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Abstract 

Robust evidence in literature indicates that the morphogenic factor Sonic Hedgehog (Shh) actively 

orchestrates several aspects of cerebellar development and maturation. During embryogenesis Shh 

signalling is active in the ventricular germinal zone (VZ) and represents an essential signal for 

proliferation of VZ-derived progenitors. Later, Purkinje cell (PC)-secreted Shh sustains the 

amplification of neurogenic niches active during postnatal development: the external granular layer 

(EGL) and the prospective white matter (PWM) where excitatory granule cells and inhibitory 

interneurons, respectively, are produced. In addition, Shh signalling acts on Bergmann glia 

differentiation and during development sustains cerebellar foliation. Here we review the most 

relevant functions of Shh during cerebellar ontogenesis, underlying the role of this ligand in the 

development of different cerebellar phenotypes. 

 

 

1.Introduction: the Hedgehog Pathway  

 

Sonic Hedgehog (Shh) signalling is implicated in the regulation of key events during mammalian 

developmental processes [1]. The first gene of the Hedgehog family (Hh) was cloned in Drosophila 

in the early 1990s [2], and its role in controlling the proper segmental identity during fruit fly 

embryonic development has been identified [3, 4]. Shortly after, different Hh genes in Vertebrates 

were described [5, 6] and explained as a result of genome duplication. They are classified as Desert 

Hedgehog (Dhh), Indian Hedgehog (Ihh) and Shh [7]. In mammals, Shh is expressed starting from 

early embryogenesis and is one of the molecules responsible for the regulation of central nervous 

system (CNS) patterning [8]. Successively, during organogenesis, Shh is broadly detected in many 

tissues where it plays key roles as morphogen, mitogen and guidance molecule. Given its prominent 

role during development, alteration of its physiological functions are implicated in many human 

pathologies [9-11]. 
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The spatial and temporal Shh expression pattern results from the combined action of multiple 

enhancer elements present in its extensive regulatory domain, controlling Shh transcription in 

different tissues [12-16]. However, only recently specific transcription factors have been discovered 

to directly control Shh enhancer activity. After transcription, Shh becomes an active ligand through 

evolutionarily conserved multistep processes [17-22] (Fig. 1A1). Initially, it is synthesized as a 45-

kDa precursor and then it is auto-proteolytically cleaved by its own C-terminal domain into two 

secreted peptides: a 19-kDa amino terminus (Shh-N) with a signalling domain and a 26-kDa 

carboxy terminus (Shh-C), devoid of any signal transduction activity [23, 24] (Fig. 1A1). During 

auto-proteolysis, a cholesterol moiety is added to the C-terminus of Shh-N to anchor it to the 

plasma membrane, resulting in concentration in the lipid membrane rafts that facilitates interaction 

of low levels of Shh-N protein with its receptor [25-27, 18, 23]. Moreover, the cholesterol 

modification is also essential for a second lipophilic addition, a palmitoyl insertion at N-terminus of 

Shh-N  [27, 18, 23] (Fig. 1A1). The presence of this second lipid incorporation is indispensable for 

Shh-N to multimerize and sequester the lipid anchor within the multimer, resulting in the 

detachment from the plasma membrane (Fig. 1A1). This soluble form of Shh-N is now able to 

diffuse far from its site of synthesis, resulting in a broad and long-distance effect [28-31]. The 

secretion of soluble multimer Shh-N can also be controlled by Dispached1 transmembrane protein 

(Disp1), containing a sterol sensing domain (SSD) able to displace Shh-N oligomers from lipid rafts 

[32, 33] (Fig. 1A1).  

Before reaching the surface of responding cells, Shh-N moves between many cells probably under 

the regulation of multiple molecules and mechanisms, like megalin [34] and glypicans [35] (Fig. 

1A2). Megalin is an endocytic receptor belonging to the low density lipoprotein receptor family, and 

mediates cell endocytosis of N-Shh, targeting it for lysosomal degradation or transcytosis [34]. The 

affinity of N-Shh for megalin is augmented when the ligand is sequestered near the cell surface by 

glypicans, which are heparan sulfate proteoglycans [36] (Fig. 1A2). Lysosomal degradation is 

implicated in the extracellular regulation of N-Shh concentration, whereas megalin-mediated 

transcytosis may facilitate long range signaling of N-Shh during early development, across neural 

tube epithelial cells [34, 37]. 

