stages of the educational career, so the relevant explanatory variables 

are time-invariant socio-demographic factors, and the effect of interest is their total effect on 

achievement, composed by direct effects and indirect effects via school features. In this 

perspective, as already argued, it is appropriate not to include school features in the model, because 

if children from advantaged backgrounds attend better schools, adding school variables would 

capture part of the desired effect. As shown in the simulation study in the appendix, by excluding 

the school-specific explanatory variables, we ultimately obtain unbiased estimates of the total 

effect of socio-demographic factors operating between t=1 and t=2. 

5. Inequalities in Italy at the turning point between primary and lower 

secondary school 

5.1 Italian schooling system and data 

In the Italian educational system, children enter school at age 6 and follow an eight-year period of 

comprehensive schooling: primary education, lasting five years, and lower secondary education, 

lasting three years. Lower secondary school ends with a nationally based examination, after which 

students choose between a variety of upper secondary educational programs, broadly classified 

into academic, technical and vocational tracks. Despite the absence of performance-related 

admission restrictions, the academic track is much more demanding than the other tracks.     

The study of inequalities at the transition between primary and lower secondary school is of 

particular interest because the emphasis on achievement requirements greatly increases, as lower 

secondary school is perceived as the period in which children get prepared for upper secondary 

                                                           
18 The same argument applies to the investigation of the effects of children’s behavior at t=2 (e.g. effort, time for 

homework), as behavior at t=2 is likely to be dependent on achievement at t=1.  
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education. A similar research question is addressed in De Simone (2013), who focuses on the 

time-span between grade 4 and 8 with TIMSS.19 

We use the repeated cross-sectional data of the standardized learning assessment administered 

by the Italian National Evaluation Institute (INVALSI20) to the entire student population of 5th 

(end of primary school) and 6th graders (lower secondary school), consisting of approximately 

500,000 students per grade (INVALSI, 2011). We “link” the survey administered in 2010 to 5th 

graders to the survey administered in 2011 to 6th graders, following children born in 1999.   

Tests cover the domains of reading and mathematics, and were designed following the 

experience of international assessments. Students are asked to fill a questionnaire recording 

personal information, including family composition and home possessions, while school boards 

provide information on parental background. School teachers are normally in charge of test 

administration; however, in order to control for cheating, a random sample of classes (of about 

30,000-40,000 students) take the tests under the supervision of personnel external to the school. 

This sample represents a benchmark to evaluate performance scores of the general population. 

Sample mean scores are generally smaller than population values; the differential is interpreted as 

evidence of cheating (Quintano et al., 2009). Due to its better quality, our empirical  analyses will 

be based on this sample data. 

Performance is measured by the percentage of correct answers, varying between 0 and 100. 

Scores are not vertically equated, so achievement is not comparable across grades. We employ 

two measures of socioeconomic status. The first is the number of books at home, in line with 

contributions in the economics of education.21 The second is the standardized index ESCS (Index 

of Economic-Socio-Cultural Status) provided by the National Agency and derived from data on 

                                                           
19 Incidentally, aside from our own work (previous version in …), De Simone (2013) is the only other contribution in 

the literature that we are aware of using pseudo-panel modeling to study achievement inequalities. As shown by the 

simulation exercises described in the Appendix, however, TIMSS does not have a sufficient sample size to ensure 

reliable results. Our empirical work also differs from De Simone (2013) in the choice of explanatory variables and 

identification strategy.  
20 Istituto Nazionale per la Valutazione del Sistema educativo di Istruzione e formazione. 
21 Children are asked to select a picture depicting a variable number of shelves with books. 
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home possessions, parental education and occupation.22 We also investigate gender, immigrant 

background and territorial differentials (according to macro-areas: North-West, North-East, 

Centre, South, Islands). All variables are summarized in Table 1. 

Table 1. Descriptives. 5th grade (2010 assessment) and 6th grade (2011 assessment) 

DEPENDENT VARIABLES 

VARIABLE DESCRIPTION MEAN 5TH S.D. 5TH MEAN 6TH S.D. 6TH 

Score reading Percentage correct answers reading test 67 18 63 17 

Score math Percentage correct answers math test 62 18 47 19 

EXPLANATORY VARIABLES 

VARIABLE DESCRIPTION MEAN 5TH S.D. 5TH MEAN 6TH S.D. 6TH 

Female Percentage females 0.49  0.49  

Books N° of books at home* 1.97 1.20 2.08 1.23 

ESCS Economic-Socio-Cultural Status Index    -0.02 1.00 0.03 1.00 

Native Native 0.91  0.90  

2G Second-generation migrant  0.04  0.04  

1G First-generation migrant  0.05  0.06  

North-West Living in North-West 0.24  0.24  

North-East Living in North-East 0.17  0.17  

Centre Living in Centre 0.18  0.18  

South Living in South 0.24  0.24  

Islands Living in the Islands 0.17  0.17  

SAMPLE SIZE  READING-MATH 33997-33530 37196-37183 

* 0=0-10 books; 1=11-25 books; 2=26-100 books; 3=101-200 books;4=>200 books 

NOTES. The percentage of natives, first and second-generation immigrants are computed over the entire sample.  

All other descriptives refer to natives and second-generation immigrants only.  

Standard deviations for binary variables are not reported. 

 

5.2 Empirical analysis on native children 

In this section, we run pseudo-panel models on native children. The inclusion of immigrant 

students is problematic because they experience grade repetition much more frequently than 

natives. As will be discussed in the next section, grade repetition at t=1 may represent a threat to 

consistent estimation. Yet, since less than 1% repeat the school year in primary school, this issue 

is almost irrelevant for native children.23  

                                                           
22 This measure, drawn from the international survey PISA, is the first factor of a principal component analysis. 
23 Models are estimated on children of birth cohort 1999 (the regular birth cohort for grade 5 in 2010 and grade 6 in 

2011). In addition to children repeating grades, we exclude children born in 2000 (approximately 9% of the sample). 

