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We investigate the notion of orchestrated compliance for client/server interactions in the context of
session contracts. Devising the notion of orchestrator in such a context makesit possible to have
orchestrators with unbounded buffering capabilities and at the same time to guarantee any message
from the client to be eventually delivered by the orchestrator to the server, while preventing the server
from sending messages which are kept indefinitely inside theorchestrator. The compliance relation
is shown to be decidable by means of1) a procedure synthesising the orchestrators, if any, making a
client compliant with a server, and2) a procedure for deciding whether an orchestrator behaves in a
proper way as mentioned before.

1 Introduction

Session types and contracts are two formalisms used to studyclient/server protocols. Session types
have been introduced in [16] as a tool for statically checking safe message exchanges through channels.
Contracts, on the other hand, as proposed in [12, 18, 13], area subset of CCS withoutτ , that address
the problem of abstractly describing behavioural properties of systems by means of process algebra. In
between these two formalisms liesession contracts1 as introduced in [1, 3, 8, 9]; this is a formalism
interpreting the session types into a subset of contracts.

In the theory of contracts, as well as in the formalism of session contracts, the notion ofcompliance
plays a central role. A clientρ is defined as being compliant with a serverσ (written asρ ⊣ σ ) whenever
all of its requestsare satisfied by the server. Now it might be the case that client satisfaction cannot be
achieved just because of a difference in the order in which the partners exchange information, or because
one of them provide some extra un-needed information.

Consider the example of a meteorological data processing system (MDPS) that is permanently con-
nected to a weather station to which it sends, according to its processing needs, particular data requests.
For the sake of simplicity, we consider just two particular requests, namely fortemperatureandhumid-
ity. After the requests, the MDPS expects to receive the data in the order they were requested. In the
session-contracts formalism the interface for the simplified MDPS can be stated as follows:

MDPS = recx.tempReq.humReq.temperature.humidity.x

(Here, as in CCS, a symbol like ‘a’ stands for on input action, whereas ‘a’ denotes the corresponding
output). We assume a weather station to be able to send back the asked-for information in the order

∗This work was partially supported by COST Action IC1201 BETTY, MIUR PRIN Project CINA Prot. 2010LHT4KM and
Torino University/Compagnia San Paolo Project SALT.

1They were dubbedsession behavioursin [1, 3]. For sake of uniformity and sincesession contractsounds more appealing,
we adhere here to this name.
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22 Orchestrated Session Compliance

decided by its sensors, interspersed with information about wind speed:

WeatherStation = recx.tempReq.humReq.(temperature.humidity.wind.x
⊕
humidity.temperature.wind.x)

With the standard notion of compliance, it is not difficult tocheck thatMDPS 6⊣WeatherStation ,
since the clientMDPS has no input action for the wind data, and also since it could occur that the
temperature and humidity data are delivered in a different order than expected by theMDPS.

A natural solution to this would consist of devising a process that acts as a mediator (here called
orchestrator) between the client and the server, coordinating them in a centralised way in order to make
them compliant. This sort of solution is the one adopted in the practice of web-service interaction, in
particular for business processes, where the notion of orchestration has been introduced and developed:

“ Orchestration: Refers to an executable business process that may interactwith both internal
and external web services. Orchestration describes how webservices can interact at the
message level, including the business logic and execution order of the interactions. ”[20]

In the context of the theory of contracts, this solution was formalised and investigated by Padovani [19],
where orchestrators are processes that cannot affect the internal decisions of the client nor of the server,
but can affect the way their synchronisation is carried out.

The orchestrating actions an orchestrator can perform havethe following forms:

〈a,a〉 (resp.〈a,a〉) : the orchestrator getsa from the client (resp. server) and immediately delivers it to
the server (resp. client) in a synchronous way.

〈a,ε〉 (resp.〈ε,a〉) : the orchestrator getsa from the client (resp. server) and stores it in the buffer.

〈a,ε〉 (resp.〈ε,a〉) : the orchestrator takesa from the buffer and sends it to the client (resp. server).

So a possible orchestrator enabling compliance for our example would be

f = recx.〈tR,tR〉.〈hR,hR〉.(〈t,t〉.〈h,h〉.〈ε,w〉.x
∨
〈ε,h〉.〈t,t〉.〈h,ε〉.〈ε,w〉.x)

wheretR, hR, t, h, andw stand fortempReq, humReq, temperature,humidity, andwind, respectively.
The orchestratorf rearranges the order of messages when necessary, andretains the wind information,
not needed byMDPS.