In vertebrates, the receptor and co-receptors of N-Shh are concentrated in the primary cilium, a 

microtubule-based membrane protrusion [38]. Emerging evidence suggests that the cell surface 

machinery responsive to Shh comprise is a complex interaction network [39]. Indeed, the binding of 

Shh-N to its specific receptor Patched 1 (Ptch1), a 12-pass transmembrane protein, is facilitated by 

other transmembrane proteins, like Cdo, Boc and Growth Arrest Specific 1 (Gas1; Fig. 1B1-3; [40, 
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41]). These co-receptors regulate Shh signalling by binding to Shh in synergic interaction with 

Ptch1. They are down-regulated in response to Shh signalling in a negative feedback [42-45]. This 

feedback simultaneously up-regulates Ptch1 and other two additional cell surface Shh-binding 

proteins, hedgehog interacting protein 1 (Hhip1; [46]), a membrane-anchored glycoprotein, and 

patched 2 (Ptch2), a structural homolog of Ptch1 that arose from a gene duplication event [47]. 

Ptch2 and Hhip1 binding to Shh-N ligand compete with active ligand-receptor interactions to alter 

the balance between bound and unbound Ptch1, resulting in cell autonomous modulation of cell 

signaling activity. Furthermore, the resulting transcription of Ptch1 gene in response to Shh 

signalling activation leads to an auto-inhibition process where produced Shh-N is no longer 

sufficient to block all the available Ptch1 [40]. 

In absence of ligand, Ptch1 catalytically inhibits the activity of the Shh signal transducer 

Smoothened (Smo), a seven-transmembrane-span receptor like protein [48], modulating the 

concentration of its small agonist or antagonist molecules, such as Oxysterols [49], vitamin D3 

derivatives [50, 48, 51-53], cyclopamine and jervine [51] (Fig. 1B1). Ptch1, which is structurally 

related to transporter and pump protein, may send endogenous sterols away from Smo, inhibiting its 

action [54]. After Shh interaction with Ptch1, sterols can bind to Smo and its inhibition is released 

[49] (Fig. 1B2). Thus, the seven-transmembrane receptor shuttles from an endocytic vesicle to the 

cilium, while the hedgehog patched complex is internalized and degraded by lysosomes [55] (Fig. 

1B2). To activate Smo a Shh-induced Smo conformational switch is required. In particular, in mice 

Shh-N can regulate the accessibility of Smo to CK1αand GRK2 kinases, which bind and 

phosphorylate the Smo C-tail in a dose-dependent manner, shifting the closed conformation of Smo 

in an open shape [56] (Fig. 1B3). Phosphorilated Smo activates intracellular signals regulating 

several protein kinases, which activate a class of transcription factors known as glioblastoma (Gli) 

proteins, homologs of cubitus interruptus (Ci) proteins in Drosophila [57]. The regulation of Gli 

proteins activities is similar to Ci, although in mammals three Gli proteins have been discovered 

(Gli1–3; [58, 59]). In the absence of Shh stimulation, the nuclear localization of Gli2 and Gli3 

proteins is inhibited by the binding in the cytoplasm of the Suppressor of Fused (Sufu), which is the 

major negative regulator of Shh signaling in mammals (Fig. 1B1; [60-63]). In addition, Kif7 is also 

present in this complex acting as a scaffolding protein for PKA, GSK3 and CK1 kinases, 

responsible of Gli phosphorylation (Fig. 1B1). After phosphorylation, GLI2 is rapidly degraded, 

whereas Gli3 is cleaved and the partial Gli3 acts as a repressor, blocking transcription of 

downstream targets [64-66, 29, 67]. On the other hand, Gli1 transcription has been demonstrated to 

increase in response of Shh, and its level is a widely used biomarker for activated Shh signaling. 

Therefore, it is implied that Gli1 is not one of the initial transducer of the Shh signal [19]. In the 
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presence of Hedgehog signaling, Smo induces the inhibition of Gli phosphorylation by dissociating 

the Sufu-Gli-kinase complex with consequent stabilization and nuclear accumulation of Gli family 

members (Fig. 1B3; [67, 68]). In the nucleus of responding cells all Gli transcriptional factors, 

possessing highly similar zinc finger DNA binding domains, can bind the same DNA motif. 

However, Gli1 and Gli2 mainly function as transcriptional activators, while Gli3 is a transcriptional 

repressor (Fig. 1B1,3; [69, 70]), suggesting that they might act on different target genes. 

 

2. Distinct functions of Shh during cerebellar development 

The secreted signaling molecule Shh plays critical roles in pattern formation of the vertebrate CNS. 

During neurulation, Shh is produced by the ventral midline mesoderm as well as by the ventral 

neural tube, and its activity is required for the determination of ventral characteristics along the 

anterior-posterior neuraxis [71]. At successive stages of development Shh signalling sustains the 

proper formation of several CNS regions, including the cerebellum. Here, Shh critically influences 

the initial phases of territorial determination and regulates the following steps of cerebellar 

progenitor maturation in primary and secondary germinal zones. 