This exclusion might cause non-random sample selection, as children starting school at age 5 (before the regular age) 

instead of age 6, could be more mature than their peers or have higher innate ability. For this reason we carried out 

some robustness checks by including these children in the estimation, attributing to them either month of birth 12 (as 

if they were all born in December 1999), or month 13 (for those born in January 2000), month 14 (for those born in 

February 2000) and so on. Since we find only minor changes, these results are not shown.  
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Our instrumental variable is the month of birth, as there is empirical evidence that younger 

children perform more poorly than their older peers (Lawlor et al. 2006; Crowford et al., 2013). 

The first identifying assumption, verified within CS1, is that the month of birth affects ��. The 

second one is that the month of birth does not directly affect ��: 2�V�|��, �, M = 2�V�|��, � ; 

since this assumption cannot be evaluated without longitudinal data, it was tested on a different 

dataset.24 

In order to account for the hierarchical structure of the data, we employed  the Huber-White 

sandwich estimator for clustered data. 25 Results for both reading and math are summarized in 

Table 2. The first columns contain the estimates of cross-sectional model (6) for ��; the second 

report the estimates of the cross-sectional model �
� = 
� + ��
 + �
� ;  the third contain the 

estimates of dynamic model (7).  

Looking at cross-sectional results, the effects of individual ascribed characteristics are 

substantial at both assessments. In line with the international literature, socioeconomic status 

emerges as a strong predictor of performance: the coefficients of both indexes – number of books 

at home and ESCS – are large and highly statistically significant. Consider the reading assessment 

in 5th grade: a unit increase in the number of books (coded as: 0= 0-10 books; 1= 11-25 books; 2= 

26-100 books; 3= 101-200 books; 4= >200 books) yields an average increase of 2.4 points; a unit 

increase in ESCS yields an increase of 3.3 points. 26 This implies that when comparing a child with 

the lowest category of number of books (0) and a low value of ESCS (-2) with a child with the 

highest category of number of books (4) and a high value of ESCS (+2), on average the latter 

                                                           
24 This dataset was collected in 2010 within the project “Scacchi e Apprendimento della Matematica“ - Chess and 

Math Learning (Argentin and Romano “Standing on the Shoulders of Chess Masters: Using RTCs to Evaluate the 

Effects of Including Chess in the Italian Primary School Curriculum”, in Besharov D. (eds), Evaluating Education 

Reforms: Lessons from Around the Globe, Oxford University Press, forthcoming). It provides two repeated 

performance measures at the beginning and the end of third grade. We thank the authors for permission to use these 

data. 
25 We employed the STATA procedure “vce(cluster)” that allows for intragroup correlation. “vce(cluster)” affects the 

standard errors and variance–covariance matrix of the estimators but not the estimated coefficients. 
26 Despite being an ordinal variable, to simplify the exposition we treated the number of books as cardinal. This choice 

has no relevant consequence on the results.  
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scores 22.8 points more than the former. Females perform better than males in reading and worse 

in mathematics. Territorial differentials are dramatic, in particular along the North-South divide. 

For example, other things being equal, at both grades 5 and 6 the average reading score in the 

Islands is more than 6 points lower than in the North-West. The achievement level in mathematics 

does not differ significantly between the South and the North in grade 5 (while it is much poorer 

in the Islands), but in grade 6 the divide appears to widen substantially.  

We now turn to the interpretation of the results of pseudo-panel estimates. � coefficients in the 

dynamic model measure the extent to which achievement growth between t=1 and t=2 differs 

across � -categories, when comparing two equally performing children at t=1. We observe 

substantive socioeconomic and gender effects in reading but not in math. As for reading, children 

from high socioeconomic background, already advantaged in grade 5, do better in grade 6 than 

previously equally performing children of lower backgrounds (this is evident from the coefficient 

of ESCS, while that of books at home is not significant). On the other hand, they do not do any 

better or worse in mathematics. Similar results hold for gender effects: girls improve relative to 

boys in reading, while their disadvantage in math does not develop further. The opposite finding 

holds for area effects: they are small in reading but very large in math. The most noticeable result 

is that, given 5th grade achievement, 6th graders living in the North largely outperform their 

Southern peers. On the other hand, children living in the North-East close the math achievement 

gap with the North-West and perform best given previous scores.  

Goodness of fit (measured by R-squared) is quite low in all models. This result is hardly 

surprising for cross-sectional models: indeed, ascribed characteristics cannot explain a large 

portion of the variability, even in educational systems with large inequalities across children of 

different backgrounds. Also the R-squared of the dynamic model is low; adding predicted lagged 

scores does not yield a substantial increase in goodness of fit, because measurement error due to 

the substitution of true lagged performance with an estimated value is (very) large.  
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Table 2. Estimates of cross-sectional and pseudo-panel data models. Native children. 

