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Abstract. Bilinear groups are often used to create Attribute-Based En-
cryption (ABE) algorithms. In particular, they have been used to create
an ABE system with multi authorities, but limited to the ciphertext-policy
instance. Here, for the first time, we propose a multi-authority key-policy
ABE system.
In our proposal, the authorities may be set up in any moment and without
any coordination. A party can simply act as an ABE authority by creating
its own public parameters and issuing private keys to the users. A user
can thus encrypt data choosing both a set of attributes and a set of trusted
authorities, maintaining full control unless all his chosen authorities col-
lude against him.
We prove our system secure under the bilinear Diffie-Hellman assump-
tion.
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1 Introduction

The key feature that makes the cloud so attracting nowadays is the great accessi-
bility it provides: users can access their data through the Internet from anywhere.
Unfortunately, at the moment the protection offered for sensitive information
is questionable and access control is one of the greatest concerns. Illegal ac-
cess may come from outsiders or even from insiders without proper clearance.
One possible approach for this problem is to use Attribute-Based Encryption
(ABE) that provides cryptographically enhanced access control functionality in
encrypted data.

ABE developed from Identity Based Encryption, a scheme proposed by
Shamir [18] in 1985 with the first constructions obtained in 2001 by Boneh and
Franklin [4]. The use of bilinear groups, in particular the Tate and Weil pairings
on elliptic curves [4], was the winning strategy that finally allowed to build
schemes following the seminal idea of Shamir. Bilinear groups came in nicely
when a preliminary version of ABE was invented by Sahai and Waters [17] in
2005. Immediately afterwards, Goyal, Pandey, Sahai, and Waters [7] formulated
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the two complimentary forms of ABE which are nowadays standard: ciphertext-
policy ABE and key-policy ABE. In a ciphertext-policy ABE system, keys are
associated with sets of attributes and ciphertexts are associated with access
policies. In a KP-ABE system, the situation is reversed: keys are associated with
access policies and ciphertexts are associated with sets of attributes. Several
developments in efficiency and generalizations have been obtained for key-
policy ABE, e.g. [1], [8], [16]. A first implementation of ciphertext-policy ABE
has been achieved by Bethencourt et al. [3] in 2007 but the proofs of security
of the ciphertext-policy ABE remained unsatisfactory since they were based on
an assumption independent of the algebraic structure of the group (the generic
group model). It is only with the work of Waters [20] that the first non-restricted
ciphertext-policy ABE scheme was built with a security dependent on variations
of the DH assumption on bilinear groups. Related to the work we propose in
this paper is the construction for multiple authorities (ciphertext-policy ABE)
that have been proposed in [5], [6] and [11].
However, before the present paper no multi-authority KP-ABE scheme has
appeared in the literature with a proof of security.

Our construction In this paper we present the first multi-authority KP-ABE
scheme. In our system, after the creation of an initial set of common parameters,
the authorities may be set up in any moment and without any coordination. A
party can simply act as an ABE authority by creating a public parameters and
issuing private keys to different users (assigning access policies while doing so).
A user can encrypt data under any set of attributes specifying also a set of trusted
authorities, so the encryptor maintains high control. Also, the system does not
require any central authority. Our scheme has both very short single-authority
keys, that compensate the need of multiple keys (one for authority), and also
very short ciphertexts. Moreover, the pairing computations in the bilinear group
are involved only during the decryption phase, obtaining this way significant
advantages in terms of encryption times.

Even if the authorities are collaborating, the existence of just one non-
cheating authority guarantees that no illegitimate party (including authorities)
has access to the encrypted data.

We prove our scheme secure using the classical bilinear Diffie-Hellman as-
sumption.

Organization This paper is organized as follows. In Section 2 we present the
main mathematical tools used in the construction of multi authority KP-ABE
scheme. In Section 3 we explain in detail our multi authority KP-ABE scheme
and its security is proven under standard, non-interactive assumptions in the
selective set model. Finally conclusions are drawn in Section 4.
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2 Preliminaries

We do not prove original results here, we only provide what we need for our
construction. See the cited references for more details on these arguments.

Let G1,G2 be groups of the same prime order p.

