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We investigate the notion of orchestrated compliance fientlserver interactions in the context of
session contractsDevising the notion of orchestrator in such a context makpsssible to have
orchestrators with unbounded buffering capabilities anitie same time to guarantee any message
from the client to be eventually delivered by the orchestrtt the server, while preventing the server
from sending messages which are kept indefinitely insidetbkestrator. The compliance relation
is shown to be decidable by meanslpf procedure synthesising the orchestrators, if any, ngekin
client compliant with a server, ar) a procedure for deciding whether an orchestrator behavas i
proper way as mentioned before.

1 Introduction

Session types and contracts are two formalisms used to slight/server protocols. Session types
have been introduced in [16] as a tool for statically chegldafe message exchanges through channels.
Contracts, on the other hand, as proposed_in[[12, 18, 13J arset of CCS without, that address
the problem of abstractly describing behavioural propsrtf systems by means of process algebra. In
between these two formalisms ls&ssion contrad%as introduced in[]1,13,18.! 9]; this is a formalism
interpreting the session types into a subset of contracts.

In the theory of contracts, as well as in the formalism of is&ssontracts, the notion afompliance
plays a central role. A clierp is defined as being compliant with a sergefwritten asp - ) whenever
all of its requestsare satisfied by the server. Now it might be the case thattd@tisfaction cannot be
achieved just because of a difference in the order in whielp#rtners exchange information, or because
one of them provide some extra un-needed information.

Consider the example of a meteorological data processistgrsy(MDPS) that is permanently con-
nected to a weather station to which it sends, according fard@icessing needs, particular data requests.
For the sake of simplicity, we consider just two particulaguests, namely faemperatureandhumid-
ity. After the requests, the MDPS expects to receive the dataeimtder they were requested. In the
session-contracts formalism the interface for the singalifiIDPS can be stated as follows:

MDPS = recX.tempReq.humReq.temperature.humidity.x

(Here, as in CCS, a symbol like stands for on input action, wherea® denotes the corresponding
output). We assume a weather station to be able to send baasked-for information in the order
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we adhere here to this name.
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decided by its sensors, interspersed with information alind speed

WeatherStation = recX.tempReq.humReq.(temperature.humidity.wind.X
S
humidity.temperature.wind.X)

With the standard notion of compliance, it is not difficultdbeck thatMDPS A WeatherStation,
since the clientMDPS has no input action for the wind data, and also since it coelcliothat the
temperature and humidity data are delivered in a differeti¢iothan expected by thdDPS.

A natural solution to this would consist of devising a pracé#sat acts as a mediator (here called
orchestratoj between the client and the server, coordinating them im&&@lesed way in order to make
them compliant. This sort of solution is the one adopted ephactice of web-service interaction, in
particular for business processes, where the notion oestcdtion has been introduced and developed:

“ Orchestration Refers to an executable business process that may intesttcboth internal
and external web services. Orchestration describes how seelices can interact at the
message level, including the business logic and executder of the interactions. '120]

In the context of the theory of contracts, this solution warstalised and investigated by Padovani [19],
where orchestrators are processes that cannot affecttireahdecisions of the client nor of the server,
but can affect the way their synchronisation is carried out.

The orchestrating actions an orchestrator can perform thavillowing forms:

(a,a) (resp.(z,a)): the orchestrator getsfrom the client (resp. server) and immediately deliversit t
the server (resp. client) in a synchronous way.

(a,€) (resp.(e,a)): the orchestrator getsfrom the client (resp. server) and stores it in the buffer.

(3,e) (resp.(e,a)): the orchestrator takesfrom the buffer and sends it to the client (resp. server).
So a possible orchestrator enabling compliance for our plamould be

f = recX.(tR,tR).(hR,hR).((t,t).(h,h).(g,w).X
v
(g,h).(t,t).(h,€).(g,w).X)
wheretR, hR, t, h, andw stand fortempReq, humReq, temperature, humidity, andwind, respectively.
The orchestratof rearranges the order of messages when necessaryetairsthe wind information,
not needed byIDPS.

Actually, the orchestratof is not a valid orchestrator in the sense[of|[19]: indeedsthed infor-
mation is never delivered to the client (i.e. it is impligitliscarded), so that the buffer corresponding
to f would be unbounded. Unbounded buffers are not allowed il {#®ere boundedness of buffers is
used to guarantee both decidability and the possibilityyoftesising orchestrators. In a session setting
instead, as is the present one, decidability and orchestraynthesis can be established even in presence
of unbounded buffering capabilities of orchestrators.