 READING MATHEMATICS 

Variables 
5th grade 

cross-section 

6th grade 

cross-section 

6th grade 

dynamic 

5th grade 

cross-section 

6th grade 

cross-section 

6th grade 

dynamic 

Costant       65.8***          58.7***        14.1*       61.5***      45.3***    -21.1*** 

Month1        -0.3***        -0.3***   

Books2        2.4***          2.1***        0.5       2.2***      2.5***        0.1 

ESCS         3.3***          3.9***        1.6***       3.0***      3.7***        0.4 

Female        0.8**          2.2***        1.7***      -3.1***     -3.8***       -0.3 

North East       -0.5            -0.6       -0.3      -1.3*      1.0        2.4*** 

Centre       -2.6***         -1.4***        0.5      -2.2**     -2.9***       -0.4 

South       -3.6***         -2.5***        0.1      -0.9     -5.2***       -4.0*** 

Islands       -6.3***         -6.5***       -1.9*      -4.0***     -8.4***       -3.7*** 

 ��        0.70***        1.12*** 

 R2 0.132        0.158      0.160      0.091      0.156      0.160 

RMSE 15.86 14.89 14.87 17.15 17.03 16.99 

sample size 26616       29637      29637      27333      29636      29636 

*p_value<0.05;  **p-value<0.01; ***p-value<0.005 

NOTES. The estimation has been performed only on children born in 1999.  

1. January=1,… December=12 

2. 0=0-10 books; 1=11-25 books; 2=26-100 books; 3=101-200 books; 4=>200 books 

Cluster robust standard errors (Huber-White sandwich estimator, run with STATA). Clusters defined by classes.  
 

 

Let us now relate our findings with the theoretical arguments exposed in section 4, where we 

argued that cross-sectional regression coefficients are not fully informative on the development of 

inequalities between the two assessments. Consider cross-sectional estimates at grades 5 and 6, 

and take their difference for each explanatory variable. These differences deviate from the 

corresponding dynamic coefficients – as shown by (5), they coincide only if # = 1 and � = 0, 

and in this case the lagged score coefficient in (3) is � = 1. Distances are larger for reading, as �1 

deviates more from 1 in the reading than in the math equation.  

Let us look at the results for reading. If we were to interpret the development of territorial 

inequality between the North-West and the Islands from cross-sectional coefficients (-6.3 in grade 

5, -6.5 in grade 6), we would conclude that it has hardly changed. Instead, the corresponding 

coefficient in the dynamic model (-1.9) clearly indicates that the disadvantage of the children in 

the Islands has substantially widened between grades 5 and 6. Similarly, from the cross-sectional 

point estimates of the ESCS coefficient (3.3 in grade 5, 3.9 in grade 6) we would conclude in favor 

of a mildly increasing socioeconomic effect, whereas the ESCS coefficient estimate of the dynamic 
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model (1.6) points to considerably increasing socioeconomic inequalities.  

Dynamic regression coefficients measure achievement growth differentials across �-categories 

when comparing two equally performing children at t=1. Thus, pseudo-panel �s capture the new 

inequalities developed between the two surveys that can be directly ascribed to each explanatory 

variable. It is worth noticing that if we were interested in evaluating the component due to 

preexisting performance gaps (see section 3), we would not be able to do so, because the effect of 

previous performance on achievement growth is unidentified without vertically equated scores.  

5.3 Children repeating grades: the problem 

In a typical panel data setting �� is the value of � at calendar time 1, �� is the value of � at time 2 

and so on. Instead, in educational surveys where children of specific grades are interviewed, �� 

represents performance score at a specific grade (here, 5th grade) and �� the score at a later grade 

(here, 6th grade). As a consequence, if some children are required to repeat a grade, there will be 

two � values at this grade. This poses no particular problems with genuine panel data27, but the 

situation is more complex for pseudo-panel estimation.  

Figure 2 may help to illustrate the problem. In the columns we indicate calendar time. Consider 

the 5th grade assessment held at calendar time T and the 6th grade assessment held at T+1: pupils 

participating in these surveys belong either to cohort k (regulars) or to cohort k-1 (one year late). 

In the rows we describe possible paths. Rows 1-3 refer to children of birth cohort k: with a regular 

career, failing grade 6 and failing grade 5. Rows 4-5 depict children of cohort k-1 repeating either 

grade 5 or grade 6.  To simplify the picture, we assume that children may fail only once28 and that 

no repetitions occur before grade 5.29  

 

                                                           
27 The issue would be whether to model �� as dependent on the first or the second ��. 
28 Repeated failures account for a negligible share of children in our data.  
29 The INVALSI survey does not provide information on repetitions but only the year of birth; therefore we cannot 

distinguish between children repeating the current grade or previous grades. We assume that children of earlier birth 

cohorts in grade 5 are repeating grade 5; the reason is that grade 5 represents the transition point from primary school, 

in which emphasis on achievement is low, to secondary school, in which it is much higher.  
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Figure 2. Birth cohorts and assessments 

T-1 T T+1 T+2 Row Fail Cohort 

 5 regular  
(birth cohort k) 

6 regular  
(birth cohort k) 

7  regular  
(birth cohort k) 

1 - k 

 5 regular  
(birth cohort k) 

6 regular  
(birth cohort k) 

6 one year late 
(birth cohort k) 

2 Grade 

6 

k 

 5 regular  
 (birth cohort k) 

5 one year late  
(birth cohort k) 

6 one year late 
(birth cohort k) 

3 Grade 

5 

k 

5 regular  
(birth cohort k-1) 

5 one year late  
(birth cohort k-1) 

6 one year late  
(birth cohort k-1) 

 4 Grade 

5 

k-1 

5 regular  
(birth cohort k-1) 

6 regular  
(birth cohort k-1) 

6 one year late  
(birth cohort k-1) 

 5 Grade 

6 

k-1 

 

 

Let us focus on children of birth cohort k and assume that we are interested in first time pupils 

attend each grade (underlined). We now argue that if there are no children failing before grade 5 

the estimates based on regular children (grey shadowed cells) are unbiased. Consider equation (6), 

the cross-sectional model for ��. The relevant set for its estimation consists of pupils of cohort k 

participating to the 5th grade assessment for the first time at time T. These children are all observed. 