 

2.1 Cerebellar territory and germinal zones  

The cerebellum arises from a specialized area at the midbrain/hindbrain boundary [72-74], where, at 

embryonic day 8.5 (E8.5), the interaction between homeobox genes Otx2 and Gbx2 defines the 

Isthmic Organizer region (IO; [75, 76]). The IO orchestrates the development of cerebellar and 

mesencephalic structures through the morphogenic activity of secreted factors, Fgf8 and Wnt1 [77-

79]. In the midbrain and cerebellum, Shh expressed in the ventral midline regulates dorsoventral 

pattering and expression of the midbrain-hindbrain organizer Fgf8 during early embryogenesis 

(from E8.5 to E12; [14, 80]). It has been shown that retrovirus-mediated misexpression of Shh in 

the early chick neural tube disrupts midbrain-hindbrain boundary formation, causing the fusion of 

the two lateral cerebella primordia [71]. 

After territorial specification, cerebellar histogenesis starts at E9 in the mouse. At this age the 

cerebellar anlage is formed by two separated and symmetric bulges that during the following days 

grow and fuse together, giving rise to the unitary cerebellar plate, comprising the vermis and the 

two hemispheres [81]. Such developmental phase is also characterized by the formation of two 

germinative compartments just above the opening of the fourth ventricle: the rhombic lip (RL), 

located at the outer aspect of the cerebellar plate, adjacent to the roof-plate, and the ventricular zone 

(VZ), placed in the inner side, covering the fourth ventricle. These germinative districts are defined 

by the region-specific expression of two basic helix-loop-helix transcription factors: the pancreas 

transcription factor 1-a (Ptf1-a), expressed in the VZ [82], and the mouse homolog of Drosophila 

atonal (Atoh-1), present in the RL [83]. This spatially-restricted expression pattern defines the 
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neurochemical compartmentalization of cerebellar precursors, as all GABAergic neurons (Purkinje 

cells, PCs, nucleo-olivary projection neurons of deep cerebellar nuclei, DCN, and all inhibitory 

interneurons - basket, stellate, Golgi and Lugaro cells) originate from Ptf1-a+ precursors [82, 84, 

85], while glutamatergic lineages (large projection neurons of DCN, unipolar brush cells, UBCs, 

and granule cells) derive from Atoh-1+ progenitors [85-91]. Recent experiments have shown that 

these transcription factors specify cerebellar progenitors within the two spatially segregated 

neuropithelial domains so to assure the appropriate production of GABAergic and glutamatergic 

neurons [85]. In particular, by means of knock-in mouse lines and by in utero electroporation Ptf1-a 

and Atoh-1 were ectopically expressed in the RL and in the VZ, respectively. Results were clear-

cut, showing that ectopically Ptf1-a-expressing RL cells produced GABAergic phenotypes, whereas 

ectopically Atoh-1+ VZ progenitors differentiate into glutamatergic populations [85]. The two 

primary germinative epithelia disappear at birth. Dividing VZ precursors emigrate into the 

cerebellar prospective white matter (PWM), whereas those of the RL move along the pial cerebellar 

surface, where they form the external granular layer (EGL). Postnatal neurogenesis is active in 

secondary PWM and EGL epithelia up to the third postnatal week to generate appropriate numbers 

of GABAergic and glutamatergic interneurons, respectively [81, 92].  

The temporal schedule of generation of cerebellar phenotypes is also finely defined. Birthdating 

studies showed that projection neurons are produced first, at the onset of cerebellar neurogenesis, 

while both inhibitory and excitatory interneurons are generated later, during late embryonic and 

first postnatal life [93, 81, 94]. 

It is well established that Shh actively regulates the amplification of cerebellar progenitors in both 

embryonic and postnatal germinal zones. This morphogen, secreted by Purkinje cells from E17.5 

[95-97] and by choroid plexi at earlier time points [98], controls the production of appropriate 

numbers of excitatory and inhibitory interneurons (Fig. 2). In addition, it modulates the correct 

generation and development of glial progenitors and it exerts specific functions in different phases 

of granule cell development, in both normal and pathological conditions, such as medulloblastoma. 

Finally, Shh actively orchestrates the major dynamics of cerebellar foliation, sustaining normal 

processes of cerebellar growth and maturation. 