In a two-parties session-based interaction, the choicengrseveral continuations always depends on
just one of the two actors. To let our formalism fully adhersuich a viewpoint ousession orchestratoys
besides (as argued in [19]) being processes that cannat #ife internal decision of the client or the
server, are such that they do not create any non-determhesides that already present in the partners.
This will correspond to restricting the syntax in such a waat brchestrators like, for instande, a).f1 Vv
(b,¢€).f2, are not allowed. In fact, in the latter orchestrator, theioh of receiving an input from the client
or from the server would not depend solely on the partnersf @escribed above does respect this syntax
restriction.
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1 success
a;.01+---+a5.0, external choice
21.01®---®ay.0, internal choice
X variable

recX.ag recursion

o.p

Figure 1: The grammar of raw session-contracts

Moreover, in our system it will be possible to prove thét MDPS - WeatherStation i.e.: MDPS
andWeatherStation manage to be compliant (representedbin our context) when their interaction is
mediated byf. In our system we will also manage to prevent the presentakeforchestrated complying
interactions like that between the clieri.b and the servea through the orchestratge,3).(b, ). In
this case the client gets the illusion ttaditits requestsare satisfied, whereas its outpuhever reaches
the server, but will be indefinitely kefmisidethe orchestrator’'s buffer. While in the contract setting of
[19] such compliant interactions are allowed, in our sa@ssiantext we manage to rule out orchestrators
behaving like(a,).(b, ), which never deliver a message from the client to the server.

We shall prove that properties like the one just mentionkdracterisingvell-behavedrchestrators,
are decidable. Given &ndecidability of orchestrated compliance throdghill be proved. We will also
show that, given a client and a server, it is possible to ®gisieall the orchestrators that make the client
and system compliant, if any.

2 Session contracts and orchestrated compliance

Session contractare a restriction ofontracts[18,/13]. They are designed to be in one-to-one correspon-
dence to session typés [16] without delegation((in 1, 3]raiea with delegation was investigated). The
restriction consists in constraining internal and extechaices in a way that limits the non-determinism
to (internal) output selection.

Definition 2.1 (Session Contracts) i) Let.4 be a countable set of symbols and” = {a|ac ./ }.
The seRSC of raw session contracts defined by the grammar in Figuré 1, where:

e for external and internal choices,n 1, and a € .4 (henceg, € .4 ) forall 1<i <n;

e the variable X is asession-contract variabteit of a denumerable set; we consider occurrences
of x in o boundin recx.o. An occurrence of x i is freeif it is not bound, and we write
Fv(o) for the set of free variables ia. o is said to beclosedwheneverv(o) = 0.

Act = ./ U_/ is the set ofactions

i) The setSC of session contractsis the subset of closed raw session contracts such that in
ai1.01+--+an.0, and a;.01 % --- P a,.0n, the a and theg; are, in both, pairwise distinct; more-
over, inrecx.o the expressiow is not a variable.

As usual, we abbrevia@® .01+ - -+ +an.0n by 511 8.0, anda;.o1 & - - - ©a,.0, by DL, a.01. We also
use the notationS;c, a.0; and@;¢, 3;.0; for finite and non-empty. We take the equi-recursive view of
recursion, by equating:cx. o with g{x/recx.o}.

The trailing1 is normally omitted: for example, we will writa+ b for a.1+ b.1. Session contracts
will be considered modulo commutativity of internal andesrial choices.
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The operational semantics of session contracts is givesring of a labeled transition systenT$)
o % o’ whereo, 0’ € SC anda either belongs to a set of actioAst or is an internal actiom.

Definition 2.2 (LTs for Session Contracts)We define the labelled transition systést, Act,—) by
2.01D - BA.0n — 8.0k aoc 5 o .01+ +an0n - oy

wherel < k < n, ando % ¢’ is short for (o, a,0’) € —. We shall use as shorthand for. As
usual, we write—> for —* and = for —*-%—* with a € Act.

Notice that reduction is not defined through contextualsu® reduction only takes place at the
‘top’ level. Thereby, it is impossible fotecx. o to unfold more than once without consuming a guard
(remember thatr is not a variable): so recursion is contractive in the useass. We will safely assume
that no two consecutiveec binders (as irecx.recy. ) are present in a session contract.

We observe that= is well defined, in that it € SC ando == ¢’ (or 0 => ¢”), theno’ € SC.

Session orchestrators As also done in[[19] in the context of the theory of contraets, intend to
investigate the notion of compliance when the interactietwieen a client and a server is mediated by
an orchestrator Different from the broad contract setting, the sessiotirggtve are in induces some
natural restrictions to the syntax of orchestrators, n@kirsafe to have orchestrators with unbounded
buffers. Moreover, it is possible to check whether any oufpam the client is eventually delivered
by the orchestrator to the server, as well as whether theghtrhe an infinite interaction which falsely
progresses because it is made only of outputs from the sertlee orchestrator (see Sectidn 4).

The set of actions an orchestrator can perform, that we take[fL9], have been informally described
in the introductior]

It can be reasonably argued that orchestrators must not ahpuwnternal non-determinism. Taking
into account now theession-basethteractions of our setting, such an assumption should bbdu
extended, keeping in mind that in a session-based cliemdismteraction any possible non-determinism
is due only to the internal non-determinism of the two pagneWe therefore define owgession-
orchestratorsso as to enforce this point of view. It follows that the onlyowde we allow in session-
orchestrators (represented by in expressions likef Vv g) is an external one, and it is necessarily driven
by the internal choice of one of the two partners. This imgptigat the actions immediately exhibited
by f andg in an orchestrator like \V g must have the samdirection i.e. must belong to just one of
the two subsetg§ (a,¢),(a,a) |ac 4} or {(e,a) | (a,a) | a€ .4 }. Besides, orchestration actions of
the form (3, €) or (e,a) must be used just as prefixgsin orchestrators likg:.f. The other ruled-out
cases, like(t,e).f' v (g,b).g or {(c,e).f' Vv (g,b).g/, would conflict with the session viewpoint or, like
(c,e).f' v (b,e).g, would be meaningless according to the syntax of sessiomamis.