Actually, the orchestratorf is not a valid orchestrator in the sense of [19]: indeed thewind infor-
mation is never delivered to the client (i.e. it is implicitly discarded), so that the buffer corresponding
to f would be unbounded. Unbounded buffers are not allowed in [19], where boundedness of buffers is
used to guarantee both decidability and the possibility of synthesising orchestrators. In a session setting
instead, as is the present one, decidability and orchestrators synthesis can be established even in presence
of unbounded buffering capabilities of orchestrators.

In a two-parties session-based interaction, the choice among several continuations always depends on
just one of the two actors. To let our formalism fully adhere to such a viewpoint oursession orchestrators,
besides (as argued in [19]) being processes that cannot affect the internal decision of the client or the
server, are such that they do not create any non-determinismbesides that already present in the partners.
This will correspond to restricting the syntax in such a way that orchestrators like, for instance,〈ε,a〉.f1∨
〈b,ε〉.f2, are not allowed. In fact, in the latter orchestrator, the choice of receiving an input from the client
or from the server would not depend solely on the partners. Thef described above does respect this syntax
restriction.
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σ ,ρ ::= 1 success
| a1.σ1+ · · ·+an.σn external choice
| a1.σ1⊕·· ·⊕an.σn internal choice
| x variable
| recx.σ recursion

Figure 1: The grammar of raw session-contracts

Moreover, in our system it will be possible to prove thatf : MDPS⊣⊣WeatherStation i.e.:MDPS

andWeatherStation manage to be compliant (represented by⊣⊣ in our context) when their interaction is
mediated byf. In our system we will also manage to prevent the presence offake orchestrated complying
interactions, like that between the clienta .b and the servera through the orchestrator〈a,a〉.〈b,ε〉. In
this case the client gets the illusion thatall its requestsare satisfied, whereas its outputb never reaches
the server, but will be indefinitely keptinside the orchestrator’s buffer. While in the contract setting of
[19] such compliant interactions are allowed, in our session context we manage to rule out orchestrators
behaving like〈a,a〉.〈b,ε〉, which never deliver a message from the client to the server.

We shall prove that properties like the one just mentioned, characterisingwell-behavedorchestrators,
are decidable. Given anf, decidability of orchestrated compliance throughf will be proved. We will also
show that, given a client and a server, it is possible to synthesiseall the orchestrators that make the client
and system compliant, if any.

2 Session contracts and orchestrated compliance

Session contractsare a restriction ofcontracts[18, 13]. They are designed to be in one-to-one correspon-
dence to session types [16] without delegation (in [1, 3] a version with delegation was investigated). The
restriction consists in constraining internal and external choices in a way that limits the non-determinism
to (internal) output selection.

Definition 2.1 (Session Contracts). i) Let N be a countable set of symbols andN = {a | a∈ N }.
The setRSC of raw session contractsis defined by the grammar in Figure 1, where:

• for external and internal choices, n≥ 1, and ai ∈ N (henceai ∈ N ) for all 1≤ i ≤ n;

• the variable x is asession-contract variableout of a denumerable set; we consider occurrences
of x in σ boundin recx.σ . An occurrence of x inσ is free if it is not bound, and we write
FV(σ) for the set of free variables inσ . σ is said to beclosedwheneverFV(σ) = /0.

Act = N ∪N is the set ofactions.

ii) The setSC of session contractsis the subset of closed raw session contracts such that in
a1.σ1+ · · ·+an.σn and a1.σ1⊕·· ·⊕an.σn, the ai and theai are, in both, pairwise distinct; more-
over, inrecx.σ the expressionσ is not a variable.

As usual, we abbreviatea1.σ1+ · · ·+an.σn by ∑n
i=1 ai .σi , anda1.σ1⊕·· ·⊕an.σn by

⊕n
i=1ai.σi . We also

use the notations∑i∈I ai .σi and
⊕

i∈I ai.σi for finite and non-emptyI . We take the equi-recursive view of
recursion, by equatingrecx.σ with σ{x/recx.σ}.

