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Abstract. In this paper, we present a novel and completely-unsupervised
approach to unravel meanings (or senses) from linguistic constructions
found in large corpora by introducing the concept of semantic vector.
A semantic vector is a space-transformed vector where features repre-
sent fine-grained semantic information units, instead of values of co-
occurrences within a collection of texts. More in detail, instead of seeing
words as vectors of frequency values, we propose to first explode words
into a multitude of tiny semantic information retrieved from existing re-
sources like WordNet and ConceptNet, and then clustering them into
frequent and diverse patterns. This way, on the one hand, we are able to
model linguistic data with a larger but much more dense and informa-
tive semantic feature space. On the other hand, being the model based
on basic and conceptual information, we are also able to generate new
data by querying the above-mentioned semantic resources with the fea-
tures contained in the extracted patterns. We experimented the idea on
a dataset of 640 millions of triples subject-verb-object to automatically
inducing senses for specific input verbs, demonstrating the validity and
the potential of the presented approach in modeling and understanding
natural language.

Keywords: Natural Language Understanding, Distributional Seman-
tics, Diverse Itemset Mining

1 Introduction

Most Computational Linguistics applications may need semantic information
to improve their e↵ectiveness. Semantic resources are often constructed with
automatic approaches, since manual building of ontologies is not feasible on
large scale [24, 42, 19, 37, 31, 5, 7].

Distributional Semantics (DS) is nowadays one of the frontiers in this field [4,
22, 8, 2, 14]. DS derives from the Distributional Hypothesis introduced by Z. Har-
ris [23], where Vector Space Models (VSMs) represent its main expression [39].
The current availability of huge corpora like ukWac [17] makes these approaches
particularly e�cient. Data Mining (DM) techniques leveraging on VSMs have
been successfully applied on text since many decades on Topic Extraction-related
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tasks [10, 1, 13]. Specifically, terms become interconnected by similarity scores
forming concept-like entities, i.e., words clusters sharing similar contexts [9]. DS
refines traditional DM on text, since it considers language as a grammar-based
type of data. However, DS still sees linguistically-refined tokens as the basic
bricks in VSMs, su↵ering of an intrinsic limitation: a wide range of words and
grammar constructions is actually rarely used. Even in very large corpora, there
is little chance of finding statistically-significant patterns that can be used to
carve out meanings out of them. This is known as the long tail problem [45].
Moreover, DM starts from linguistic items to develop semantic information, with-
out reusing it for further analysis.

This work is based on an interdisciplinary approach that relies on Conceptual
Spaces [20], a theory developed by P. Gardenfors in the Cognitive Science field,
through which concepts are represented by vectors whose features are cogni-
tive axes that humans naturally use to give meaning to their perceptions. In this
sense, rather than considering VSMs of linguistic symbols we will consider VSMs
of extensive semantic information associated with them, derived from di↵erent
sources. Our methodology leverages on the wealth of resources available on the
web concerning semantics, like Linked Open Data (e.g., DBPedia1, Freebase2,
etc.), linguistic resources (e.g., WordNet [29], ConceptNet [44], BabelNet [32],
etc.), Semantic Web technologies (e.g., FRED [15], TPALO [33], etc.), and au-
tomatic parsing of large corpora like Wikipedia to map linguistic contexts into
semantic features.

An initial proof-of-concept of the proposal is given by recent research in which
the transformation of terms into top-level hypernyms carried to improvement in
several computational tasks, as in [28, 18]. While this is in line with this paper,
this transformation only involves terminological abstractions by means of IS-A
substitutions. In fact, this contribution represents a large generalization that
takes into account a wider spectrum of conceptual relationships. The outcomes
of this work are threefold:

– a new methodology that introduces the concept of semantic vectors

– a novel technique for mining frequent and diverse itemsets based on set cover
problem [41], implemented with an heuristic approach.