We now formally define orchestration actions by partitignihem into different syntactic categories.

Definition 2.3 (Session-orchestration actiond)e defineOrchAct as the set obession-orchestration
actionsu described by the following grammar (whereea/” anda € .4):

g = I_|Ir]|O o == (ae& (e

L= (ag)[(ad) IR = (g,8)](@a)

20One could wonder whether just asynchronous orchestratiions can be taken into account, since &aya) action can
be safely mimicked by two asynchronous ones, nart@lg).(€,a) (similarly for (& a)). A difference in fact would arise only
for what concerns implementation, since the protocol foyreceronous exchange would not involve the use of a buffeichvh
is instead necessary for asynchronous actions. Such aerimpltation issue seems unlikely to be related to our thieafet
treatment. In contrast, we shall point out in Renfark 4.5 hoplémentation related aspects might affect our formatinat
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We let u,u’, 1, ... range over orchestration actions, gadover both finite sequencg; ... U, in
OrchAct™* and infinite sequencg; ... Uy ... in OrchAct®.
Definition 2.4 (Session OrchestratorsyVe defineOrch as the set oession orchestratgreanged over
by f,g,h,..., described by thelosedterms generated by the following grammar:

f.g = 1
‘ i.fove-vify (n>1)
| I.fyV--- VIR fy (nZl)
| of

| x

| recx.f

We impose session orchestrators tachatractive i.e. the f inrecx. f is assumed to not be a variable.
The expression represents the orchestrator offering no actianf offers just the orchestration
action of the categorp and continues a$, whereasi_.f1 vV ---Vi_.f, andir.f1 vV --- VIR Ty offer n
(uni-directional) actions of the syntactical categoriespectively,;, andig. Recursive orchestrators
can be expressed by means of the binder and recursion variables, in the usual way. As forisess
contracts, orchestrators are defined as to have recursi@bles guarded by at least one orchestration
action. In the following we shall often refer to ‘sessionlwstrators’ as simply ‘orchestrators.” As for
session contracts, we take an equi-recursive point of \@ewdentifyrecx. f and f{x/recx. f}.
We now define the operational semantics of orchestratora essa
Definition 2.5 (LTs for Orchestrators) We define the labelled transition systé@rch, OrchAct, —) by
- fls £/ g o
pof= i f\/gin" f\/gi>g’
Given a sequencf, we write &5 whenever i f1 NN foif 4= ps--- uy € OrchAct™, or
LN fn'ﬂ»u if U=y Up--- € OrchAct™. We write fi4 if there is nou such that il
Definition 2.6 (Orchestrator Traces) et f € Orch.

1. The seflr(f) C (OrchAct™UOrchAct®) of traces off is defined byTr(f) = {pu | f LN }.
2. The seMaxTr(f) C (OrchAct® UOrchAct®) of maximal traces of is defined by

MaxTr(f) = {peTr(f)|3f [f LNy A | or u € OrchAct® }

As in [19], we define amrchestrated systems a triple(p, f, o) (written p || o) representing (the
client) ando (the server) interacting with each other under the supervisf f.
Definition 2.7 (Orchestrated Systems operational semanti€se operational semantics of orchestrated
systems is defined as follows:

p—p g— o’
pllio—=p'lto pllio—plto
p Lo 1A% ¢ 5T p o £ g AL TN
(a,a (a.e £,a)
p|\f0—>>p’||f/a/ P||f0—>>p/||f’0 P||f0<—>P||f'U/
Wewrite:“>for—>*oi>o—>*,and:“>for%o...o$>(resp.%oﬁo---)ifuisfinite

(resp. infinite). The notatiop ||+ 0 —4~ will be used when botp ||t o —/~ (according to the first two
rules above) ane3u [p ||+ O SN | hold.
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Notice that for the operational semantics of orchestragstems we have defined labelled reductions
instead of a reduction relation (as don€e in/[19]). We labehestrated-systems’ transitions by the orches-
tration actions which make them possible, since in ourrsgttie need to check for particular conditions
of orchestrator buffers after the evolution of an orchésttaystem. A buffer can be explicitly coupled
with an orchestrator or can be represented implicitly byat&ons performed by the orchestrator. The
latter is the choice of[19], that we maintain.

We now define a notion of compliance which is coarser than @rgebecause of possible unfair
behaviour of the orchestrators, which will be refined in ®&dd.

Definition 2.8 (Disrespectful and Strict Orchestrated Compliand&) orchestrator f is said to bp-o
strict whenever, for any finitgt, f LN impliesp||so . We define:
i) f:pH*o if fis p-o strict, and for anyu, p’ and @’, the following holds:

plio = o'l o’ - implies p'=1.
i)y pt*o if 3If[f:pH*0o].

3 Orchestrators Synthesis

In this section we define an inference systefhfor (possibly open) orchestrators, deducing judgments
like f:p—*a, under finitely many assumptions of a certain shape. We fitstbéish that the system
is sound with respect to thel® relation. Then, on the basis of that system, we provide aorighgn
Synth for orchestrator synthesis which, giverand g, returns the set of all the relevant orchestratbrs
such that"f f : p+4* o (namely withl" = 0) and hence that : p#* . The algorithm is essentially an
exhaustive proof search foi" that can be shown to be always terminating.