The trailing1 is normally omitted: for example, we will writea+b for a.1+b.1. Session contracts
will be considered modulo commutativity of internal and external choices.
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The operational semantics of session contracts is given in terms of a labeled transition system (LTS)
σ α
−→ σ ′ whereσ ,σ ′ ∈ SC andα either belongs to a set of actionsAct or is an internal actionτ .

Definition 2.2 (LTS for Session Contracts). We define the labelled transition system(SC,Act,−→) by

a1.σ1⊕·· ·⊕an.σn
τ
−→ ak.σk a.σ a

−→ σ a1.σ1+ · · ·+an.σn
ak−→ σk

where1 ≤ k ≤ n, andσ α
−→ σ ′ is short for(σ ,α ,σ ′) ∈ −→. We shall use−→ as shorthand for

τ
−→. As

usual, we write=⇒ for −→∗ and
α

=⇒ for −→∗ α
−→−→∗ with α ∈ Act.

Notice that reduction is not defined through contextual rules, so reduction only takes place at the
‘top’ level. Thereby, it is impossible forrecx.σ to unfold more than once without consuming a guard
(remember thatσ is not a variable): so recursion is contractive in the usual sense. We will safely assume
that no two consecutiverec binders (as inrecx.recy.σ ) are present in a session contract.

We observe that
α

=⇒ is well defined, in that ifσ ∈ SC andσ α
=⇒ σ ′ (or σ =⇒ σ ′), thenσ ′ ∈ SC.

Session orchestrators As also done in [19] in the context of the theory of contracts,we intend to
investigate the notion of compliance when the interaction between a client and a server is mediated by
an orchestrator. Different from the broad contract setting, the session setting we are in induces some
natural restrictions to the syntax of orchestrators, making it safe to have orchestrators with unbounded
buffers. Moreover, it is possible to check whether any output from the client is eventually delivered
by the orchestrator to the server, as well as whether there might be an infinite interaction which falsely
progresses because it is made only of outputs from the serverto the orchestrator (see Section 4).

The set of actions an orchestrator can perform, that we take from [19], have been informally described
in the introduction.2

It can be reasonably argued that orchestrators must not showany internal non-determinism. Taking
into account now thesession-basedinteractions of our setting, such an assumption should be further
extended, keeping in mind that in a session-based client/server interaction any possible non-determinism
is due only to the internal non-determinism of the two partners. We therefore define oursession-
orchestratorsso as to enforce this point of view. It follows that the only choice we allow in session-
orchestrators (represented by ‘∨’ in expressions likef ∨g) is an external one, and it is necessarily driven
by the internal choice of one of the two partners. This implies that the actions immediately exhibited
by f andg in an orchestrator likef ∨ g must have the samedirection, i.e. must belong to just one of
the two subsets{〈a,ε〉,〈a,a〉 | a ∈ N } or {〈ε,a〉 | 〈a,a〉 | a ∈ N }. Besides, orchestration actions of
the form〈a,ε〉 or 〈ε,a〉 must be used just as prefixesµ in orchestrators likeµ . f . The other ruled-out
cases, like〈c,ε〉. f ′ ∨ 〈ε,b〉.g′ or 〈c,ε〉. f ′ ∨ 〈ε,b〉.g′, would conflict with the session viewpoint or, like
〈c,ε〉. f ′∨〈b,ε〉.g′, would be meaningless according to the syntax of session contracts.

We now formally define orchestration actions by partitioning them into different syntactic categories.

Definition 2.3 (Session-orchestration actions). We defineOrchAct as the set ofsession-orchestration
actionsµ described by the following grammar (where a∈ N anda∈ N ):

µ ::= ιL | ιR | o o ::= 〈a,ε〉 | 〈ε,a〉
ιL ::= 〈a,ε〉 | 〈a,a〉 ιR ::= 〈ε,a〉 | 〈a,a〉

2One could wonder whether just asynchronous orchestration actions can be taken into account, since any〈a,a〉 action can
be safely mimicked by two asynchronous ones, namely〈a,ε〉.〈ε ,a〉 (similarly for 〈a,a〉). A difference in fact would arise only
for what concerns implementation, since the protocol for a synchronous exchange would not involve the use of a buffer, which
is instead necessary for asynchronous actions. Such an implementation issue seems unlikely to be related to our theoretical
treatment. In contrast, we shall point out in Remark 4.5 how implementation related aspects might affect our formalisation.
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We let µ ,µ ′,µ1, . . . range over orchestration actions, andµµµ over both finite sequenceµ1 . . .µn in
OrchAct ∗ and infinite sequenceµ1 . . .µn . . . in OrchAct ∞.
Definition 2.4 (Session Orchestrators). We defineOrch as the set ofsession orchestrators, ranged over
by f,g,h, . . ., described by theclosedterms generated by the following grammar:

f ,g ::= 1

| ιL. f1∨ ·· ·∨ ιL. fn (n≥ 1)
| ιR. f1∨ ·· ·∨ ιR. fn (n≥ 1)
| o. f
| x
| recx. f

We impose session orchestrators to becontractive, i.e. the f inrecx. f is assumed to not be a variable.
The expression1 represents the orchestrator offering no action.o. f offers just the orchestration

action of the categoryo and continues asf , whereasιL. f1 ∨ ·· · ∨ ιL. fn and ιR. f1 ∨ ·· · ∨ ιR. fn offer n
(uni-directional) actions of the syntactical categories,respectively,ιL and ιR. Recursive orchestrators
can be expressed by means of therec binder and recursion variables, in the usual way. As for session
contracts, orchestrators are defined as to have recursion variables guarded by at least one orchestration
action. In the following we shall often refer to ‘session orchestrators’ as simply ‘orchestrators.’ As for
session contracts, we take an equi-recursive point of view,so identifyrecx. f and f{x/recx. f}.

We now define the operational semantics of orchestrators as an LTS.
Definition 2.5 (LTS for Orchestrators). We define the labelled transition system(Orch,OrchAct ,−→) by

µ . f µ
7−→ f

f
µ
7−→ f ′

f ∨g
µ
7−→ f ′

g
µ
7−→ g′

f ∨g
µ
7−→ g′

Given a sequenceµµµ , we write f
µµµ
7−→ whenever f

µ1
7−→ f1

µ2
7−→ ·· ·

µn
7−→ fn if µµµ = µ1 · · ·µn ∈ OrchAct ∗, or

f
µ1
7−→ ·· ·

µn
7−→ fn

µn+1
7−−−→·· · if µµµ = µ1 · · ·µn · · · ∈ OrchAct ∞. We write f 67−→ if there is noµ such that f

µ
7−→.

Definition 2.6 (Orchestrator Traces). Let f ∈ Orch.

1. The setTr( f )⊆ (OrchAct ∗∪OrchAct∞) of traces off is defined by:Tr( f ) = {µµµ | f
µµµ
7−→ }.

2. The setMaxTr( f )⊆ (OrchAct ∗∪OrchAct∞) of maximal traces off is defined by

MaxTr( f ) = {µµµ ∈ Tr( f ) | ∃ f ′ [ f
µµµ
7−→ f ′ 67−→ ] or µ ∈ OrchAct ∞ }

As in [19], we define anorchestrated systemas a triple〈ρ , f ,σ〉 (written ρ ‖ f σ ) representingρ (the
client) andσ (the server) interacting with each other under the supervision of f .
Definition 2.7 (Orchestrated Systems operational semantics). The operational semantics of orchestrated
systems is defined as follows:

ρ −→ ρ ′

ρ ‖ f σ −→ ρ ′ ‖ f σ
σ −→ σ ′

ρ ‖ f σ −→ ρ ‖ f σ ′

ρ α
−→ ρ ′ f

〈α ,α〉
7−−−→ f ′ σ α

−→ σ ′

ρ ‖ f σ
〈α ,α〉
−−−→ ρ ′ ‖ f ′ σ ′

ρ α
−→ ρ ′ f

〈α ,ε〉
7−−−→ f ′

ρ ‖ f σ
〈α ,ε〉
−−−→ ρ ′ ‖ f ′ σ

f
〈ε,α〉
7−−−→ f ′ σ α

−→ σ ′

ρ ‖ f σ
〈ε,α〉
−−−→ ρ ‖ f ′ σ ′

We write
µ

=⇒ for −→∗ ◦
µ
−→ ◦ −→∗, and

µµµ
=⇒ for

µ1
=⇒ ◦·· ·◦

µn
=⇒ (resp.