Consider now the estimation of (7), the dynamic model for ��. Children in rows 1 and 2 pose 

no problem, since they participate to the 6th grade assessment for the first time at T+1. Children in 

row 3 (repeating grade 5), instead, participate at T+2; hence, they are excluded from the estimation. 

This exclusion is related to achievement at t=1, which is an explanatory variable in model (7); 

therefore, it does not have severe consequences on the estimates, because sample selection on 

independent variables inflates standard errors but does not lead to biased estimates.30  

Could we include children of birth cohort k-1 repeating grades to replace the unobserved 

children in row 3? Children in row 4 (repeating grade 5) are homologous to children in row 3; 

however, children in row 5 (repeating grade 6) are homologous to children in row 2, which are 

                                                           
30 Limiting the analysis to regular children would produce biased estimates if year failure also occurred before the 

grade attended at t=1. In this case children failing before this grade would be excluded from the estimation of the 

model for �� , because at calendar time T they would still be attending an earlier grade. Regular children would 

represent a positively selected sample on the dependent variable, leading to biased estimates of 2���  and of the 

coefficients of (7).  
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already included in the estimation. Since previous school history is not recorded, it is not possible 

to distinguish children of row 4 and row 5. Hence, we may either include or exclude both of them. 

While, as argued above, excluding them does not have severe consequences, including both of 

them amounts to duplicating some observations and would lead to biased estimates. This result is 

shown in the simulation exercise described in Appendix A (Table A6). 

5.4 Including children with an immigrant background 

The inclusion of immigrant background students in the analyses and the evaluation of ethnic 

educational inequalities is problematic. First-generation immigrants are often placed in earlier 

grades at arrival in Italy, and therefore our instrument, children’s age, would be endogenous. 

Moreover, this population is subject to significant changes in the short run due to territorial 

mobility. Newly arrived immigrants are also likely to have severe language problems and might 

therefore be excluded from the assessment. For these reasons, we exclude first-generation 

immigrants from empirical analyses.31  

Second-generation immigrants are less subject to population instability, have been entirely 

exposed to the Italian schooling system and usually enter school at the regular age. Therefore 

comparing their achievement to that of natives is meaningful. In Italy, however, poorly achieving 

children are often required to repeat a grade. The repetition probability increases over the schooling 

career for all students and it is generally much higher for children with an immigrant background. 

According to the INVALSI data, in 5th grade (survey 2010) less than 1% of natives and around 6% 

of second-generation immigrants were older than the regular age, while in 6th grade (survey 2011) 

the proportion was 5% for natives and 15% for immigrants. 

As already pointed out, these figures do not allow distinguishing between current and previous 

repetitions. Consistently with the discussion of section 5.3, we assume that no repetitions occur 

                                                           
31 We define first-generation immigrants as children born abroad to two foreign-born parent and second-generation 

immigrants children born in Italy to two foreign-born parents. 
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before grade 5, and base our estimates on children born in 1999, i.e. children presumably not 

repeating grades. The results are shown in Appendix B.  

Cross-sectional estimates indicate that in the reading assessment children of immigrant 

background perform worse than natives by 4-6 points and in grade 6 the advantage of immigrant 

girls over boys is significantly larger than among natives. As for mathematics, in grade 6 there are 

significant territorial differences. In the North and the Centre, immigrant boys perform worse than 

native boys by approximately 4 points in both assessments; instead, immigrant girls do only 

marginally worse than native girls in grade 6. In the South and the Islands the immigrant-native 

performance gap is substantially smaller. 

The estimates of the dynamic model reveal that, given achievement in grade 5, in grade 6 

immigrant girls do not differ significantly from native girls in reading, while they substantially 

improve in math. Instead, immigrant boys do worse than native males in reading and remain stable 

in math. On math scores we also observe interaction effects between immigrant status and area of 

residence: while among natives the North-South divide widens between grade 5 and 6 (see also 

Table 2), among second-generation immigrants we observe no relevant changes. Overall, these 

findings suggest that although second-generation immigrant students are on average lower 

performing than natives, their disadvantage is largely established by the end of primary school. 

There is no evidence of growing immigrant background inequality in lower secondary school for 

girls, whereas for boys inequality widens in reading skills but not in mathematics.   

6. Summary and conclusions 

In this article we discuss the estimation of dynamic models from repeated cross-sectional 

standardized learning surveys, with the aim to assess how inequalities related to ascribed 

individual characteristics develop over childhood. Drawing on Verbeek and Vella (2005), we 

propose an imputed regression strategy allowing to “link” two surveys; the basic idea is that lagged 

scores are replaced by predicted values derived from a regression on the previous cross-section. 



27 

 

We show that – given our research question and with appropriate explanatory variables – this 

strategy delivers consistent estimates of the parameters of interest. Moreover, by explicitly 

addressing the issue of measurement error, imputed regression provides consistent estimates of the 

parameters of interest even with test scores imperfectly measuring achievement. 

If repeatedly applied to different segments of the schooling career, the method allows to 

investigate how inequalities develop over the schooling life course in educational systems where 

longitudinal data are not available. In principle, by exploiting international surveys, we could 

analyze cross-country differences and examine the relationship between the development of 

inequalities and specific features of the educational systems.32 This would represent a significant 

contribution to the literature on the effect of institutions on achievement inequalities, moving the 

focus from a static to a dynamic perspective.  