 

 

3.1 Shh and granule cells  

Granule neurons (GNs) represent the most abundant cell type in the brain (about 108 granule cells in 

the adult cerebellum; [93, 99]. These cells derive from Atoh-1+ progenitors migrating from the RL 

to the EGL. The entire process of granule cell production lasts from E12.5 to P14 and it is 

fundamental for the acquisition of regular cerebellar size and foliation [81]. Indeed it has been 
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observed that reduction in GN number leads to the formation of smaller cerebella [100-102] and 

abnormal foliation, such as the persistence of just the five cerebellar cardinal lobules at P14 in rats 

[103, 104]. In addition, abnormal proliferation of granule cell precursors (GCPs) is at the basis of 

pathological conditions such as medulloblastoma, the most common form of children malignant 

brain tumour (for review see [105, 106]). 

Numerous studies have analysed the mechanisms underlying the initial phases of GCP proliferation 

and migration from the EGL mitogenic niche [97, 107, 108]. In particular, it has been demonstrated 

that these steps are actively controlled by mitogenic factors secreted by PCs. Indeed, the relative 

number of granule cells is reduced in animal models characterized by a primary PC degeneration 

[109-111], whereas if the loss of PCs occurs later in postnatal period (as in the pcd mutant mouse) 

the granule cell layer appears near normal [112, 111]. Shh produced by PCs is the most efficacious 

mitogen acting on granule cell development. Treatment of GCPs with Shh prevents the 

differentiation and induces a long-lasting proliferative response, while an inhibition of Shh signal 

dramatically reduces the mitotic activity of these precursors [97, 95, 113-115]. The pathway 

activated by this molecule involves the upregulation of the target genes Patched, Gli1 and Gli2, 

which are dynamically expressed during development by proliferating precursors [113, 116, 104]. 

For example, the activation of Gli2-mediated pathway is important to ensure the correct extension 

of GCPs in the EGL and the consequent normal patterning of cortical folia [104]. Other important 

mediators of Shh-induced proliferation are N-myc, cyclin D1 and cyclin D2, that directly promote 

the entry of precursors into cell-cycle and DNA replication [116-118]. Overexpression of these 

molecules is sufficient to boost GCP proliferation, but the amplitude of the response is strictly 

dependent on the particular molecule involved [116].  

Shh protein is present in PC dendrites and axons during embryonic and postnatal development, and 

persists in the adult, suggesting multiple roles played in the developing and mature circuitry [97]. 

However, the decreased expression of Gli1 in the innermost part of the EGL indicates that the 

response to the Shh signal is progressively switched off in granule neurons [107, 104]. Cells in the 

deepest part of EGL, as well as in the ML and in the internal granular layer (IGL), do not express 

cyclin-D1, indicating their status of non-proliferating cells [119-121].  Thus, at the time when they 

are ready to leave the proliferative niche, GCPs undergo some cell-autonomous changes that are 

critical to exit the cell cycle. In addition, these cells start the expression of cyclin-dependent kinase 

inhibitors, such as p27. This molecule arrests their proliferation and induces the differentiation 

programme both in vitro and in vivo [122, 123]. However, in the p27 knockout mice GCPs are still 

able to leave the cell-cycle and differentiate into mature granule cells, indicating that p27 is not the 

unique factor responsible for this mechanism [108]. It has been suggested that extracellular matrix 
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(ECM) glycoproteins, such as laminin and vitronectin, can modulate GPC responses to Shh [124]. 

GCPs actively proliferate in the presence of Shh when cultured on laminin, which is present in vivo 

in the outer EGL, but not on vitronectin, which is normally contacted by granule cells in the deepest 

EGL and IGL [96, 124]. Therefore, the same molecular elements may regulate both proliferation 

and differentiation signalling of GCPs, depending on the pattern of ECM molecules and receptors 

expressed in different parts of the EGL. 

 

3.2 Shh and GABAergic interneurons 

GABAergic interneurons comprise multiple subsets of morphologically and neurochemically 

distinct phenotypes integrated at different levels of the cerebellar cortex and DCN. These cells are 

produced from late embryonic life to the second postnatal week; the peak is around P5 and the 

production of 75% of all inhibitory interneurons occurs prior to P7 [125]. Maricich and Herrup 

[126] identified the progenitors of inhibitory interneurons as a population of Pax-2+ cells, which 

appear in the VZ around E12 and later emigrate into the cerebellar parenchyma. Inhibitory 

interneuron precursors continue to proliferate during their migration in the PWM [127-129, 125] 

and they generate interneuron phenotypes according to an inside-out progression. DCN 

interneurons are the first to be born during embryonic and early postnatal life, followed by granular 

layer (GL) interneurons (Golgi and Lugaro cells) and, finally, by ML ones (basket and stellate cells; 

[126, 128, 125, 130]. Interestingly, transplantation experiments have demonstrated that all these 

different interneuron subsets derive from a single population of Pax-2+ immature interneurons that 

acquire mature phenotypic traits under the influence of local instructive cues provided by the PWM 

microenvironment [128, 129].  