– a model that generalizes over existing linguistic constructions with low re-
source requirements that is also able to generate new linguistic data

The paper first presents the motivations and the goals of this work. Then, the
approach is explained in terms of methodology and algorithms. An evaluation
phase is then presented, showing the data and the pursued objectives. A final
part of conclusions and future work ends the paper.

1 http://dbpedia.org/About
2 http://www.freebase.com/
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2 Background and Related Work

In Computational Linguistics, recent advances and successful experiences of sta-
tistical distributional approaches can be found in di↵erent tasks. The IBM Wat-
son Question Answering system3 is maybe the most recent and well-known direct
result. This also explains the fortunate and growing trend of available semantic
resources often constructed with automatic approaches, since manual building
of ontologies is not feasible on large scale. Currently, many systems actually try
to automatically extract semantic knowledge from texts by means of three pos-
sible generic approaches: distributional analysis, pattern-based approaches, and
Machine Learning techniques.

Nowadays, semantic information extraction is currently approached by dis-
tributional analysis of linguistic items over specific contexts [34] or by starting
from seeds and patterns to build ontologies from scratch [31]. In some cases,
linguistic items are substituted by super-senses (i.e., top-level hypernyms) [28].
However, such generalization should be applied taking into account a wider no-
tion of semantic context introduced by related cognitive theories [21], that has
not been addressed by current computational approaches.

Distributional Semantics (DS) is nowadays one of the frontiers4 within the
Computational Linguistics field [3]. DS derives from the distributional hypothesis
introduced by Z. Harris in 1954 [23]. Vector Space Models (VSMs) [39], proposed
by Gerald Salton in the seventies, are the main expression of this idea. Data
Mining (DM) techniques fully leveraging on VSMs and Latent Semantic Analysis
(LSA) [16] have been successfully applied on text since many decades on topic
extraction-related tasks, often producing concept-like entities, i.e., words clusters
sharing similar contexts [9].

Current research in DS focuses on the exploration of the di↵erent impact of
parameters such as context type (i.e., text regions vs. linguistic items), window
(context extension), frequency weighting strategy (e.g., number of occurrences,
Pointwise Mutual Information, etc.), dimensionality reduction (e.g., Latent Se-
mantic Analysis, Random Indexing, etc.), and similarity measure (e.g., Cosine
similarity, Jaccard’s coe�cient, etc.). Then, it produces co-occurrences matri-
ces (or tensors) that model the semantics of the tokens by means of weights
distributions.

DS refines traditional DM on text, since it considers language as a grammar-
based type of data instead of simple unstructured paragraphs. However, DS
still sees linguistically-refined tokens (words, lemmas, part-of-speech, etc.) as
the basic bricks in VSMs, su↵ering of an intrinsic limitation: a wide range of
words and grammar constructions is actually rarely used.

On the contrary, this work concerns a radical departure from this direction,
releasing the assumption made by all approaches to rely on linguistic items (ei-
ther terms or more context-aware tokens). The current methodology still starts

3 http://www.ibm.com/smarterplanet/us/en/ibmwatson/
4 See also the ERC project COMPOSES leaded by Marco Baroni.

http://clic.cimec.unitn.it/composes/
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from syntax and strings of text to extract semantics, while it would be more
reasonable to have an automated approach which also leverages on the existing
semantic resources it produces as further input. The idea at the basis of the
proposed approach is to conceptually restructure the problem of DS under the
light of research in Cognitive Science. The above-mentioned theory of Concep-
tual Spaces introduced by Peter Gardenfors is about a concept representation
motivated by the notions of conceptual similarity and prototype theory [38]. A
conceptual space is a multi-dimensional feature space where points denote ob-
jects, and regions define concepts. Its bases are composed by quality dimensions,
which denote basic features in which concepts and objects can be compared, such
as weight, color, taste and so on. Symbolic representations are particularly weak
at modeling concept learning, which is paramount for understanding many cog-
nitive phenomena. Concept learning is closely tied to the notion of similarity,
which is also poorly served by the symbolic approach.