The main drawback, however, is that due to the substitution of true lagged scores with an 

estimate, standard errors are largely inflated. This result is shown in the simulation study described 

in Appendix A. The practical implication is that sizable samples are needed. This conclusion limits 

the applicability of the proposed strategy: to date, it would be difficult to exploit international 

assessments for cross-country comparisons, as these samples are usually not large enough.33 

In our empirical application we apply the pseudo-panel method to the large-scale learning 

assessments on reading and math literacy, carried out by the Italian National Evaluation Agency 

in 2010 and 2011 on children attending grades 5 and 6. We evaluate how gender, socioeconomic, 

immigrant background and territorial inequalities develop at the transition between primary and 

lower secondary school. The empirical analysis reveals that gender and socioeconomic inequalities 

widen in reading literacy but remain stable in math. On the contrary, the North-South divide does 

not change in reading but severely increases in math: this result suggests that math teaching in 

                                                           
32 TIMSS could be particularly well suited for this purpose, as it administers tests to children of given birth cohorts at 

grades 4 and 8. 
33 Additional instruments could help increasing the efficiency of the estimation, but as we have argued above, they 

are difficult to find with the information currently available. School characteristics at t=1 might represent valid 

instruments, but are not recorded at t=2.  
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lower secondary school could be much less effective in the South and Islands. Immigrant 

background differentials are largely established at the end of primary school; with the exception 

of reading skills for boys, second-generation immigrants do not lose ground with respect to natives 

in grade 6, and girls even catch up part of their disadvantage in math.   
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Appendix A. Simulation study 

In an attempt to assess the practical relevance of the imputed regression strategy in educational 

achievement surveys, we run a simulation study to: (a) explore the behavior of the estimates 

obtained with imputed regression, as the sample size and predictive power of the instrument M 

change; (b) compare the strategies: individual matching, cell mean regression and imputed 

regression; (c) assess the consequences of excluding school effects with longitudinal and imputed 

regression; (d) evaluate the imputed regression strategy when children repeating grades are 

included in the model.  

The basic structure of the simulation design is the following. For each replication, we first 

generate explanatory variables as discrete uniform random variables (SES varies between 1 and 5, 

Month of birth between 1 and 12, Sex is a dummy variable and Area varies between 1 and 5). The 

error terms at t=1 and t=2 are distributed as independent normal random variables. We then 

generate two independent draws of �� according to model (2): the first represents the (unobserved) 

lagged achievement at t=1 of the children observed in CS2, the second is the achievement of 

children observed in CS1. At last, we simulate values of �� given lagged achievement, according 

to model (3).   

When not stated differently, sample size is 30000. We run 1000 replications, and then compute 

the average value of the estimates and two statistics related to standard errors: the standard 

deviation of regression coefficient estimates across replications (se.1), and the mean value of the 

resulting standard error estimates within each replication (se.2).  

(a) Imputed regression: varying sample size and predictive power of the instrument 

In section 4.1 we showed that the imputed regression strategy yields unbiased estimates of 

regression coefficients, but standard errors are  inflated with respect to the estimation on genuine 

panel data, because the error term incorporates measurement error due to the substitution of true 

lagged scores with an estimate. In an attempt to assess the practical relevance of the imputed 
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regression strategy in educational achievement surveys, we run a simulation exercise to explore 

the behavior of the estimates with changing sample size and predictive power of the instrument M. 

The column representing our case-study is grey shadowed. 

Parameters are set approximately at the estimated values in our empirical analysis.34  We 

consider two alternative sample sizes: 5000 (a typical size in the international assessments TIMSS) 

and 30000 (the sample size in the Italian survey). Results are summarized in Table A1. True values 

of parameters are in column one. In the other columns we find results. The column representing 

our case-study is grey shadowed.  

Table A1. Imputed regression. Varying sample size and coefficient of the month of birth.  

 TRUE 

VALUE 

N=30000 

�WXY�Z=-0.1 

N=5000 

�WXY�Z=-0.1 

N=30000 

�WXY�Z=-0.3 

N=5000 

�WXY�Z=-0.3 

N=30000 

�WXY�Z=-0.5 

N=5000 

�WXY�Z=-0.5 

SES 2 1.79 

(1.80,1.21) 

1.96 

(32.1,4.9) 

1.99 

(0.45,0.37) 

1.85 

(1.23,0.95) 

1.99 

(0.27,0.23) 

1.96 

(0.68,0.58) 

Sex 2 1.85 

(1.35,0.92) 

2.16 

(35.1,5.2) 

1.99 

(0.39,0.34) 

1.88 

(1.11,0.85) 

1.98 

(0.31,0.25) 

1.97 

(0.74,0.63) 

Area 2 -1.90 

(0.90,0.61) 

-1.81 

(29.7,4.8) 

-2.00 

(0.23,0.20) 

-1.93 

(0.63,0.50) 

-1.99 

(0.16,0.13) 

-1.99 

(0.37,0.32) 

y1 0.7 0.75 

(0.45,0.30) 

0.78 

(15.2,2.4) 

0.70 

(0.11,0.09) 

0.74 

(0.30,0.23) 

0.70 

(0.07,0.06) 

0.71 

(0.16,0.14) 

Const 20 17.44 

(22.20,14.90) 

15.68 

(741.8,119.8) 

19.86 

(5.26,4.43) 

18.21 

(14.52,11.28) 

19.76 

(3.19,2.59) 

19.57 

(7.65,6.48) 

RMSE  16.41 16.40 16.41 16.42 16.41 16.41 

R2  0.21 0.21 0.21 0.22 0.22 0.22 

NOTES.  Models generating data:  

�� = 50 − �WXY�ZM + 4\2\ + 3S^� − 2`a^` + ��;  �� = 20 + 0.7�� + 2\2\ + 2S^� − 2`a^` + ��               

?��� = 16, ?��� = 12 

Range of explanatory variables: month of birth (1-12); SES(1-5); sex(0-1); area(1-5)  

Average over 1000 replications’ estimates.  

In parenthesis: (st. dev of estimates over replications, mean se. of the estimates). 