The cellular composition of the PWM is complex, including cells with neural stem cell (NSC)-like 

properties [131, 132], dividing progenitors and astrocytes, interneurons and oligodendrocytes at 

different maturation stages [127, 133, 134, 129, 135, 136, 121]. 

It has been shown that proliferative intermediate progenitors of GABAergic interneurons in the 

PWM are Ptf1-a+ cells that start the expression of Pax-2 during their last S phase [126, 129, 136]. 

Recent findings suggest possible lineage relationships between Ptf1a+ intermediate progenitors of 

GABAergic interneurons and Tnclow CD15+ astrocyte precursors [136]. Both populations derive 

from a population of Tnclow and CD133+ neural stem-cell-like primary progenitors of the PWM, 

whose production is critically maintained by PC-delivered Shh [136]. Indeed, blockade of Shh 

signalling in Tnc-expressing cells disrupts the PWM niche, decreasing the numbers of intermediate 

progenitors of both interneurons and astrocytes, causing also a dramatic reduction of their mature 

phenotypes [136]. Notably, such specific effect of Shh is independent of the classical role of this 
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mitogen in regulating GCP proliferation [97], as direct perturbation of GCP expansion does not 

alter GABAergic progenitor production [136].  

Another proof of a direct effect of Shh on inhibitory interneuron production has been also provided 

by recent in vitro data: the exogenous administration of the recombinant amino-terminal active 

fragment of Shh (Shh-N) on cerebellar slices obtained by PWM regions of P2 mice showed an 

enhanced amplification of Pax-2+ cells [137]. This effect was significant both at 1 and 2 days in 

vitro, whereas it did not occur in presence of the Shh-antagonist cyclopamine  [137]. In addition, 

Shh mitogenic effect on newborn Pax-2+ cells disappears at late postnatal stages as P7, when the 

bulk of GABAergic interneurons have been already produced [125, 138]. Gene expression analysis 

of sorted GFP+ cells from Pax-2-GFP transgenic mice revealed that Shh pathway is active in 

immature Pax-2+ interneurons, which express both the Shh receptor Ptch1 and the Shh target gene 

Gli1 [137]. Similar results were confirmed by in situ hybridization: Gli1 and Ptch1 mRNAs were 

detected in P2 cerebella in the EGL, PCL and PWM, in line with former studies [113, 126, 96, 136]. 

Moreover, double Gli1+/Pax-2GFP+ and Ptch1+/Pax-2GFP+ interneurons were found, confirming 

the presence of an active Shh signals in Pax-2+ cells [137], although its role during successive 

interneuron maturation remain to be clarified. 

At earlier developmental stage (E16) the Gli1 mRNA was already present in the cerebellum, though 

less expressed compared with postnatal ages. Both Gli1+ cells and double positive Gli1/Pax-2GFP 

cells were present in the VZ/SVZ region, or scattered in the cerebellar parenchyma, showing that 

during embryonic development Shh pathway is already active in Pax-2+ cells located in germinal 

and migratory sites [137]. Exogenous administration of Shh-N on embryonic cerebellar explants 

increased the fraction of proliferative cells becoming Pax-2+ interneurons but only at the end of the 

culture period, suggesting that different dynamics might regulate the production of GABAergic 

interneurons at embryonic and postnatal developmental stages [137]. This possibility is also 

supported by previous in vivo data showing that Shh signalling is active in the cerebellar VZ and 

essential to regulate the proliferation of radial glia and, consequently, the expansion of GABAergic 

interneurons [98]. In this case, however, endogenous PCs are not the source of Shh ligand, which is 

secreted by the choroid plexi and transventricularly delivered by the embryonic cerebrospinal fluid 

[98].  

Overall these recent studies highlight the fundamental role of Shh in regulating interneuron 

numbers by maintaining the embryonic and postnatal niches in which these cells are produced. 

 

3.3 Shh and cerebellar glia 

Cerebellar astrocytes and oligodendrocytes comprise morphologically distinct cell types located at 

different sites in the cerebellar cortex and white matter [139-141].  
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Several evidence indicated that astrocytes (comprising Bergman Glia-BG- cells and parenchymal 

astrocytes) derive from the VZ [139, 142-144, 130], whereas oligodendrocyte precursors (OPCs) 

seem to mainly originate from exogenous sources and, at later embryonic stages, populate the 

cerebellar parenchyma and continue to amplify [145, 146, 134]. 