Taking inspiration from this vision of language, as basic bricks of DS we
substitute linguistic items with a representation of their meaning in terms of
sets of quality dimensions. In detail, each word can be represented by a set of
semantic relationships and properties that define a specific concept by means of
physical and behavioral facts. For instance, a cat has legs, claws, paws, eyes, etc.
(properties); then, it usually chases mouses and it sees in the dark (behaviour);
it is an animal and a feline (taxonomical information), and it can have many
other relations like the places where it can be habitually found.

The Conceptual Spaces (CS) framework developed in the Cognitive Sciences
field by [20] is based on a vectorial representation of concepts whose features
are cognitive axes through humans naturally give meaning to their perceptions.
CS is directly connectable with VSMs since it is a particular type of VSMs
where features represent the conceptual level. Our approach is about injecting
semantics into tokens towards a concept-level feature set. One of the most im-
portant brick in almost all Computational Linguistics tasks is the computation
of similarity scores between texts at di↵erent levels: terms, sentences and dis-
courses. As recently discussed in the literature [36], semantic similarity needs to
be cross-level.

In the DS current view, the triple subject-verb-object extracted from the
sentence “the cat climbs a tree” is equally seen as the triple extracted from “the
monkey climbs a tree”, since the two subjects share the same linguistic context.
In this work, instead, the two situations will be di↵erentiated and therefore more
deeply understood: in the first case, it will be able to correlate the fact of having
claws with the ability of climbing a tree; in the second case, this will happen
for the presence of prehensile feet. This is due to the introduction of semantics
within the process of distributional analysis itself. In fact, they share physical
body parts with a similar kind of functionality. Since only specific semantic
information are useful at a time, this new approach can also filter out non-
relevant information (for instance, the fact that both are mammals with fur and
teeth does not suggest the ability to climb a tree). Nowadays, the extraction of
these features can be done due to the huge availability of semantic resources.

20 L. Di Caro and G. Boella



Once linguistic items are replaced by semantic representations, it becomes
possible to reuse the methodology itself having as input the larger basis of se-
mantic information created by the system, thus creating a positive feedback cycle
and enlarging the possibilities of the system. We call this concept as semantic
loop, and, to the best of our knowledge, it is the first attempt to go beyond
single-processing systems that connect syntax with semantics towards recursive
processing of extracted semantics. For example, the action of “seeing” can show
a correlation with the fact of having eyes. Nowadays, the link between actions
and properties of subject and objects are not used while they actually provide
significant information for deeper language understanding.

This paper presents an approach that also relies on the concept of diversity.
Diversity has been taken into account mostly in Information Retrieval (IR) sce-
narios, where systems become aware of the need of obtaining search results that
cover di↵erent aspects of the data [12, 11]. However, this concept can be also
useful in di↵erent contexts like clustering [30] and recommendation [40]. In spite
of this, within the Pattern Mining (PM) and Association Rules (AR) areas, to
the best of our knowledge, diversity has not been faced yet. Since our system
architecture needs to manage the output of these techniques with the additional
goal of producing frequent patterns that are able to cover di↵erent aspects of
the input, we also revisited them in this sense.

This shift in the basic bricks opens new research questions and challenges
concerning Data Mining methodologies: the problem of correlating atomic lin-
guistic items becomes to correlate sets of features, where only some of them are
actually significant. Thus, the new challenges become to understand:

– which features need to be filtered out
– which features can be combined to approximate concepts (according to Con-

ceptual Spaces)

The advantages of the proposed research direction are the following:

– the integration of semantic information within the internal steps of the cur-
rent methodology can create a virtuous loop through which semantic re-
sources can be automatically extended.