Definition 3.1 (The orchestrators inference systeitl). The judgements of the system are expressions
of the forml i f : p+4* g, wherep,o € SC, f is a (possibly open) orchestrator aridis a set of
assumptions of the form:yo; 4* gj such that: xo1*c el & y.p1*0c €l = x=y (sol represents

an injective mapping from variables to expressions of tmnfp+*g). The axioms and rules of the
system are described in Figuré 2.

In the inference system of Figure 2 the symbidlis a relation symbol representing the relatidif as
defined in Definitiom 2J18. In order to give the intuition bethiime inference system, let us briefly comment
on one of the rules, safceis-L). In case it is possible to show thét is an orchestrator fof,ﬁ+ds o,
orchestrated compliance can be obtained Yor, a.0; 1* 0 by means of(ap, €).', since the(ay, ¢)
action satisfies one of thaput requests . In casex ¢ fn(f’), we get thatecx.(a,, €).' = (ap, €).',
This means that axiortux) has been used in the derivation 8fand the interaction between, a.pi
and o finitely succeeds if the actions described in the branch fosny-L) to (ax) are performed. In
casex € fn(f’), rule (Hve) has been used fdr, and a successful infinite interaction is possible between
Yicl &.p; and o when the orchestrator repeatedly performs the actionseirbtanch from(ceiy-L) to
(Hve), as described by the recursive orchestratox.(ap, €).'

Definition 3.2 (Judgment Semanticshetl” = {x;:p11* 01, ..., %Pk 1* 0k }, and 6 be a map such that
6(x) = fi, where the ;& are proper (i.e. closed) orchestrators. Then we define:

=T V(x:pi At o) €T [6(x) : piH* 0]

r=f:pi%*c Vo[0T = 0(f):pH*o]

where6(f) is the result of substituting, for all variablesexf, all free occurrences of x b§(x).

1> 1>
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(Ax) : M1 g (Hve) : rxp-+*ophx:p+4*o

M XSiga.pd*oh 1 pp4*0 r,xp*Siga.o " f 1 p4*op

CpPLy-L) : - el CPLS-R) : - el
(Criz-t) M recx.(ap, ). 1 Sica.p 10 (el (CrsR) I recx.(g,ap).f' 1 p4*Tic &.0; (pel)
(CrLR) [, X @ic @0 1*DBjeybj.0) " fj : Bicy@.pi1%0;  (Vj )

o recx. Vje(e, b)) fj : Bici @01 1* Dy bj.0;
(criL) [, X @i @.01*Djeybj.o o fi : g4 Djesbj.0 (Viel)
' o recX. Vi (&, ). fi : @i @.0 1* D5 bj.0
Mot f:p4*yicja.0; (VieH Mo f:p4%0  (VieK
(S PT3e0%:05 ) ATa ) (I =HUK,K C J)

o recX.(Vhen (@ns €)-fh) V (Viek (s a)- i) : Dic1 @01 1% Y je1aj.0j
where T'=T, X @i &.p 1Y c18.0j.
Mo fiisiaap®o; (VieH)  Mofjip+o (VjeK)

o recX.(Vnen (€:an)-fn) V (Viek (@ a)- fi) © Tier @011 By dj.0j
where ' =T, X 5 8.0 1*Dje38;.0j

(cry@): (J=HUK,KCI)

Figure 2: The inference system'.

Theorem 3.3(Soundness)If I f:p-*og thenT = f:p-*0.

Proof. (Sketch) It is possible to device a sound and complete systéan judgments of the shager

f : p14* o, wheref is a closed orchestrator and whérés a set of assumptions on closed orchestrators
(not on variables as in"™). Now it can be proved that if is closed and™ > f : p-* o is derivable,
then for any@ such thatd =T we havef(I") > f : p1* g, where8(I') is the result of substituting all
orchestrator variablesby 6(x). Then the thesis follows from the soundness-of O

The synthesis algorithBynth is defined in Figur€l3. Given a set of assumptidns clientp and
a servera, the algorithm computes a set of orchestratéfssuch that for allf € % a derivation of
I o f . p4* o exists. The algorithm essentially mimics the rules of tHerience system of Figué 2.
Intuitively, in case we are looking for orchestrators foe= @i¢ &.p and 0 = Pj;a;.0; under the
assumptionsg’, we notice that they can be inferred for sygland o in system" only by means of
rules(cei-R) or (crie-L) and that their form is, respectivebgcx. \/ig (&, €). fi or recx. Ve (e, ). fj,
where thefis and thef;s are the orchestrators for the pgirso andp,oj, respectively. This accounts for
the fourth clause in the synthesis algorithm. We can progeathorithm to be sound.

Lemma 3.4. If Synth(l",p,0) =.% # Othen, forall fe #, " f : p+* o is derivable.
On the other hand, the algorithm is complete in the followsegse:
Lemma 3.5. If f : p1* o andSynth(0, p, o) terminates then there exists g such that 8ynth(0, p, o).