Some studies investigated the role of the Shh signaling pathway on both astrocytes [147-149] and 

oligodendrocytes [150-156] in developing and mature brain and spinal cord. In the cerebellum Shh 

has been described to play a direct role on both BG cells and oligodendrocytes, regulating their 

differentiation and proliferation, respectively. Moreover, this ligand critically maintains the VZ and 

PWM niches, controlling the proliferation of, respectively, radial glia cells and intermediate 

progenitors of parenchymal astrocytes ([98, 136]; see previous paragraph). Beside that, it is not 

clear whether Shh could exert some roles on mature parenchymal astrocytes. 

Before Shh was shown to directly affect the BG population, Traifford et al. [157] and Wallace [113] 

had already observed high expression levels of Ptch and Gli1 in small cells in the PCL, presumably 

in BGs, suggesting that Shh signaling pathway was active in these cells. Confirmation of a direct 

action of Shh came shortly later, when Dahmane and Ruiz-I-Altaba [95] first demonstrated the role 

of this ligand in BG differentiation, but, intriguingly, not in BG progenitor proliferation [95]. These 

results were in accordance with previous data revealing the key role of PCs in the control of BG 

maturation [158, 79]. Yet, BG persist in both Gli2 mutant embryos [96] and Gli2-En1 conditional 

knock-out mutants, in which Gli2 deletion is restricted to cerebellar precursors [104], thus 

demonstrating that Shh signaling through Gli2 is dispensable for BG specification. However, the 

latter mutant model showed an abnormal glial morphology, characterized by the disorganization 

and deformity of the glial fibers. This phenotype was explained as a secondary effect of the 

abnormal PC morphology [104]. Similarly, Lewis et al. [97], through transgenic mice models 

specifically developed to prevent Shh production by PCs at different ages, observed alterations in 

BG only after P5, while BG morphology was normal at previous developmental stages. Also in this 

case the results were interpreted as a secondary effect of PC disorganization and absence of 

granules’ parallel fibers and not as a direct consequence of Shh absence on BG differentiation. In 

contrast, Mecklenburg et al. [159] proposed a direct role of Shh in the regulation of BG maturation, 

suggesting that the altered glial morphology observed in conditional Shh mutants [97] was not 

subordinate to defective PCs. Indeed, Gdf10, a member of the transforming growth factor beta 

(TGF-ß)-superfamily strongly expressed in cerebellar BG cells from E15 (i.e. from the moment 

they are specified) and, thus, potentially correlated to BG specification from radial glia, was shown 

to be intensely reduced in conditional Shh cerebellar mutants. The rapid down-regulation of this 
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glial-specific gene in absence of Shh could suggests a direct role of this ligand in BG specification, 

despite the exact mechanisms still need to be clarified.   

Shh was also shown to affect the proliferation of cerebellar oligodendrocytes, the glial component 

responsible for the myelin synthesis. Bouslama-Oueghlani et al. [160] used cerebellar organotypic 

cultures to investigate the influence of PCs (i.e. the only type of cerebellar neuron to be myelinated) 

on the timing of oligodendrocyte differentiation. In particular, using cerebellar slices cultures in 

which the number of PCs was significantly different, authors found that soluble factors produced by 

PCs were able to affect OPC population. Among these factors Shh was shown to be downregulated 

during PC postnatal maturation, whereas vitronectin resulted upregulated. Importantly, Shh and 

vitronectin administrated to postnatal organotypic slices had opposite effects on OPCs, stimulating 

their proliferation and differentiation, respectively [160]. These effects were reverted by Shh and 

vitronectin- antagonists. On the whole, these results highlight that both neuronal and glial 

development are highly synchronized in the cerebellum [160], as well as in other CNS regions 

[161-163].  

 

3.4 Shh orchestrates normal cerebellar foliation 

A prominent feature of cerebellar morphology is its folded appearance, whereby fissures separate 

its anterior-posterior extent by lobules [164]. By E18.5 four principal fissures are evident in 

midsagittal sections of the mouse vermis, leading to distinguish five cardinal lobes (anterobasal, 

anterodorsal, central, posterior and inferior lobes; [164]). Afterwards, additional (non principal) 

fissures divide the cardinal lobes into lobules, reaching the total of ten lobules identifiable in the 

adult murine cerebellum [164]. 