– linguistic items are fragmented into minimal conceptual information that en-
ables statistical approaches to overcome the problem of low-frequency words
occurrences. In fact, even in very large corpora, there is little chance of find-
ing statistically-significant patterns that can be used to carve out meanings
out of text. This is known as the long tail problem. Statistical approaches
are usually not able to propagate existing information belonging to frequent
data to such long tail. One of the aim of this proposal is to define a linguistic
framework in which both rare and frequent words are fragmented into more
basic facts on which reason on, avoiding low-frequency issues.

– the use of multilingual resources will have an impact on the creation of more
powerful semantic resources, that will be more independent by word-to-word
translations. Within the DS field, a minimal step in this direction has al-
ready been done by means of transformations of words into general concepts
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or super-senses. However, this only involves terminological abstractions by
means of IS-A relationship substitutions. In fact, our proposal represents a
generalization of this since it considers a wider spectrum of conceptual rela-
tionships. For example, a person can assume the role of living entity, doctor
or student in the context of breathing, making surgical interventions, and
studying mathematics respectively. The point is that only specific properties
are activated by the context at a time, so we avoid to assign fixed top-level
hypernyms for all the cases. In addition to this, the simple generalization of
a linguistic item does not extend the current analysis of correlations between
atomic tokens.

The outcomes of such novel approach can be many:

– a new methodology that introduces the concept of semantic loop, i.e., iter-
ative use of extracted semantics as input for further extension of semantic
resources

– new semantic resources, created by the use of the proposed methodology
– revisitations of Data Mining techniques for dealing with a new and more

complex type of data with respect to standard VSMs applied on text
– the proposed contribution can also have impact on how semantic knowledge

can be re-used or inherited from data in di↵erent languages. For instance, in
case there is no translation for two words in two di↵erent languages, it will be
possible to leverage their semantic information to link them automatically.
Only translation at concept level it will be needed (i.e., translation of the
new feature space). Thus, the semantic loop can work also for alignment of
di↵erent languages.

3 Approach

Our proposal concerns an automatic methods to build a large-scale semantic
framework based on a concept-level distributional analysis of the semantics con-
tained in plain texts. Our methodology avoids manual constructions of ontologies
which is known to be unfeasible. On the contrary, the method goes towards a
direct and extensive exploitation of the wealth of available resources regarding
semantics. In particular, it leverages di↵erent types of knowledge that can be
used to transform words (intended as lemmas or generic linguistic items, from
now on) into sets of extended and fine-grained semantic information. The result-
ing explosion of such heterogeneous knowledge, coming from di↵erent sources
and methods, create a new challenge: how to align, filter, and merge it in order
to feed Vector Space models with semantics, as opposite to lexical entities.

3.1 Semantic Basis

In this paper, we started focusing on ConceptNet [43], a semantic crowdsourced
knowledge. In detail, the Open Mind Common Sense project developed by MIT
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collected unstructured common-sense knowledge by asking people to contribute
over the Web. ConceptNet, a semantic graph created from a parsing of such
knowledge, is its final outcome. In contrast with linguistic resources like WordNet
[29], ConceptNet contains semantic information more related to common-sense
facts. For this reason, it has a wider spectrum of semantic relationships but a
much more sparse coverage due to the non-methodological approach that was
used to build it. For instance, among the more unusual types of relationships
(24 in total), it contains information like “ObstructedBy” (i.e., referring to what
would prevent it from happening), “CausesDesire” (i.e., what does it make you
want to do), and “MotivatedByGoal” (i.e., why would you do it). In addition,
it also has classic relationships like “is a” and “part of ” as in most linguistic
resources. An at-a-glance view of these semantic relations is shown in Table 1.

Table 1. The relations in ConceptNet, with example sentences in English.