Definition 1 (Pairing). A symmetric pairing is a bilinear map e such that e : G1 ×

G1 → G2 has the following properties:

– Bilinearity: ∀g, h ∈ G1,∀a, b ∈ Zp, e(ga, hb) = e(g, h)ab.
– Non-degeneracy: for g generator of G1, e(g, g) , 1.

Definition 2 (Bilinear Group). G1 is a Bilinear group if the conditions above hold
and both the group operations in G1 and G2 as well as the bilinear map e are efficiently
computable.

Let a, b, s, z ∈ Zp be chosen at random and g be a generator of the bilinear
group G1. The decisional bilinear Diffie-Hellman (BDH) problem consists in
constructing an algorithm B(A = ga,B = gb,S = gs,T) → {0, 1} to efficiently
distinguish between the tuples (A,B,S, e(g, g)abs) and (A,B,S, e(g, g)z) outputting
respectively 1 and 0. The advantage of B is:

AdvB =
∣∣∣∣Pr

[
B(A,B,S, e(g, g)abs) = 1

]
− Pr

[
B(A,B,S, e(g, g)z) = 1

] ∣∣∣∣
where the probability is taken over the random choice of the generator g, of
a, b, s, z in Zp, and the random bits possibly consumed by B to compute the
response.

Definition 3 (BDH Assumption). The decisional BDH assumption holds if no prob-
abilistic polynomial-time algorithm B has a non-negligible advantage in solving the
decisional BDH problem.

Access structures define who may and who may not access the data, giving
the sets of attributes that have clearance.

Definition 4 (Access Structure). An access structure A on a universe of attributes
U is the set of the subsets S ⊆ U that are authorized. That is, a set of attributes S satisfies
the policy described by the access structureA if and only if S ∈ A.

They are used to describe a policy of access, that is the rules that prescribe
who may access to the information. If these rules are constructed using only
AND, OR and threshold operators on the attributes, then the access structure
is monotonic.

Definition 5 (Monotonic Access Structure). An access structure A is said to be
monotonic if given S0 ⊆ S1 ⊆ U it holds

S0 ∈ A =⇒ S1 ∈ A
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An interesting property is that monotonic access structures (i.e. access struc-
turesA such that if S is an authorized set and S ⊆ S′ then also S′ is an authorized
set) may be associated to linear secret sharing schemes (LSSS). In this setting
the parties of the LSSS are the attributes of the access structure.

A LSSS may be defined as follows (adapted from [2]).

Definition 6 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing scheme
Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix M with l rows and n columns called the share-generating

matrix for Π. For all i ∈ {1, . . . , l} the i-th row of M is labeled via a function ρ,
that associates Mi to the party ρ(i). Considering the vector v = (s, r2, . . . , rn) ∈ Zn

p ,
where s ∈ Zp is the secret to be shared, and ri ∈ Zp, with i ∈ {2, . . . ,n} are randomly
chosen, then Mv is the vector of l shares of the secret s according to Π. The share
(Mv)i = Miv belongs to party ρ(i).

It is shown in [2] that every linear secret sharing-scheme according to the
above definition also enjoys the linear reconstruction property, defined as fol-
lows: suppose that Π is an LSSS for the access structure A. Let S ∈ A be any
authorized set, and let I ⊆ {1, . . . , l} be defined as I = {i : ρ(i) ∈ S}. Then, there
exist constants wi ∈ Zp, with i ∈ I such that, if λi are valid shares of any secret s
according to Π, then ∑

i∈I

wiλi = s (1)

Furthermore, it is shown in [2] that these constants wi can be found in time
polynomial in the size of the share-generating matrix M.

Note that the vector (1, 0, . . . , 0) is the target vector for the linear secret sharing
scheme. Then, for any set of rows I in M, the target vector is in the span of I if
and only if I is an authorized set. This means that if I is not authorized, then for
any choice of c ∈ Zp there will exist a vector u such that u1 = c and

Mi ·w = 0 ∀i ∈ I

In the first ABE schemes the access formulas are typically described in terms
of access trees. The appendix of [11] is suggested for a discussion of how to
perform a conversion from access trees to LSSS.

See [7], [2] and [13] for more details about LSSS and access structures.

3 Our Construction

This section is divided in three parts. We start with definitions of Multi-Authority
Key-Policy ABE and of CPA selective security. In the second part we present in
detail our first scheme and, finally, we prove the security of this scheme under
the classical BDH assumption in the selective set model.