µ1
=⇒ ◦

µ2
=⇒ ◦·· · ) if µµµ is finite

(resp. infinite). The notationρ ‖ f σ 6−→ will be used when bothρ ‖ f σ 6−→ (according to the first two

rules above) and¬∃µ [ρ ‖ f σ µ
=⇒ ] hold.
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Notice that for the operational semantics of orchestrated systems we have defined labelled reductions
instead of a reduction relation (as done in [19]). We label orchestrated-systems’ transitions by the orches-
tration actions which make them possible, since in our setting we need to check for particular conditions
of orchestrator buffers after the evolution of an orchestrated system. A buffer can be explicitly coupled
with an orchestrator or can be represented implicitly by theactions performed by the orchestrator. The
latter is the choice of [19], that we maintain.

We now define a notion of compliance which is coarser than expected because of possible unfair
behaviour of the orchestrators, which will be refined in Section 4.

Definition 2.8 (Disrespectful and Strict Orchestrated Compliance). An orchestrator f is said to beρ-σ
strict whenever, for any finiteµµµ , f

µµµ
7−→ impliesρ‖ f σ

µµµ
=⇒ . We define:

i) f : ρ ⊣⊣ds σ if f is ρ-σ strict, and for anyµµµ , ρ ′ andσ ′, the following holds:

ρ ‖ f σ µµµ
=⇒ ρ ′ ‖ f ′ σ ′ 6−→ implies ρ ′ = 1.

ii) ρ ⊣⊣ds σ if ∃ f [ f : ρ ⊣⊣ds σ ].

3 Orchestrators Synthesis

In this section we define an inference system⊲inf for (possibly open) orchestrators, deducing judgments
like f : ρ ⊣ds σ , under finitely many assumptions of a certain shape. We first establish that the system
is sound with respect to the⊣⊣ds relation. Then, on the basis of that system, we provide an algorithm
Synth for orchestrator synthesis which, givenρ andσ , returns the set of all the relevant orchestratorsf
such that⊲inf f : ρ ⊣ds σ (namely withΓ = /0) and hence thatf : ρ ⊣⊣ds σ . The algorithm is essentially an
exhaustive proof search for⊲inf that can be shown to be always terminating.

Definition 3.1 (The orchestrators inference system⊲inf). The judgements of the system are expressions
of the formΓ ⊲inf f : ρ ⊣ds σ , whereρ ,σ ∈ SC, f is a (possibly open) orchestrator andΓ is a set of
assumptions of the form x: ρi ⊣

ds σi such that: x:ρ ⊣ds σ ∈ Γ & y:ρ ⊣ds σ ∈ Γ =⇒ x= y (soΓ represents
an injective mapping from variables to expressions of the form ρ ⊣ds σ ). The axioms and rules of the
system are described in Figure 2.

In the inference system of Figure 2 the symbol⊣ds is a relation symbol representing the relation⊣⊣ds as
defined in Definition 2.8. In order to give the intuition behind the inference system, let us briefly comment
on one of the rules, say(CPL∑-L). In case it is possible to show thatf ′ is an orchestrator forfp⊣⊣

ds σ ,
orchestrated compliance can be obtained for∑i∈I ai .ρi ⊣⊣

ds σ by means of〈ap,ε〉. f ′, since the〈ap,ε〉
action satisfies one of theinput requests ais. In casex 6∈ f n( f ′), we get thatrecx.〈ap,ε〉. f ′ = 〈ap,ε〉. f ′.
This means that axiom(AX) has been used in the derivation off ′ and the interaction between∑i∈I ai .ρi

andσ finitely succeeds if the actions described in the branch from(CPL∑-L) to (AX) are performed. In
casex∈ f n( f ′), rule (HYP) has been used forf ′, and a successful infinite interaction is possible between
∑i∈I ai .ρi andσ when the orchestrator repeatedly performs the actions in the branch from(CPL∑-L) to
(HYP), as described by the recursive orchestratorrecx.〈ap,ε〉. f ′.