Theg of the above lemmeepresents fIn particular it could be got bgielayingthe termination of the
algorithm when the first clause is applicable. Moreovemiild be got out off by replacing syncronous
actions by pairs of asyncronous ones (or also by simply @daléyncronous actions). For instance, for
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synth(r,p,0) =
if x:p-4*o el then {x}
else ifp=1 then {1}

else ifp=7yiqa.p and 0=y c;a;.0j then
let I"=T,xp"*0 in
Uiei {recx.(@, g).f | f € Synth(I,pi,0) } U Ujes{recx.(e,a).f | f € Synth(I",p,07) }

else if p=@ic @.p and 0 =Dj;3;.0i then
let M"=T,xp=*0 in
{recx.Vig (@i, €).fi | fi € Synth(I,pi,0) } U {recx.Vje(€,a)).fj | fj € Synth(I”, p,07) }

else if p=@ic @.p and 0 =3 jc;aj.0; then
let =T, xp=*0 in
{recX.(Vhen (@n, €)-fn) V (Viek (@, 3)- fi)
[ =HUK,K CJ, f, € Synth(I"’, p, 0), fx € Synth(T"’, px, 0k) }
U Ujes{recx.(g,a).f | f € Synth(I",p,0; }
else if p=7yica.p and 0 =Dj;3;.0j then
let I"=T,xp=*0 in

{recx-(\/heH (€,ap).fh) Vv (VK€K<ak7ak>'fk)
|J=HUK,K CI, fy € Synth((I'"’, p, o), fk € Synth(I"”’, px, 0k) }
U Uie {recx.(g,€).f | f € Synth(I",pi,0) }

else 0

Figure 3: The algorithnsynth.

p = recx.a.xando = recx.a.x the orchestratof = (a, ¢).(g,a).recx.(a,a).x correctly mediates between
p andao, the algorithm terminates, bidt¢Z Synth(0,p, o). On the other handj = recx.(a, a).x belongs
to Synth(0, p,0) and it is related td in the sense above. It can be shown, besides, tHasifespectful
in the sense of Sedt] 4 below, there exists a respegtfuSynth(0, p, o).

It remains to show thabynth is terminating:

Lemma 3.6. For all I', p and g, the execution oSynth(I", p, 0) terminates.
Proof. (Sketch) The proof is based on the fact that all session acistin the recursive calls &ynth
are a sub-expression of eitherr o or of a session contract in a judgmentiirfwhich is finite). Since

session contracts are regular trees, their sub-exprasai@na finite set, so that the tesp1*c € I
(wherex is any variable) at the beginning 8fynth cannot fail infinitely many times. O

Corollary 3.7. The relation-* is decidable; moreover ip +* o then it is possible to compute a s&t
of orchestrators fop and o

Recall that the computed orchestratoepresentall the possible orchestrators, in the sense of the
discussion after Lemnia3.5.

4 Respectfulness

The definition of orchestrators implies they have buffergagabilities. The sort of buffer taken into
account in[[19], as well as by us, is made of a number of bietimaal buffers (where only a finite
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subset is actually non empty), one for each possible name-dikdrtional buffer is actually made of
two distinct buffers, one containing the messages recdreaa the client that have to be delivered to the
server, and the other one containing the messages receivadtfe server that should be delivered to the
client.

In [19] orchestrators are restricted to have bounded hatfecapabilities and such a restriction is
used in the proofs of several properties concerning camrabestrators. In our setting we can eliminate
that restriction, so allowing more client/server pairs ® dompliant, like for instanceecx.a.x and
recx.b.a.x, and the example in the introduction. We will now formalike hotion of buffer.

Definition 4.1 (Buffers) 1. A bi-directional bufferB is a set of the form{ “a% | a € .4"} where,
for any ac .4, C3,S € Z. The g in “@a% represents the number of a’s in the part of the buffer
containing messages sent by the client to the server. Jin€=a% represents the number of a’s in
the part of the buffer containing messages sent by the saybe client.

2. We defined = {%C |ac .4 } and

@B = E\{Gavhu{eas) By = (B\{%a%})u{adr)
@B o= E\Gahu{elas) By = (B\{%a%)u{=ad)

3. We denote byB|, the number of a’s in the server-to-client part of the buffe, |B|o = s4 and
similarly for the client-to-server part, i.@|B| = Ca.

4. The state of a buffeg after an orchestration actiop will be denoted by, defined by

B(ae) = ;B B(e,a) = By

B(a,e) = [;B Ba,@) = B B(e,a) = By

5. ByBu we denote the buffét after the sequencg of orchestration actions.

In Definition[Z.8 we considered the relatiofi*, which we have studied so far. This is however

much weaker than expected, and it is time to face the issuasi@ar the simple orchestrated system
abl|facd wheref =(aa).(b&).1.

It is easy to check thaf : ab—*a.c.d since f is strict for the given client/server pair and

ab|facd =5 1), c.d 4, wherep = (a,a)(b, ¢). Itis definitely true that all the client's “requests”
have been satisfied, but not all by the server! The adtiofthe client has been taken care of exclusively
by the orchestrator, which in that case has not acted singpyraediator, but has effectively participated
to the completion of the client’s requests.