The mitogenic action of Shh on GPCs is the driving force for the initial formation of fissures [164], 

thereby affecting also cerebellar foliation process, which is the process leading to the 

morphologically unique brain structure of folia separated by fissures [96, 104]. In particular, it has 

been shown that Shh signaling spatially and temporally correlates with fissure formation and that 

Gli2 is the principal activator of Shh-induced GCP proliferation [96]. Indeed, Gli2-null mutants 

showed decreased foliation at birth and reduced numbers of GCPs, whereas Shh overexpression in 

wild-type cerebella leaded to normal cerebellar foliation but also to an increased cerebellar size, as 

consequence of prolonged GCP proliferation [96]. Other experiments clarified that the level of Shh 

signaling regulates the extent and complexity of cerebellar foliation, but non its typical pattern 

[104]. Namely, in the absence of Gli2 foliation proceeds but the process of lobulation is delayed 

and prematurely arrested; further reduction in foliation occurs in double Gli2 and Gli1 null mutant 

mice, whereas when the entire Shh signaling is removed foliation is totally inhibited because of a 

rapid exhaustion of GCPs after E17.5 [104]. Collectively, these findings suggest that Shh is not 
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necessary to initiate foliation and to determine the position of the fissures, but is more likely to be a 

regulator of the extent and complexity of foliation. This interpretation implies that at embryonic 

stages in the absence of Shh some GPCs are able to start mitosis, allowing the first indentations to 

form, and that at later stages before and after birth Shh becomes necessary to sustain the expansion 

of the EGL [97]. 

 

4. Shh and cerebellar pathology: evidence from medulloblastoma 

Medulloblastoma (MB) is the most frequent form of primitive, neuroectodermal tumor during 

childhood, with estimated lethality of 30% and high clinical heterogeneity. It is widely accepted 

that MB originates from GCPs and four different subtypes of MBs have been identified and 

classified according to their transcriptional profiles: I) WNT MBs; II) Shh MBs; III) Group C, 

frequently associated with TGF1 beta pathway abnormalities; IV) Group D, often related to tandem 

duplication of SNCAIP [165-169].  

Shh-MBs represent one third of the total number of MBs [170, 171], both in childhood and adult 

age, even though it has been demonstrated that infant and adult MBs exhibit different 

transcriptional and genetic profiles. Northcott et al. [167] identified a number of homeobox family 

members as the mostly up-regulated genes in adult forms of Shh-MBs; infant MBs, instead, 

revealed high expression of transcriptional regulators functioning in brain development, such as 

ZIC2 and ZIC5. These dissimilarities lead to large variability in clinical and prognostic aspects of 

the disease through different ages: this is the reason why targeting of signalling molecules is a 

fundamental step to set up therapeutic approaches.  

It has been demonstrated that Shh-MBs derive from aberrations in varied components of Shh 

pathway, such as Ptch1 [114, 172], Sufu [173, 174], Gli transcription factors [175] and Smo [176]. 

Studies on mice lacking Ptch function demonstrated that abnormal activation of Shh pathway 

through repression of its inhibitors leads to the formation of MBs [177, 178]. Similar mutations 

have been also described in patients with nevoid basal cell carcinoma syndrome – also known as 

Gorin syndrome - often associated with the formation of MB in childhood [179]. According to Kim 

et al. [180], Shh pathway alteration via Ptch in heterozygous mice induces a subset of GCPs to 

maintain their proliferative activity with consequent deregulation of developmental gene 

expression, rather than globally increase GCPs proliferation during postnatal development or 

interrupt programmed cell death. However, the complexity of the Shh pathway does not allow 

attributing MBs formation to abnormalities of just one element of the network, as demonstrated by 

the fact that only a percentage of Ptch mutant mice develop MB. Taylor et al. [173], in fact, 

identified Sufu as another tumor-suppressor gene in a subset of desmoplastic medulloblastomas 

whose mutation predisposes to MB by modulating the Shh signaling: they created a model in which 
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Sufu cannot bind Gli transcription factors and allocate them from the nucleus, with consequent 

activation of SHH target genes.  More recently, it has been also demonstrated that nevoid basal cell 

carcinoma syndrome, traditionally associated with Ptch mutations, could be caused by heterozygous 

loss-of-function germline mutations in Sufu. These studies contributed to the redefinition of the risk 

of MB in Gorlin syndrome on the basis of the related gene: in Ptch-related forms, the risk of MB 

has been reduced from 5% to 2% with a probability approximately 20X higher in Sufu-related 

forms [181, 182]. 

 Other studies focused on the role of Gli1 expression in MB through the identification of the subset 

of Gli1 transforming target genes specifically expressed in MBs [183], or through the 

characterization of SHH signaling pathway members Gli-3 expression in relation with prognosis, 

suggesting that Gli1 or Gli2 expression in pediatric medulloblastoma might confer a worse outcome 

[184]. However, recently, new intriguing findings partly modified this classical view of Shh-

dependent proliferation of GCPs. Li et al. [185] disclosed a new population of progenitors cells in 

the EGL identified by the expression of the neural stem cells (NSC) marker Nestin. Surprisingly, 

Nestin+ cells do not express Math1 and are not responsive to Shh in vivo, even if they express the 

signaling-associated machinery. Nevertheless and though they account for only 3-5% of EGL cells, 

they displayed enhanced tumorigenic potential and chromosomal aberrations following loss of the 

Shh receptor Ptch1 compared to Math1+ GCPs [185], raising important questions about the cellular 

origin of medulloblastoma [186]. 