A security parameter will be used to determine the size of the bilinear group
used in the construction, this parameter represents the order of complexity
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of the assumption that provides the security of the scheme. Namely, first the
complexity is chosen thus fixing the security parameter, then this value is used
to compute the order that the bilinear group must have in order to guarantee
the desired complexity, and finally a suitable group is picked and used.

3.1 Multi Authority KP-ABE Structure and Security

In this scheme, after the common universe of attributes and bilinear group
are agreed, the authorities set up independently their master key and public
parameters. The master key is subsequently used to generate the private keys
requested by users. Users ask an authority for keys that embed a specific access
structure, and the authority issues the key only if it judges that the access
structure suits the user that requested it. Equivalently an authority evaluates a
user that requests a key, assigns an access structure, and gives to the user a key
that embeds it. When someone wants to encrypt, it chooses a set of attributes
that describes the message (and thus determines which access structures may
read it) and a set of trusted authorities. The ciphertext is computed using the
public parameters of the chosen authorities, and may be decrypted only using
a valid key for each of these authorities. A key with embedded access structure
A may be used to decrypt a ciphertext that specifies a set of attributes S if and
only if S ∈ A, that is the structure considers the set authorized.

This scheme is secure under the classical BDH assumption in the selective
set model, in terms of chosen-ciphertext indistinguishability.

The security game is formally defined as follows.

Let E = (Setup,Encrypt,KeyGen,Decrypt) be a MA-KP-ABE scheme for a mes-
sage spaceM, a universe of authorities X and an access structure space G and
consider the following MA-KP-ABE experiment MA-KP-ABE-ExpA,E(λ,U) for
an adversaryA, parameter λ and attribute universe U:

Init. The adversary declares the set of attributes S and the set of authorities
A ⊆ X that it wishes to be challenged upon. Moreover it selects the honest
authority k0 ∈ A.

Setup. The challenger runs the Setup algorithm, initializes the authorities and
gives to the adversary the public parameters.

Phase I. The adversary issues queries for private keys of any authority, but k0
answers only to queries for keys for access structuresA such that S < A. On
the contrary the other authorities respond to every query.

Challenge. The adversary submits two equal length messages m0 and m1. The
challenger flips a random coin b ∈ {0, 1}, and encrypts mb with S for the set
of authorities A. The ciphertext is passed to the adversary.

Phase II. Phase I is repeated.
Guess. The adversary outputs a guess b′ of b.

Definition 7 (MA-KP-ABE Selective Security). The MA-KP-ABE scheme E is
CPA selective secure (or secure against chosen-plaintext attacks) for attribute universe
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U if for all probabilistic polynomial-time adversariesA, there exists a negligible function
negl such that:

Pr[MA-KP-ABE-ExpA,E(λ,U) = 1] ≤
1
2

+ negl(λ).

3.2 The Scheme

The scheme plans a set X of independent authorities, each with their own pa-
rameters, and it sets up an encryption algorithm that lets the encryptor choose
a set A ⊆ X of authorities, and combines the public parameters of these in such
a way that an authorized key for each authority in A is required to successfully
decrypt.
Our scheme consists of three randomized algorithms (Setup,KeyGen, Encrypt)
plus the decryption Decrypt. The techniques used are inspired from the scheme
of Goyal et al. in [7]. The scheme works in a bilinear group G1 of prime or-
der p, and uses LSSS matrices to share secrets according to the various access
structures. Attributes are seen as elements of Zp.

The description of the algorithms follows.