So, in order to strengthen Definitibn P[B (i), in cgsd s 0’ —~ , we have to impose some conditions
on the client-to-server buffer associatedftpin particular, that it should be empty. Of course, a similar
condition must hold also for infinite interactions; this ileg that in an infinite interaction, for any
possible name, sag, used by the orchestrator, the latter cannot indefinitelyopa input actions for
a from the client (even if interspersed with actions for othames) without ever delivering anto
the server. We must therefore forbid a client likkex.a.T.x to be compliant with the serveecx.c.x by
means of the orchestratarcx.(a, €).(c,c).x. Orchestrated finite and infinite interaction sequenceshvhi
do not correspond to unwanted situations like those justbkke will be callectlient-respectful.

Even if the notion of compliance enforces the sense of thetbigards the client (any client request
must be eventually satisfied by the server), some conditieed to be imposed on the part of interactions
on behalf of the server. In fact, we wish to prevent a servéetoompliant with a client by means of an
orchestrator that, from a certain moment on, interactsitefinmany times with the server only, like in
the orchestrated system
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ablfrecx.C.b.x wheref = (a £).recx.(g,c).(g,b).x
We wish to prevent this kind of infinite interaction that webdiefinitely server-inputted. Notice that,
however, we can permit interactions in which the orchestrean perform the input of songfrom the
server infinitely many times, without ever performing anpuitof a to the client, like it happens for
wind in the example in the introduction.

We observe that the problem — whether an orchestrator véll @agage in any of the aforementioned
pathological interactions — might well be undecidable famtcacts in general; indeed, it shares similari-
ties with, for example, termination of two-counter maclsifigZ]. However, we stress that we are in the
restricted setting of session contracts, which sufficesakensuch properties decidable.

Among the properties we have to take care of, one is that intareiction sequence there cannot exist
an orchestrator action removing an element from an empfgihufe. asound sequence never sends an
elementa to a server or to a client if tha has not been previously received. We call the sum of all the
above propertiesespectfulness

Definition 4.2. Given u € OrchAct™ U OrchAct®, we define,| i, its left-restriction to a name a, as
follows (A is the empty sequence):

aJA - A

() = palp, e {(ed, e,
al(up’) = aly’ otherwise.

Definition 4.3 (Respectful sequences and orchestratdre) u € OrchAct*UOrchAct® andu € OrchAct.
a) Given SC OrchAct, we sayu to bedefinitely-S whenever:
3k Ym > k [the m-th element gi belongs to §
For sets that are singletons we write ‘definitglyinstead of ‘definitelyf u }.

b) We sayu to be asound sequenc&henever:

Va4 Vn < [p| [alOph-- | > 0 and [Opis -+ k| 2 > O]
c) We sayu to beclient-respectfusequence whenever, for anyga/:

al M is finite andy| O | =0 or 4| is infinite and non-definitelya, ¢)
d) We sayu to benon-definitely server—inputteathenever:
Misinfinite =  pis non-definitely{ (e,a) |ac .4/}

e) We sayu to berespectfulwhenevei is sound, client-respectful and non-definitely serveuitgd.
f) We say that an orchestrator f isspectfulwhenever every € MaxTr(f) is so.
We will look now at a few examples in order to get a better titni about the above definition.
Example 4.4. e The finite sequenc, ¢).(e,b).(¢,a) is not respectful since it is not sound. In fact,
for the name b, we have thed.(a, ¢).(b,e) |, = —1 < 0.
e The sequencen ¢).(b,¢).(¢,a) instead, is sound, but nonetheless it is not client-resplectince
it is not infinite and for the name b we hay@(a, ¢).(b,¢).(¢,a)| = 1 # 0.

e The orchestrator f= (c,t).recx.((g,a) V (c,€).(b,b).x) is not respectful since it is not client-
respectful. In fact, for the sequenpe= (c,t).(c,).(b,b).(c,€).(b,b) - - - € MaxTr(f) and the name
¢, we have that| p is infinite and:| 2 = (c,€).(c,€).(c,¢) - - - is definitely{c,¢). In fact, from the
very first element on it is made @f, €) actions.
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e The orchestrator = (c,c).recx.((a,a) V (g,b).(g,c).X) is not respectful since it is not definitely
server-inputted. In fact, the infinite sequenge= (c,t).(¢,b).(¢,c).(g,b).(g,c)--- € MaxTr(f)
is definitely{ (¢,a) | a€ .#"}. The orchestratott in the introduction, instead, is non-definitely
server-inputted, and also respectful, as a matter of fact.

Remark 4.5. By Definition[4.2, the sequengéu in Definition[4.3(t) cannot contain synchronous or-
chestration actions likéa,a). Hence, for example, the orchestrator-g(a, ).recx.(a,a).x is not client-
respectful, and so it is not respectful at all. This is beeathe first a coming from the client will never
be delivered to the server since any subsequent oatpuitl be paired with a further input of a. This
might be irrelevant when distinct occurrences of the samssage are indistinguishable, but in general
the number of input-output actions matters.

On the other hand forcing the orchestrator to immediatetwBrd a message is a desirable capabil-
ity, which would be definitely lost by equatifa ¢).(e,3) to (a,a), and by ruling out the latter.

We can now properly define the full notion of compliance anarabterise it.