 

5. Concluding Remarks  

The role of Shh in the development of the CNS has been extensively investigated, leading to an in-

depth knowledge of extrinsic and intrinsic molecular machineries included in its signalling 

pathway. Moreover, beyond its role in ventral patterning, hedgehog signalling is now known to 

have multiple roles throughout development, favouring the processes of fate specification, 

oligodendrogenesis, stem cell maintenance and axon path finding. In the cerebellum, Shh pathway 

has been principally studied for many years in the contest of GCP proliferation. However (as 

described above), Shh ligand exerts additional roles on distinct cell populations, during the entire 

period of cerebellar development. In particular, Shh crucially sustains the expansion of neuronal 

and glial precursors within embryonic and postnatal niches, by means of different mechanisms, 

involving both cerebellar and extracerebellar strategies (Fig. 2). Moreover, Shh also induces BG 

maturation and oligodendrocyte amplification. As shown above, Shh signalling is a complex 

network involving different players that might modulate Shh function at different level, depending 

on the cell type. Intriguingly, the sole source of Shh during the late embryonic and postnatal 

development is PCs. These latter cells strategically orchestrate postnatal cerebellar morphogenesis 
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through the modulated secretion of Shh and vitronectin. Despite the great amount of results in these 

areas, a deeper knowledge of the processes regulating the timing and balance of Shh/vitronectin 

production by Purkinje cells will certainly reveal more surprises about cerebellar developmental 

mechanisms. 
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Figure legends. 

Figure 1. Shh signalling pathway in Vertebrates.  (A1) Shh protein is synthesized as 45 kDa 

precursor protein (Shh) that is palmitoylated at the N-terminus and concomitantly auto-catalytically 

cleaved. Successively, a cholesterol-modification occurs to obtain a 19 kDa dually lipidated N-

terminal signaling protein (SHH-N).  Shh is then trafficked to the cell surface and released from 

cells as a multimer (M-Shh-N) in a process mediated by Dispatched1 (Disp1). (A2) Interactions 

with both megalin and glypicans regulate the long range Shh signalling. Binding to the 

transmembrane protein megalin promotes Shh internalization, resulting in either degradation or 

subsequent exocitosis. The Shh affinity for megalin is increased by glypicans. (B1) Primary cilia are 

key organelles where Shh signalling takes place. On their membranes both receptors (ptch1) and co-

receptors (Cdo/Boc) are exposed. These structures also contain regulatory microtubule-associated 
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complexes composed by Suppressor of Fused (Sufu), Kif7, PKA, GSK3, CK1 and Gli proteins. In 

the absence of Shh, Ptch1 prevents membrane localization and activation of Smo, retaining it on 

intracellular vesicles. In this context, Gli proteins are held in the microtubule-associated complex, 

that induces Gli protein phosphorylation (red P) to obtain a transcriptional repressor form (Gli 

repressor). (B2) When Shh interacts with the Ptch1 and Cdo/Boc, Smo is shuttled from an 

endocytic vesicle to the cilium whereas hedgehog patched complex is internalized and degraded by 

lysosomes. (B3) The de-repression of Smo induces the dissociation of Sufu-Gli-kinases complex 

promoting formation of the Gli activator form (Gli activator), that after nuclear translocation 

activates transcription of downstream targets. 

 

Figure 2. Shh functions during cerebellar development.  

(A) During the embryonic development, Shh is first secreted by choroid plexi (ChP) and is essential 

to radial glial cell proliferation and expansion of Ptf1a+ progenitors of GABAergic neurons. 

Purkinje cells start the secretion of this morphogen by E17.5, modulating the correct differentiation 

of glial progenitors into mature BG. (B) Postnatally, Shh acts as a mitogen on both granule and 

oligodendrocyte precursor cells (GCPs and OPCs), in the EGL and PWM respectively. In the 

PWM, Shh also exerts a proliferative function on the neural stem-cell-like progenitors 

(Tnc+CD133+) that generate both intermediate astrocyte precursors (Tnc+CD15+) and GABAergic 

transient amplifying cells (Ptf1a+). PWM, prospective white matter; IGL, internal granular layer; 

PCL, Purkinje cell layer; EGL, external granular layer 
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