Setup(U, g,G1)→ (PKk,MKk). Given the universe of attributes U and a genera-
tor g of G1 each authority sets up independently its parameters. For k ∈ X the
Authority k chooses uniformly at random αk ∈ Zp, and zk,i ∈ Zp for each i ∈ U.
Then the public parameters PKk and the master key MKk are:

PKk =
(
e(g, g)αk , {gzk,i }i∈U

)
MKk =

(
αk, {zk,i}i∈U}

)
KeyGenk(MKk, (Mk, ρk))→ SKk. The key generation algorithm for the authority
k takes as input the master secret key MKk and an LSSS access structure (Mk, ρk),
where Mk is an l × n matrix on Zp and ρk is a function which associates rows
of Mk to attributes. It chooses uniformly at random a vector vk ∈ Z

n
p such that

vk,1 = αk. Then it computes the shares λk,i = Mk,ivk for 1 ≤ i ≤ l where Mk,i is the
i-th row of Mk. Then the private key SKk is:

SKk =

{
Kk,i = g

λk,i
zk,ρk (i)

}
1≤i≤l

Encrypt(m,S, {PKk}k∈A) → CT. The encryption algorithm takes as input the
public parameters, a set S of attributes and a message m to encrypt. It chooses
s ∈ Zp uniformly at random and then computes the ciphertext as:

CT =

S,C′ = m ·

∏
k∈A

e(g, g)αk


s

, {Ck,i = (gzk,i )s
}k∈A, i∈S


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Decrypt(CT, {SKk}k∈A) → m′. The input is a ciphertext for a set of attributes S
and a set of authorities A and an authorized key for every authority cited by the
ciphertext. Let (Mk, ρk) be the LSSS associated to the key k, and suppose that S
is authorized for each k ∈ A. The algorithm for each k ∈ A finds wk,i ∈ Zp, i ∈ Ik
such that ∑

i∈Ik

λk,iwk,i = αk (2)

for appropriate subsets Ik ⊆ S and then proceeds to reconstruct the original
message computing:

m′ =
C′∏

k∈A
∏

i∈Ik
e(Kk,i,Ck,ρk(i))wk,i

=
m ·

(∏
k∈A e(g, g)αk

)s

∏
k∈A

∏
i∈Ik

e
(
g

λk,i
zk,ρk (i) , (gzk,ρk (i) )s

)wk,i

=
m · e(g, g)s(

∑
k∈A αk)∏

k∈A e(g, g)s
∑

i∈Ik
wk,iλk,i

∗
=

m · e(g, g)s(
∑

k∈A αk)

e(g, g)s(
∑

k∈A αk)
= m

Where ∗= follows from property (2).

3.3 Security

The scheme is proved secure under the BDH assumption (Definition 3) in a se-
lective set security game in which every authority but one is supposed curious
(or corrupted or breached) and then it will issue even keys that have enough
clearance for the target set of attributes, while the honest one issues only unau-
thorized keys. Thus if at least one authority remains trustworthy the scheme is
secure.
The security is provided by the following theorem.

Theorem 1. If an adversary can break the scheme, then a simulator can be constructed
to play the Decisional BDH game with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversaryA, that can attack the
scheme in the Selective-Set model with advantage ε. Then a simulator B can be
built that can play the Decisional BDH game with advantage ε/2. The simulation
proceeds as follows.

Init The simulator takes in a BDH challenge g, ga, gb, gs,T. The adversary gives
the algorithm the challenge access structure S.
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Setup The simulator chooses random rk ∈ Zp for k ∈ A \ {k0} and implicitly sets
αk = −rkb for k ∈ A \ {k0} and αk0 = ab + b

∑
k∈A\{k0}

rk by computing:

e(g, g)αk0 = e(ga, gb)
∏

k∈A\{k0}

(gb, grk )

e(g, g)αk = e(gb, g−rk ) ∀k ∈ A \ {k0}

Then it chooses z′k,i ∈ Zp uniformly at random for each i ∈ U, k ∈ A and implicitly
sets

zk,i =

z′k,i if i ∈ S
bz′k,i if i < S

Then it can publish the public parameters computing the remaining values as:

gzk,i =

gz′k,i if i ∈ S
(gb)z′k,i if i < S

Phase I In this phase the simulator answers private key queries. For the queries
made to the authority k0 the simulator has to compute the Kk0,i values of a key
for an access structure (M, ρ) with dimension l × n that is not satisfied by S.
Therefore for the properties of an LSSS it can find a vector y ∈ Zn

p with y1 = 1
fixed such that

Miy = 0 ∀i such that ρ(i) ∈ S (3)

Then it chooses uniformly at random a vector v ∈ Zn
p and implicitly sets the

shares of αk0 = b(a +
∑

k∈A\{k0}
rk) as

λk0,i = b
n∑

j=1

Mi, j(v j + (a +
∑

k∈A\{k0}

rk − v1)y j)