Definition 4.6 (Orchestrated Session Compliance)) We say that a clienp is compliant with a server
o through the orchestration of f, and denote this byof+ o, whenever

a)plio =% p'|p o' -~ implies p’ =1 and p is respectful, and
b) plso £ with M € OrchAct® implies p is respectful.
i) We write p - 0 whenever there exists an orchestrator f such thapf o.

Notice that we cannot define orchestrated compliance bylgimgposing f to be respectful in
Def. [4.8[]), since that would prevent the possibility @be compliant witha through the mediation
of the orchestratofa,a) Vv (g,b). This orchestrator is not respectful, but its sequencestidras in any
possible orchestration betweamnda are respectful.

We can show that, if compliance could be obtained by meansnoharespectful orchestrator, it is
always possible to get it through a respectful one. Besides;an show the correspondence between
and—®.

Proposition 4.7. i) f:pto = 3f'[f':p-H o suchthat fisp-o strict].
i) f:pHoand fisp-ostrict < f:p-+H*cand fis respectful.
i) pHo <« 3If[f:p-+H*owhere fisrespectfil
In order to show decidability, we provide a characterisatib respectfulness based on the notion of
buffer-aware trees and its related labelings below.

Definition 4.8 (Buffer-aware trees of). a) Let ac .4#". We define théuffer-awarea-tree of an orches-
trator f, denoted byTs?(f), as the tree defined by induction in Figlile 4. The edges of¢lechave a
left- and a right-weight denoting, respectively, the iment of the client-to-server and of the server-
to-client buffer for the name ‘a’ caused by the orchestmnati@tions performed by f.

Given an edge e of a buffer-aware a-tree t, we denote is kgp(rright) weight biw' (e) (resp.rw!(e)).

b) We define théuffer-awarex-tree of an orchestratof, denoted bycls*(f), as the tree with the
same nodes and edges as aigf(f), but such that the left (resp. right) weight of an edge e is

dac IWCTsa(f)(e) (resp.y ac.x chTsa(f)(e) )-
Note that the left and right weights of the edges of a buffeara «-tree of an orchestratof are
either 0,—1, or+1.
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as?(1) = 1 ads?(x) = x
as?((e,a).f') = 0f-1 ds?((a,e).f) = +1]0
cIs?(f) cIs?(f)
CTSa(<a7£>.f/) = -1 ‘ 0 cTsa(<e,a>.f’) = 0‘ +1
cIs?(f) cIs?(f)
CTSa(U-f/) = 0|0 if u5{{(e,ﬁ>,<a,£>,<a,£>,<e,a>}
cIs?(f7)
o recX.
aAs?(fiv...vfy) = /N cs?(recx. f) = |
as?(fy)...cls?(fn) cIs?(f)

Figure 4: Buffer-awara-tree

Definition 4.9 (Buffer-labelling ofcls?(f)). We define théuffer-labelling ofcls?(f) by labelling its
nodes with left and right labels as follows: given a node N #rpath P incls?( f) from the root to N,
we left-label N with the sum of all the left-weights of theexdm P, whereas we right-label N with the
sum of all the right-weights of the edges in P.

We now provide characterisations for the properties defingspectfulness.
Definition 4.10 (Sound buffer-labelling) The buffer-labelling ofTs?( f) is soundwhenever
a) there is no negative left-label and no negative rightelladnd

b) for any leaf x and correspondingcx. node, if k is the left (resp. right) label of x and h is the lef
(resp. right) label ofecx., then: k-h > 0.

Proposition 4.11. fissound <« for any ac .4/, the buffer-labelling o€Ts?(f) is sound.
Proof. (<) By the labelling, it is impossible to get a non-client-resfiul sequence out df.

(=) By contraposition; assume that for a nabne .4, the buffer-labelling Of:st(f) be unsound. Then
we have two cases to consider:

(a) There is a negative label. We then get immediately anuntssequence.

(b) There exists a leafand its correspondingecX. node, where is the left(or right-)-label ok andh
is the left-(or right-)label ofecx., s.t. k—h < 0. It is immediate to get an unsound sequencel!

We say that a nodgets to1 whenever its subtree contains aode.

Definition 4.12 (Client-respectful buffer-labelling) The buffer-labelling ofls?(f) is client-respectful
whenever

a) anyi node is left-labelled witld;

b) for any leaf x and corresponding node of its binderx ., if k is the left-label of x and h is the left-label
of recx., then
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1) if therecx. node gets ta, then h=k;
2) otherwise, if all the left-labels of the edges from xdox . are0 then h=0;

c) for any path from a leaf x to its correspondingc x. node, either no edge is right-weighted with
or there is at least an edge with right-weighl.

Proposition 4.13.
f is client-respectful < for any ac ./, the buffer-labelling ofls®(f) is client-respectful.

Proof. (<) By the labeling rule it is impossible to get a non clientpestful sequence out df. For
finite sequences this impossibility is guaranteed by ckag and[(b) of Definition 4.12, for infinite
ones by clause1c).

(=) By contraposition; assume that for a naime .4/, the buffer-labelling Ochsb(f) be non-client-
respectful. We consider the four possible cases:

1. Alabel of a1 leaf is not 0. In that case we immediately get a finite sequentef f which is
non-client-respectful.

2. There is a nodg labelled withk and its corresponding nodecx. gets to1 and it is labelled with
h, with k £ h. Then the sequence out bfcorresponding to going teecx., then from nodeecx.
to X a non negative number of timasand finally to ther node cannot be client-respectful, since
at the end the client-to-server buffer fowould haven« (h— k) elements in it.