Relation Example sentence
IsA NP is a kind of NP.
LocatedNear You are likely to nd NP near NP.
UsedFor NP is used for VP.
DenedAs NP is dened as NP.
HasA NP has NP.
SymbolOf NP represents NP.
CapableOf NP can VP.
ReceivesAction NP can be VP.
Desires NP wants to VP.
HasPrerequisite NPjVP requires NPjVP.
CreatedBy You make NP by VP.
MotivatedByGoal You would VP because you want VP.
PartOf NP is part of NP.
CausesDesire NP would make you want to VP.
Causes The e↵ect of VP is NPjVP.
MadeOf NP is made of NP.
HasFirstSubevent The rst thing you do when you VP is NPjVP.
HasSubevent One of the things you do when you VP is NPjVP.
AtLocation Somewhere NP can be is NP.
HasLastSubevent The last thing you do when you VP is NPjVP.
HasProperty NP is AP.

In spite of this, the approach can work with other resources. For example,
another type of knowledge that can have an high impact on our semantic integra-
tion comes from Linked Open Data (LOD). One of the most used LOD resources
in Computational Linguistics is DBPedia, a dataset containing data directly ex-
tracted from Wikipedia. It contains more than 3 million concepts described by 1
billion triples, including descriptions in several languages. Other knowledge bases
are UMBEL (i.e., a 20k subjects ontology derived from OpenCyc), GeoNames
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(i.e., descriptions of geographical features), and several others. Then, WordNet
[29] is a large lexical database of English nouns, verbs, adjectives and adverbs
that can further extend the semantic basis. All the words are therein grouped
into sets of synonyms (also called synsets), each expressing a distinct concept.
WordNet contains also a set of relationships that link the synsets. To make
some examples, synsets can be used to extrapolate “same as” properties from
synonyms, then hypernyms can be mapped into “is a” taxonomical information,
while meronyms can be seen as “part of ” features.

3.2 Data for Distributional Analysis

In order to experiment the validity of the approach, we had the need of com-
puting a distributional model starting from a large collection of texts. However,
instead of parsing corpora from scratch, we used a dataset of subject-verb-object
(SVO) triples generated as part of the NELL project5. This dataset contains a
set of 604 million triples extracted from the entire dependency-parsed corpus
ClueWeb09 (about 230 billion tokens)6. The dataset also provides the frequency
of each triple in the parsed corpus. We integrated a Named Entity Recognition
module to transform proper names into generic semantic classes, like people and
organizations7.

3.3 Algorithm

In this section, we explain the details of the approach. In particular, the algo-
rithm is composed by three di↵erent phases: (1) the data pre-processing step
with the generation of two transactional databases (transactions of items, as in
the fields of Frequent Itemset Mining and Association Rules [6]) that we also call
semantic vectors; (2) the extraction of frequent, closed, and diverse itemsets (we
will briefly introduce the meaning of all these names in the next paragraphs);
and finally (3) the creation of semantic verb models, that generalize and auto-
matically induce senses from entire linguistic constructions at sentence-level.

Transactional Databases Generation The first step of the algorithm regards
the generation of the semantic vectors, i.e., vectors whose features represent
conceptual and semantic facts rather than document- or context-occurrences.
Since the aim of the system is to capture senses from data, we start from the
root of the meaning, that is the verb. So, for a specific input verb v, we parse
all the SVO triples in the datasets that have a frequency higher than a set
threshold8, and we only take those who are morphological variations of v. Then,
for each one of these triples, we query ConceptNet with the subject-term and

5 http://rtw.ml.cmu.edu/resources/svo/
6 http://lemurproject.org/clueweb09/
7 We used the Stanford NLP toolkit available at http://www-nlp.stanford.edu/.
8 In our experiments we considered SVO triples that occur at least 100 times in the

whole ClueWeb09 corpus, in order to remove noisy data.
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the object-term, retrieving all their semantic information that will later build
the new semantic space. Table 2 shows an example of the information collected
in this phase.

Table 2. An example of subject- and object-terms semantic transformation for one
triple of the verb “to learn” (student-learns-math). This represents one row of the two
transactional databases.