Note that λk0,i =
∑n

j=1 Mi, ju j where u j = b(v j + (a +
∑

k∈A\{k0}
rk − v1)y j) thus

u1 = b(v1 + (a +
∑

k∈A\{k0}
rk − v1)1) = ab + b

∑
k∈A\{k0}

rk = αk0 so the shares are valid.
Note also that from (3) it follows that

λk0,i = b
n∑

j=1

Mi, jv j ∀i such that ρ(i) ∈ S

Thus if i is such that ρ(i) ∈ S the simulator can compute

Kk0,i = (gb)

∑n
j=1 Mi, jvj

z′k0 ,ρ(i) = g
λk0 ,i

zk0 ,ρ(i)

Otherwise, if i is such that ρ(i) < S the simulator computes

Kk0,i = g

∑n
j=1 Mi, j (vj+(r−v1)yj )

z′k0 ,ρ(i) (ga)

∑n
j=1 Mi, j yj

z′k0 ,ρ(i) = g
λ1,i

zk0 ,ρ(i)
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Remembering that in this case zk0,ρ(i) := bz′k0,ρ(i). Finally for the queries to the
other authorities k ∈ A\{k0}, the simulator chooses uniformly at random a vector
tk ∈ Z

n
p such that tk,1 = −rk and implicitly sets the shares λk,i = b

∑n
j=1 Mi, jtk, j by

computing

Kk,i =


(gb)

∑n
j=1 Mi, j tk, j

z′k,ρ(i) = g
b
∑n

j=1 Mi, j tk, j

z′k,ρ(i) = g
λk,i

zk,ρ(i) if i ∈ S

g

∑n
j=1 Mi, j tk, j

z′k,ρ(i) = g
b
∑n

j=1 Mi, j tk, j

bz′k,ρ(i) = g
λk,i

zk,ρ(i) if i < S

Challenge The adversary gives two messages m0,m1 to the simulator. It flips a
coin µ. It creates:

C′ = mµ · T
∗
= mµ · e(g, g)abs

= mµ ·

e(g, g)(ab+b
(∑

k∈A\{k0 }
rk

) ∏
k∈A\{k0}

e(g, g)brk


s

Ck,i = (gs)z′k,ρ(i) = gszk,ρ(i) k ∈ A, i ∈ S

Where the equality ∗
= holds if and only if the BDH challenge was a valid tuple

(i.e. T is non-random).

Phase II During this phase the simulator acts exactly as in Phase I.

Guess The adversary will eventually output a guess µ′ of µ. The simulator then
outputs 0 to guess that T = e(g, g)abs if µ′ = µ; otherwise, it outputs 1 to indicate
that it believes T is a random group element inG2. In fact when T is not random
the simulator B gives a perfect simulation so it holds:

Pr
[
B

(
y,T = e(g, g)abs

)
= 0

]
=

1
2

+ ε

On the contrary when T is a random element R ∈ G2 the message mµ is com-
pletely hidden from the adversary point of view, so:

Pr
[
B

(
y,T = R

)
= 0

]
=

1
2

Therefore,B can play the decisional BDH game with non-negligible advantage ε
2 .

4 Related Works and Final Comments

Our scheme gives a solution addressing the problem of faith in the authority,
specifically the concerns arisen by key escrow and clearance check. Key escrow
is a setting in which a party (in this case the authority) may obtain access to
private keys and thus it can decrypt any ciphertext. Normally the users have
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faith in the authority and assume that it will not abuse its powers. The problem
arises when the application does not plan a predominant role and there are trust
issues selecting any third party that should manage the keys. In this situation
the authority is seen as honest but curious, in the sense that it will provide
correct keys to users (then it is not malicious) but will also try to access to data
beyond its competence. It is clear that as long as a single authority is the unique
responsible to issue the keys, there is no way to prevent key escrow. Thus the
need for multi-authority schemes arises.