3. There is a node labelled withk, its corresponding nodecx. does not get ta, all the left-labels
of the edges fronx to recx. are 0 anch = 0. In that case the traqe corresponding to the infinite
path starting from the root and then keeping indefinitely asging throughecx. andx is such
thaty,| u is finite and|@(p| 4)| # O.

4. there exists a path from a leafo its correspondingecx. such that there are some right-weighted
edges right-weighted with-1 and no edge with right-weightl. Then it is immediate to get
an infinite definitely server-inputted sequence outfoihich is definitely<b,e) and hence not
client-respectful. O

Definition 4.14 (Non definitely server-inputtee-tree) Given an orchestrator f, its-tree cIs*(f) is
non-definitely server-inputtedhenever, for any path from a leaf x to its correspondiagx. node,
either no edge is right-weighted withl or there is at least an edge with right-weightl.

Proposition 4.15.  f is not definitely server-inputted< cIs*( f) is non-definitely server-inputted.

Proof. (<) By the labelling it is impossible to get a definitely serugputted sequence out éf

(=) By contraposition; assume thdt*(f) be definitely server-inputted. So there exists a path from a
leaf x to its correspondingecx. such that there are some right-weighted edges right-veigivith +1

and no edge with right-weight 1. Then it is immediate to get a definitely server-inputtegussce out

of f. O

Theorem 4.16. Orchestrator respectfulness is decidable.

From the above result and from decidability-6% ( Corollary[3.T) we can get decidability ef. The
algorithm to decide whethgr - o will first compute.# = Synth(0, p, 0); then if % # 0 it suffices to
check whether there is a strict and respecffal .7, which is a decidable problem by the above.

Theorem 4.17.Givenp and g, it is decidable whethep H 0.
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We conclude by observing that in [19] the lack of unboundeflebng capabilities prevents or-
chestrators to be used to ensure client compliance withveisérat might send an unbounded number
of unnecessary outputs. To let such sort of interactioniplessin [2] the notion ofskp-compliance
(dubbed—**) was investigated for session contracts, where a clierdngptiant with a server whenever
all its requests can be satisfied thanks to the possibilitfigfarding a (possibly unbounded) number
of unnecessary server outputs. Interactions of this soractually be carried out by means of our ses-
sion orchestrators, since it is possible to prove thati™™* ¢ implies p-#*o. Inthe example in the
introduction, in fact, therind information is unbounded and “discarded” by the orchestrat

5 Related and future work

The notion of compliance naturally induces a substituiigbrelation on servers that may be used for
implementing contract-based query engines (see [19] fataildd discussion). Hence it seems worth-
while to investigate the session sub-contract relatioméed by our orchestrated compliance on session
contracts. Whereas server substitutability is at the corhe results in[[1B], we deem it relevant to
investigate alsalient substitutability in the style of what was done inl[1, 3] for session contract ian
[1Q] for the more general notion of contract.

An approach to the formal description of service contracteeims of automata has been recently
developed in[[6]. The notion afontract automators related to that o€ontractas well as ofsession
contract Besides, the notion afontract agreemenn [6] somewhat resembles that edmpliance In
the framework of that paper, orchestrators are synthestsedforce contract composition to adhere to
the requirements for contract agreement. Even if the asithbfG] work on the overall satisfaction in
a multiparty composition of principals, it is definitely wbwhile, as a future investigation, to study
the relation between the notion of orchestration, as deeelan [19] and in the present paper, and the
approach of([B], which in turn has been related’in [7] to thededl@f choreography of communicating
finite state machines (CFMS) [11]. For what concesassion contracti particular, the investigation
of the correspondence with the above mentioned formaligukicstart from the result concerning the
correspondence dfinary session types with a particular two-communicating-magehisubclass (see
[15] for references). Such a correspondence between seygies and communicating machines has
been pushed further to the multiparty setting in/[15].

Many properties of the model of CFSM which are untractabkeses to be so when Bags, instead
of - or together with - FIFO queues are taken into accdunt. [T4k similarity of contracts and session
contracts with the CFSM model suggests to investigate thefibags for session-contract interactions
to reduce decidability problems in our context to problemtghe CFSM model with bags. What does a
bag correspond to in our context is however not immediatewicd. In fact, by putting a bag in between
a.b anda-+ b would result in a number of possible non-deterministic etiohs of the system: as soon
asa is in the bag, it could be used as input for the server; or, §& d@tha andb get into the bag, the
server could non-deterministically choose amongst theo;Such a behaviour of the system, however,
goes far beyond the session setting we are in, where nomuatem is restricted to occur only inside
the client and server.

Session contracts have been also investigated in papefd|ik] where, overloading the name, they
also have been dubbexssion typesin [4] the authors establish a relation between sessiotraxis
and a model based on game-theoretic notions, showing thgil@nce corresponds to the existence of
particular winning strategies. It should be interestinint@stigate the meaning and role of the notion of
orchestration in such a game-theoretical setting.
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