On average, the regression coefficient estimates are very similar to true parameters. Standard 

errors are generally large, in particular for small n and coefficient of the month of birth. As these 

parameters increase, the estimates become more precise.35 Our major conclusion is that in order to 

                                                           
34 The standard deviation of the error term in (3) cannot be estimated with pseudo-panel, so we have to guess a 

reasonable value for it. Since model (3) is conditional on previous performance, the error term variability is likely to 

be smaller than in (2). In the empirical analysis the estimate of the coefficient of M is -0.3; in the simulation we let it 

vary between -0.1 and -0.5.  
35 Se.1 always exceeds se.2 (although the differences are relatively small, in particular for large samples and predictive 

power of M). The reason is that the estimates of regression coefficients of �� are based on predicted values of ��; the 



32 

 

obtain reliable estimates large samples and good instruments are needed. With 5000 individuals, 

a typical country-level sample size in international assessment, the estimates are unstable, and can 

be totally unreliable with a very poor instrument. Instead, with a sample of 30000 students the 

results are satisfactory. 

(b) Individual matching, cell mean regression and imputed regression 

In this exercise we compare the estimates obtained with different estimation methods: individual 

matching, cell regression and imputed regression. Individual matching is performed by 

substituting true ��  with a random value drawn from the same distribution given explanatory 

variables. For cell mean regression, we define cells according to the discrete values of all 

explanatory variables (600 cells)36. Since sample size is 30000 and the explanatory variables are 

independent uniforms, each cell has approximately 50 units. Results are summarized in Table A2. 

Table A2. Comparison of alternative estimation strategies. Individual matching, cell mean 

                   regression, and imputed regression. 

 TRUE 

VALUE 

Individual 

matching (1) 

Cell matching (1)  

600 cells 

Cell matching (2) 

600 cells 

Cell matching (3) 

600 cells 

Imputed 

regression (1) 

SES 2 4.79 

(0.07.0.07) 

4.33 

(0.17.0.17) 

2.83 

(0.13, 0.13) 

2.26 

(0.10, 0.10) 

1.99 

(0.45.0.37) 

Sex 2 4.08 

(0.19.0.19) 

3.75 

(0.24.0.23) 

2.62 

(0.22,0.23) 

2.21 

(0.22,0.23) 

1.99 

(0.39.0.34) 

Area -2 -3.40 

(0.07.0.07) 

-3.16 

(0.11.0.11) 

-2.42 

(0.09,0.09) 

-2.13 

(0.08,0.09) 

-2.00 

(0.23.0.20) 

y1 0.7 0.00 

(0.01.0.01) 

0.12 

(0.04.0.04) 

0.49 

(0.03,0.03) 

0.63 

(0.02,0.02) 

0.70 

(0.11.0.09) 

Const 20 53.50 

(0.41.0.42) 

47.95 

(1.91.1.94) 

29.10 

(1.19,1.20) 

22.49 

(0.67,0.69) 

19.86 

(5.26.4.43) 

RMSE  16.43 2.43 2.69 2.78 16.41 

R2  0.21 0.93 0.92 0.93 0.21 

NOTES. Models generating data: 

�� = 50 − �WXY�ZM + 4\2\ + 3S^� − 2`a^` + ��;  �� = 20 + 0.7�� + 2\2\ + 2S^� − 2`a^` + ��               

?��� = 16, ?��� = 12. Sample size=30000. 

Values of explanatory variables: month of birth (1-12); SES(1-5); sex(0-1); area(1-5)  

Average over 1000 replications’ estimates.  

In parenthesis: (st. dev of estimates over replications, mean se. of the estimates).  

(1) �WXY�Z = −0.3; (2) �WXY�Z = −1; (3) �WXY�Z = −2 

 

                                                           

latter vary across replications, as also CS1 is a random sample. Se.1 incorporates this source of variability while within 

regression estimates of standard errors neglect it, because they are conditional on �1�.  
36 12 (values of month of birth)*5 (values of SES)*2 (values of Sex)*5 (values of Area)=600 cells. 
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In the first column we report the true values employed for data generation. The second column 

refers to individual matching: the estimate of the coefficient of lagged performance is nearly 0 and 

the effects of the other explanatory variables are strongly overestimated. In the last column we 

report the results of imputed regression already shown in Table A1. The three middle columns 

refer to cell mean regression. We allow the coefficient of the instrument (month of birth) to 

increase from -0.3 (the estimated value in our empirical application) to -2. The magnitude of the 

bias diminishes as this coefficient increases in absolute value, but it is still noticeable even with a 

large sample and very high predictive power of the instrument.  

In Table A3 we show the results of simulations aimed at evaluating the behavior of individual 

matching and cell mean regression with Fuller’s correction for measurement error on lagged 

scores. This method requires an estimate of the reliability, i.e. the squared correlation between the 

observed explanatory variable (affected by measurement error) and its true counterpart. This 

quantity can be estimated by d1 − efgh �B9 
efgh �89 i . Despite measurement error does not meet CEV 

conditions, Fuller’s method works well in terms of bias: average values of the estimates are close 

to real values. Standard errors, however, are considerably larger than those obtained with imputed 

regression.  
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Table A3. Comparison of alternative estimation strategies: individual matching and cell  

                  mean regression, with and without Fuller’s correction 

 True 

value 

Individual matching 

(no correction) 

Individual matching 

(Fuller correction) 

Cell matching 

600 cells 

(no correction) 

Cell matching 

 600 cells 

(Fuller correction) 

SES 2 4.79 

(0.07,0.07) 

4.25 

(1.14,1.12) 

4.33 

(0.17,0.17) 

1.85 

(1.68,0.98) 

Sex 2 4.08 

(0.19,0.19) 

3.68 

(0.88,0.86) 

3.75 

(0.24,0.23) 

1.90 

(1.28,0.76) 