Subject-term Subject semantic features Object-term Object semantic features
student CapableOf -study, AtLoca-

tion-at school, IsA-person,
Desires-learn, PartOf -class,
CapableOf -read book, ...

math IsA-subject, HasProperty-
useful in business, UsedFor -
model physical world, Re-
ceivesAction-teach in class,
...

Then, we associate each semantic information to a unique id and construct
two transactional databases: one for the semantic information of the subjects,
and one for the objects. An example of result of the first phase is shown in
Table 3.

Table 3. An example of the two transactional databases created for the verb “to learn”
and the ID-label association table.

Transactional DB of the subjects Transactional DB of the objects
1 34 67 90 2 4 6 23 67 87 122 198

3 4 12 36 59 88 90 91 42 54 67 87 122 124
34 67 45 2 6 54 67 87

... ...

ID Associated Semantic information
1 isa-young person
2 atlocation-classroom
3 atlocation-at school
4 capableof-learn
... ...

Diverse Itemsets Mining Once the transactional databases are built for a
specific verb “v”, we use techniques belonging to the field of Frequent Itemset
Mining to extract frequent patterns, i.e, semantic features that frequently co-
occur in our transactional databases.

The description of the problem is the following: let I = i1, i2, ..., in be a set
of items (i.e., our semantic features) and D be a multiset of transactions, where
each transaction t is a set of items such that t ✓ I. For any X ✓ I, we say that
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a transaction t contains X if X ✓ t. The set X is called itemset. The set of all
X ✓ I (the powerset of I) naturally forms an itemset lattice. The count of an
itemset X is the number of transactions in D that contain X. The support of
an itemset X is the proportion of transactions in D that contain X.

An itemset X is called frequent if its support is greater than or equal to some
given percentage threshold s, where s is called minimum support.

When the database contains a significant number of large frequent itemsets,
mining all of them can be very expensive, since the space of itemsets to generate
can be huge. However, if any subset of a frequent itemset is frequent, it can be
su�cient to discover only all the maximal frequent itemsets (MFIs). A frequent
itemset X is called maximal if there does not exist a frequent itemset Y such that
X ✓ Y . Mining frequent itemsets can thus be reduced to mining a “border” in
the itemset lattice. All itemsets above the border are infrequent and those that
are below the border are all frequent. Another type of frequent itemset, called
closed frequent itemset (CFI), was proposed in [35]. A frequent itemset X is
closed if none of its proper supersets have the same support.

In our experimentation, we used the library called SPMF for finding closed
frequent itemsets9, applying the CHARM algorithm [46]. This is done for both
the transactional databases (subject and object databases associated to the verb
’v ’). Since our aim is to capture all the linguistic senses, i.e., the di↵erent mean-
ings connectable to the use of a specific verb, we also need to obtain itemsets
that cover all the items that are found in frequent itemsets. In other words, we
want to extract diverse itemsets, i.e., a minimal set of frequent and closed item-
sets that cover all the frequent items. The concept of diversity has been mostly
used in Information Retrieval tasks, and to the best of our knowledge there is
no attempt in capturing “kind of” diverse itemsets in the current literature.

In order to produce these novel types of frequent itemsets, we viewed the
problem as a set cover problem [41], implementing an heuristic-based approach
to face it. Given a set of elements U = i1, i2, ..., im (called the universe) and a set
S of n sets whose union equals the universe, the set cover problem is to identify
the smallest subset of S whose union equals the universe. The only parameter of
the algorithm is the percentage of diversity div that the candidate itemsets must
have with respect to the ones already selected. The main cycle of the algorithm is
then over the closed itemsets, starting from the ones with the highest cardinality
(i.e., the ones that cover most of the items). For each candidate itemset, if its
current percentage of diversity overtakes div, it is added to the result set. In our
experiments, we set its initial value to 0.5 (candidate itemsets must have a half
of their items that are not already present in the selected itemsets). In case the
insertion phase ends without having covered all the items that are contained in
the input closed itemsets, the value decreases of a certain factor alpha (set to
0.1, in our experiments). This way, the algorithm assures its termination.