The second problem is more specific for KP-ABE. In fact, the authority has
to assign to each user an appropriate access structure that represents what the
user can and cannot decrypt. Therefore, the authority has to be trusted not
only to give correct keys and to not violate the privacy, but also to perform
correct checks of the users’ clearances and to assign correct access structures
accordingly. Therefore, in addition to satisfying the requirements of not being
malicious and not being curious, the authority must also not have been breached,
in the sense that a user’s keys must embed access structures that faithfully
represent that user’s level of clearance, and that no one has access to keys
with a higher level of clearance than the one they are due. In this case, to add
multiple authorities to the scheme gives to the encryptor the opportunity to
request more guarantees about the legitimacy of the decryptor’s clearance. In
fact, each authority checks the users independently, so the idea is to request that
the decryption proceeds successfully only when a key for each authority of a
given set A is used. This means that the identity of the user has been checked
by every selected authority, and the choice of these by the encryptor models the
trust that he has in them. Note that if these authorities set up their parameters
independently and during encryption these parameters are bound together
irrevocably, then no authority can single-handedly decrypt any ciphertext and
thus key escrow is removed. So our KP-ABE schemes guarantee a protection
against both breaches and curiosity.

The scheme proposed has very short single-keys (just one element per row
of the access matrix) that compensates for the need of multiple single-keys
(one for cited authority) in the decryption. Ciphertexts are also very short (the
number of elements is linear in the number of authorities times the number
of attributes under which it has been encrypted) thus the scheme is efficient
under this aspect. Moreover, there are no pairing computations involved during
encryption and this means significant advantages in terms of encryption times.
Decryption time is not constant in the number of pairings (e.g. as in the scheme
presented in [8] or the one in [20]) but requires

∑
k∈A lk pairings where A is the

set of authorities involved in encryption and lk is the number of rows of the
access matrix of the key given by authority k, so to maintain the efficiency of the
scheme only a few authorities should be requested by the encryptor.

Taking a more historical perspective, the problem of multi-authority ABE
is not novel and a few solution have been proposed. The problem of building
ABE systems with multiple authorities was proposed by Sahai and Waters.
This problem with the presence of a central authority was firstly considered
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by Chase [5] and then improved by Chase and Chow [6], constructing simple-
threshold schemes in the case where attributes are divided in disjoint sets, each
controlled by a different authority. These schemes are also shown to be extensible
from simple threshold to KP-ABE, but retaining the partition of attributes and
requiring the involvement of every authority in the decryption. In those works
the main goal is to relieve the central authority of the burden of generating key
material for every user and add resiliency to the system. Multiple authorities
manage the attributes, so that each has less work and the whole system does
not get stuck if one is down. Another approach has been made by Lin et al.
[12] where a central authority is not needed but a parameter directly sets the
efficiency and number of users of the scheme.

More interesting results have been achieved for CP schemes, in which the
partition of the attributes makes more sense, for example [15]. The most recent
and interesting result may be found in [11], where Lewko and Waters propose
a scheme where is not needed a central authority or coordination between the
authorities, each controlling disjoint sets of attributes. They used composite
bilinear groups and via Dual System Encryption (introduced by Waters [19]
with techniques developed with Lewko [10]) proved their scheme fully secure
following the example of Lewko et al. [9]. They allow the adversary to statically
corrupt authorities choosing also their master key. Note however that they did
not specifically address key escrow but distributed workload.

Our results of this article retain relevance since they address a different
setting. In fact, with this extensions the differences in the situations of ciphertext-
policy ABE and KP-ABE model become more distinct. For example a situation
that suits the scheme proposed here, but not the one of Lewko and Waters is
the following. Consider company branches dislocated on various parts of the
world, each checking its personnel and giving to each an access policy (thus
acting as authorities). This scheme allows encryptions that may be decrypted
by the manager of the branch (simply use only one authority as in classic ABE)
but also more secure encryptions that require the identity of the decryptor to
be guaranteed by more centers, basing the requirements on which branches are
still secure and/or where a user may actually authenticate itself.

Moreover, we observe that although the scheme of [11] is proven fully se-
cure (against selective security), the construction is made in composite bilinear
groups. It is in fact compulsory when using Dual System encryption, but this
has drawbacks in terms of group size (integer factorization has to be avoided)
and the computations of pairings and group operations are less efficient. This
fact leads to an alternative construction in prime order groups in the same pa-
per, that however is proven secure only in the generic group and random oracle
model. These considerations demonstrate that our construction in prime groups
under basic assumptions retain validity and interest.
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