Area -2 -3.40 

(0.07,0.07) 

-3.14 

(0.58,0.56) 

-3.16 

(0.11,0.11) 

-1.93 

(0.84,0.50) 

y1 0.7 0.00 

(0.01,0.01) 

0.14 

(0.28,0.28) 

0.12 

(0.04,0.04) 

0.74 

(0.41,0.24) 

Const 20 53.50 

(0.42,0.42) 

47.00 

(13.70,13.41) 

47.95 

(1.91,1.94) 

18.25 

(19.83,11.75) 

RMSE  16.43 16.41 2.44 2.33 

R2  0.21 0.21 0.93 0.93 

NOTES. Models generating data: 

�� = 50 − 0.3jklmℎ + 4\2\ + 3S^� − 2`a^` + ��;  �� = 20 + 0.7�� + 2\2\ + 2S^� − 2`a^` + ��               

?��� = 16, ?��� = 12. Sample size=30000. 

Values of explanatory variables: month of birth (1-12); SES(1-5); sex(0-1); area(1-5)  

Average over 1000 replications’ estimates.  

In parenthesis: (st. dev of estimates over replications, mean se. of the estimates). 

Fuller’s method run with STATA, procedure Eivreg. 

 

(c) School effects 

This simulation exercise is aimed at showing the behavior of pseudo-panel estimation when 

school-level effects operate. Our intent is to provide an empirical illustration of the theoretical 

arguments made in sections 4.3.1 and 4.3.2.  

Like in our case-study, we consider the case where children change schools between the two 

surveys. We let school factors at t=1 be represented by random normal variables, mutually 

independent and independent of explanatory variables. Achievement at t=1 depends on innate 

ability (random term), SES and school factors at t=1. We consider two types of school factors at 

t=2, which we may conceive as school quality: (i) an independent random normal variable; (ii) a 

factor correlated to children’s SES and previous achievement. Finally, achievement at t=2 depends 

on previous achievement, SES and school quality at t=2.  

After data generation, we estimate longitudinal data regression models and the pseudo-panel 

model for �� given ��, with and without school quality at t=2. The estimation is done by taking 
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into account the hierarchical structure of the data using the cluster robust Huber-White sandwich 

estimator.  

Results relative to the case of independent school factors are summarized in Table A4, while 

those with school quality correlated to SES and previous ability are reported in Table A.5. As 

predicted in section 4.3, in the first scenario the estimates are always unbiased, while this is not 

the case in the second. 

Table A4.  Longitudinal and imputed regression with and without independent  

                   school variables 

  Independent school factors 

 TRUE 

VALUE 

Longitudinal 

model 

with school 

quality 

Longitudinal  

model  

without 

school quality 

Imputed 

regression 

with school 

quality 

Imputed 

regression 

without  

school quality 

SES 2 2.01 

(0.06,0.05) 

2.00 

(0.06,0.06) 

1.99 

(0.39,0.34) 

1.98 

(0.41,0.36) 

�� 0.7 0.70 

(0.01,0.01) 

0.70 

(0.1,0.1) 

0.70 

(0.10,.0.09) 

0.70 

(0.10,0.09) 

S� 1 1.00 

(0.01,0.01) 
- 

1.00 

(0.02,0.02) 
- 

Cons -10 -9.99 

(0.30,0.31) 

-9.97 

(0.40,0.40) 

-10.10 

(4.64,3.99) 

-10.22 

(4.85,4.31) 

RMSE  12.00 13.42 14.79 15.96 

R2  0.52 0.40 0.27 0.15 

NOTES. Average over 1000 replications’ estimates. N children=30000; N schools=1500 

In parenthesis: (standard deviation of the estimates over replications, mean standard error of the estimates). 

Models generating data: 

�� = 50 + 4\2\ − 0.3 jklmℎ+I� + ��  

�� = −10 + 0.7�� + 2\2\ + 0.5S� + ��               

S� random normal independent school-level variable, ?�S� = 6 

All random errors (I� and I� school-level; �� and �� individual-level) normal, mutually uncorrelated and with 

explanatory variables: ?�I� = 3, ?�I� = 4, ?��� = 12, ?��� = 12. 

Range of explanatory variables: month of birth (1-12); SES (1-5)  

Cluster robust standard errors (Huber-White estimator, run with STATA). 

 

From Table A.5 we can see that the estimates relative to the longitudinal model with school 

quality are very similar to real values, whereas when we exclude school variables, the SES 

coefficient captures direct and indirect effects on performance at t=2 given ��. Its estimate is 

approximately equal to 3, both with longitudinal and imputed regression estimation. This correctly 

represents the overall effect of SES on ��, as the direct effect is equal to 2 (the SES coefficient in 

the �� model), while the indirect effect through school quality at t=2 is equal to 2*0.5=1 (2 is the 
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coefficient of SES in the S� model and 0.5 is the coefficient of S� in the �� model). A similar case 

can be made for the coefficient of lagged achievement. Instead, as argued in section 4.3.2, when 

school quality is included in the pseudo-panel estimation, all estimates are severely biased.  

Table A5.  Longitudinal and imputed regression with and without dependent  

                   school variables 

  School quality dependent on SES and previous achievement 

 TRUE 

VALUE 

Longitudinal 

model 

with school 

quality 

Longitudinal  

model  

without 

school quality 

Imputed 

regression 

with school 

quality 

Imputed 

regression 

without  

school quality 

SES 2 2.00 

(0.06,0.06) 

3.00 

(0.06,0.06) 

0.77 

(0.37,0.33) 

2.99 

(0.40,0.35) 

�� 0.7 0.70 

(0.01,0.01) 

0.75 

(0.01,0.01) 

0.64 

(0.09,0.08) 

0.75 

(0.10,0.09) 

S� 0.5 0.50 

(0.02,0.02) 
- 

1.11 

(0.02,0.02) 
- 

Cons -10 -9.97 

(0.36,0.36) 

-5.00 

(0.33,0.34) 

-16.26 

(4.39,3.94) 

-5.07 

(4.78,4.14) 

RMSE  12.00 12.17 14.57 15.30 

R2  0.53 0.52 0.31 0.24 

NOTES. Average over 1000 replications’ estimates. N children=30000; N schools=1500 

In parenthesis: (standard deviation of the estimates over replications, mean standard error of the estimates). 