Verb Model Construction In the final phase, once obtained the frequent and
diverse itemsets for both the two transactional databases, we connect all the

9 http://www.philippe-fournier-viger.com/spmf/index.php
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subject-itemsets with all the object-itemsets, weighting the connection according
to the their co-occurrences in the same triples of the original dataset.

The semantic verb model constructed for a specific verb “v” is thus a set of
weighted connections between frequent and diverse semantic features belonging
to the subjects of “v” and frequent and diverse semantic features of the objects
of “v”. On the one hand, this is a way to summarize the semantics suggested
by the verb. On the other hand, it is also a result that can be used to generate
new data by querying existing semantic resources with such semantic subject-
and object-itemsets. Still, this can be done without looking for words similar
to frequent subjects and objects, but by finding new subjects and objects that,
even if not similar in general, have certain semantic information that fill a specific
context.

The resulting models are automatically calculated, and they are very concise,
since in all the large and sparse semantic space only few features are relevant
to certain meanings (headed by the verb). This is also in line with what stated
in [26] where the authors claimed that semantics is actually structured by low-
dimensionality spaces that are covered up in high-dimensional standard vector
spaces.

4 Experiments and Results

In this section we present the result of the approach on di↵erent cases. In par-
ticular, we extracted all the triples in the dataset containing di↵erent verbs like
to play, to eat, to sing, and so forth. Then, for each of these verbs we executed
the algorithm and extracted the models, i.e., sets of weighted pairs of diverse
subject- and object-itemsets. Table 4 shows some examples of the automatically
extracted semantic information.

In the experiments, we wanted to evaluate the quality of the constructed
models and their ability to generalize over the input data also taking into account
their size in comparison with classic word-based vector spaces.

On the one hand, the approach is able to model the meanings expressed by
complete verbal phrases with minimal resource requirements, as shown in Figure
1. In fact, starting from hundreds of verbal instances, the method produces
itemsets with a feature space much smaller then common word spaces in which
words and chunks are represented by vector spaces of the order of thousands
of features. For instance, in the presented example, with a minimum support
of 0.05 (i.e., 5%), the resulting model is constituted by 4 diverse itemsets for
the objects and 24 for the subjects, with an average itemset cardinality of 18.5
and 12.6 respectively, covering more than 50% of the semantic features of all the
input triples.

On the other hand, we calculated the coverage of the extracted models, that
is the percentage of triples subject-verb-object in the input data in which at least
one item is included in the extracted diverse itemsets. These results are shown
in Figure 2. Notice that the coverage of the diverse itemsets is always equals to
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Table 4. Examples of the main semantic information that are automatically induced
for subjects and objects, tested on various verbs.

Verb Subject semantic features Object semantic features
to pay isa-person relatedto-money
to read isa-person notcapableof -fly desires-

clothe capableof -think capableof -
love capableof -talk to each other
desires-privacy partof -society
capableof -voice opinion hasa-name

usedfor -read atlocation-library atlo-
cation-newspaper

to visit isa-person atlocation-city aTlocation-
museum partof -web site used-
for -entertainment

to eat isa-mammal capableOf -fear death
capableOf -cook dinner capableOf -
run capableOf -eat capableof -
pay bill atLocation-earth ...

atlocation-oven usedfor -eat atloca-
tion-store hasproperty-delicious at-
location-tree isa-food atlocation-
restaurant ...

to play notcapableof -fly isa-mammal ca-
pableof -think atlocation-earth
desires-laugh capableof -hear noise
capableof -experience joy partof -
society ...

atlocation-movie theater hasprop-
erty-fun atlocation-theatre isa-
story usedfor -entertainment
hasproperty-entertain capableof -
tell story usedfor -learn ...

to sing isa-person capableof -think capa-
bleof -love atLocation-earth

partof -album usedfor -
pleasure yourself atloca-
tion-record usedfor -have fun
hasproperty-melodic usedfor -
express feel and emotion isa-
composition of music creat-
edby-composer atlocation-on cd
usedfor -entertainment ...

the coverage of the closed itemsets, even if the formers are less than (or equal
to) the latters.