Models generating data: 

�� = 50 + 4\2\ − 0.3 jklmℎ+I� + ��  

�� = −10 + 0.7�� + 2\2\ + 0.5S� + ��               

S� = 10 + 2\2\ + 0.1�� + I�  

All random errors (I� and I� school-level; �� and �� individual-level) normal, mutually uncorrelated and with 

explanatory variables: ?�I� = 3, ?�I� = 4, ?��� = 12, ?��� = 12. 

Range of explanatory variables: month of birth (1-12); SES (1-5)  

Cluster robust standard errors (Huber-White estimator, run with STATA). 

 

(d) Children repeating grades 

This simulation exercise has been carried out to evaluate imputed regression estimates with 

children repeating grades. We make children repeat grade 5 if their performance score is below a 

given threshold. The following year they move to grade 6. The same rule applies to repetitions in 

grade 6. No children fail before grade 5. 

Model (6) is estimated on regular children. As for dynamic model (7), we compare the behavior 

of the estimates when using only regular children and when including late children. We analyze 

two cases, with different shares of children failing the year. Since we introduced the issue of 

repeating grades when attempting to include immigrant children in the estimation, we add migrant 
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status in the models. Given their poorer performance, low socioeconomic status and immigrant 

children are overrepresented among late children. 

Results, shown in Table A6, confirm our theoretical expectations. We find no bias when 

analyzing only regular children, while we overestimate the effects when late children are included 

in the estimation.  

Table A6. Imputed regression estimates with children repeating grades 

  

TRUE 

VALUE 

Only regular children Regular and late children 

Overall % repeating grades Overall % repeating grades 

0%  GRADE 5 

10%  GRADE 6 

10%  GRADE 5 

20%  GRADE 6 

0%  GRADE 5 

10%  GRADE 6 

10%  GRADE 5 

20%  GRADE 6 

�1 0.7 0.70 

(0.11,0.09) 

0.71 

(0.12,0.10) 

0.81 

(0.11,0.09) 

0.75 

(0.11,0.09) 

SES 2 2.00 

(0.44,0.37) 

1.97 

(0.47,0.40) 

2.33 

(0.46,0.38) 

2.30 

(0.46,0.37) 

mig -3 -2.99 

(0.51,0.44) 

-2.97 

(0.55,0.47) 

-3.43 

(0.54,0.44) 

-3.26 

(0.53,0.43) 

Constant 10 9.93 

(5.25,4.43) 

9.63 

(5.62,4.70) 

0.53 

(5.44,4.52) 

3.31 

(5.44,4.33) 

NOTES. Models generating data: 

�� = 50 − 0.3jklmℎ + 4\2\ + 4jop + ��;  �� = 10 + 0.7�� + 2\2\ + 2S^� − 3jop + ��               

?��� = 16, ?��� = 12. Sample size=30000. 

Values of explanatory variables: month of birth (1-12); migrant(0,1) 20% migrants  

Average over 1000 replications’ estimates.  

In parenthesis: (st. dev of estimates over replications, mean se. of the estimates). 
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Appendix B. Models with natives and second-generation immigrants 

 

Table B1. Estimates of cross-sectional and pseudo-panel data models  

                  (natives and second-generation immigrants) 

 READING MATHEMATICS 

Variables 

5th grade 

cross-section 

6th grade 

cross-section 

6th grade 

dynamic 

5th grade 

cross-section 

6th grade 

cross-section 

6th grade 

dynamic 

Costant  66.0***  58.8***  13.0*   61.7*** 45.4*** -16.0** 

Month1   -0.3***    -0.3***   

2G  -6.2*** -6.6***      -2.2*  -4.5***      -4.2***   

Female   0.7***  2.2***       1.7***      -3.2***      -3.7***         -0.5  

Female 2G          2.9*       2.9*        2.6* 3.1** 

Books2   2.3*** 2.1*** 0.4    2.1*** 2.4***          0.2 

ESCS    3.3***   3.9***       1.5***    3.0*** 3.7***          0.5 

North East       -0.7       -0.6      -0.1        -1.3*       0.9          2.4*** 

Centre       -2.6***       -1.3***       0.5        -2.1**      -2.8***         -0.6 

South   -3.6***   -2.5***       0.2        -0.9 -5.1***         -4.1*** 

Islands   -6.3***   -6.5***      -1.8*        -4.0*** -8.4***   -4.1*** 

South-Isl 2G            3.6*          3.8* 

 ��      0.718***       1.031*** 

 R2 0.135 0.161 0.163 0.094 0.155          0.157 

RMSE 15.91 14.94 14.93 17.11 17.05 17.02 

sample size 27779 30882 30882 28542 30881 30881 

*p_value<0.05;  **p-value<0.01; ***p-value<0.005 

NOTES. The estimation has been performed only on children born in 1999.  

1. January=1,… December=12 

2. 0=0-10 books; 1=11-25 books; 2=26-100 books; 3=101-200 books; 4=>200 books 

Cluster robust standard errors (Huber-White estimator, run with STATA). Clusters defined by classes.  
Interactions effects are reported only when significant.  

 

 