To the best of our knowledge, this is the first attempt to model entire lin-
guistic constructions subject-verb-object in terms of senses at sentence-level auto-
matically carved out from the data by deeply analyzing co-occurrent fine-grained
semantic information instead of lexical and syntactic chunks. We think that fur-
ther e↵orts on this direction can importantly change the vision and the horizon
of current Natural Language Understanding goals as well as the management of
large collections of textual data with concise, generative, and semantics-based
models.

5 Conclusions

This contribution represents a first e↵ort to pass from standard word-vectors
to semantic vectors. This causes the raise of new challenges, like the alignment
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(a) (b)

Fig. 1. Size of closed (blue line) and diverse (red line) itemsets w.r.t. minimum support,
and average number of itemset cardinality (green line). The plot on the left (a) is for
the subjects of the example verb “to sing”, while the plot on the right (b) is for its
direct objects.

(a) (b)

Fig. 2. Coverage w.r.t. minimum support. The plot on the left (a) is for the subjects
of the example verb “to sing”, while the plot on the right (b) is for its direct objects.

and the filtering of heterogeneous semantic information. Still, such shift in the
basic bricks also concerns Data Mining techniques, since the problem of corre-
lating linguistic items becomes to correlate sets of semantic features, where only
some of them are actually significant. In this paper, we presented an approach
that connect Natural Language Processing techniques (Lexico-syntactic analy-
sis, syntactic parsing10 and Named Entity Recognition) with Pattern Mining
approaches like Frequent Itemset Mining and the cover set problem.

To produce semantic vectors, we started by using ConceptNet, one of the
largest semantic resource currently available. In spite of this, in future work we
will also come back to lexico-syntactic parsing of large corpora like Wikipedia
for the extraction of further semantic information directly from text.

The impact of this new research direction can be extremely high. The main
question this proposal wants to engender is the following: what if computa-
tional systems can directly reason on semantics instead of syntax? Future NLP

10 We refer here to the used subject-verb-object input structures.
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technologies could move away from language through more complex meaning
understanding, also dealing with unseen and low-frequency words.

By reducing commonly-huge vector spaces based on linguistic items into syn-
thetic conceptual matrices, we also attack the Big Data problem for textual
databases. For example, if we think at the term “color”, a linguistic-based vecto-
rial representation would contain hundreds of terms that usually co-occur with it,
such as “pastel”, “dark”, “light”, “red”, “brilliant”, and so forth. In Wikipedia,
for instance, we found more than 500 adjectival lemmas that co-occur with this
term. On the other hand, the concept of “color” can be potentially represented
by few dimensions. For instance, the HSV scheme uses only three dimensions:
brightness, hue, and saturation.

We evaluated the approach by its ability to reduce the space and generalize
over the input data. In future work, we will also measure the approach on tasks
like Ontology Learning and Question Answering. This paper also introduces a
the concept of semantic loop, i.e., the recursive use of extracted semantics as
input for further extensions. The use of this methodology can create new and
extended semantic resources.

Finally, we will leverage techniques for data compression like Multi Dimen-
sional Scaling (MDS) [27], Principal Component Analysis (PCA) [25] and tensors
decompositions to actually transform combinations of properties into reduced-
spaces capturing the more significant part of the data (due to their ability to
approximate information while preserving the maximum level of their expressiv-
ity). Cognitive psychology has deeply used such techniques in a wide variety of
applications where the explanation of cognitive processes can be derived directly
from them.
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