Definition 3.2 (Judgment Semantics). Let Γ = {x1:ρ1⊣
ds σ1, . . . ,xk:ρk⊣

ds σk}, andθ be a map such that
θ(xi) = fi, where the fis are proper (i.e. closed) orchestrators. Then we define:

θ |= Γ , ∀(xi:ρi ⊣
ds σi) ∈ Γ [θ(xi) : ρi ⊣⊣

ds σi ]

Γ |= f : ρ ⊣ds σ , ∀θ [θ |= Γ =⇒ θ( f ) : ρ ⊣⊣ds σ ]

whereθ( f ) is the result of substituting, for all variables x∈ f , all free occurrences of x byθ(x).
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(AX) : Γ ⊲inf
1 : 1⊣ds σ (HYP) : Γ,x:ρ ⊣ds σ ⊲inf x : ρ ⊣ds σ

(CPL∑-L) :
Γ, x:∑i∈I ai.ρi ⊣

ds σ ⊲inf f ′ : ρp⊣
ds σ

(p∈ I)
Γ ⊲inf

recx.〈ap,ε〉. f ′ : ∑i∈I ai.ρi ⊣
ds σ

(CPL∑-R) :
Γ, x:ρ ⊣ds ∑i∈I ai.σi ⊲inf f ′ : ρ ⊣ds σp

(p∈ I)
Γ ⊲inf

recx.〈ε,ap〉. f ′ : ρ ⊣ds ∑i∈I ai .σi

(CPL
⊕

-R) :
Γ, x:

⊕
i∈I ai .ρi ⊣

ds
⊕

j∈J b j .σ j ⊲inf f j :
⊕

i∈I ai .ρi ⊣
ds σ j (∀ j ∈ J)

Γ ⊲inf recx.
∨

j∈J〈ε,b j〉. f j :
⊕

i∈I ai .ρi ⊣
ds
⊕

j∈J bj .σi

(CPL
⊕

-L) :
Γ, x:

⊕
i∈I ai .ρi ⊣

ds
⊕

j∈J b j .σi ⊲inf fi : ρi ⊣
ds
⊕

j∈J b j .σi (∀i ∈ I)

Γ ⊲inf recx.
∨

i∈I 〈ai ,ε〉. fi :
⊕

i∈I ai .ρi ⊣
ds
⊕

j∈J bj .σi

(CPL
⊕

.∑) :
Γ′ ⊲inf fi : ρi ⊣

ds ∑ j∈J a j .σ j (∀i ∈ H) Γ′ ⊲inf fi : ρi ⊣
ds σi (∀i ∈ K)

(I = H ∪K,K ⊆ J)
Γ ⊲inf recx.(

∨
h∈H〈ah,ε〉. fh)∨ (

∨
k∈K〈ak,ak〉. fk) :

⊕
i∈I ai .ρi ⊣

ds ∑ j∈J a j .σ j

where Γ′ = Γ, x:
⊕

i∈I ai.ρi ⊣
ds ∑ j∈J a j .σ j .

(CPL∑.
⊕
) :

Γ′ ⊲inf f j : ∑i∈I ai.ρi ⊣
ds σ j (∀ j ∈ H) Γ′ ⊲inf f j : ρ j ⊣

ds σ j (∀ j ∈ K)
(J = H ∪K,K ⊆ I)

Γ ⊲inf recx.(
∨

h∈H〈ε,ah〉. fh)∨ (
∨

k∈K〈ak,ak〉. fk) : ∑i∈I ai .ρi ⊣
ds
⊕

j∈J a j .σ j

where Γ′ = Γ, x:∑i∈I ai.ρi ⊣
ds
⊕

j∈J a j .σ j

Figure 2: The inference system⊲inf.

Theorem 3.3(Soundness). If Γ ⊲inf f : ρ ⊣ds σ then Γ |= f : ρ ⊣ds σ .

Proof. (Sketch) It is possible to device a sound and complete system⊲ for judgments of the shapeΓ ⊲
f : ρ ⊣ds σ , where f is a closed orchestrator and whereΓ is a set of assumptions on closed orchestrators
(not on variables as in⊲inf). Now it can be proved that iff is closed andΓ ⊲inf f : ρ ⊣ds σ is derivable,
then for anyθ such thatθ |= Γ we haveθ(Γ) ⊲ f : ρ ⊣ds σ , whereθ(Γ) is the result of substituting all
orchestrator variablesx by θ(x). Then the thesis follows from the soundness of⊲.

The synthesis algorithmSynth is defined in Figure 3. Given a set of assumptionsΓ, a clientρ and
a serverσ , the algorithm computes a set of orchestratorsF such that for allf ∈ F a derivation of
Γ ⊲inf f : ρ ⊣ds σ exists. The algorithm essentially mimics the rules of the inference system of Figure 2.
Intuitively, in case we are looking for orchestrators forρ =

⊕
i∈I ai .ρi and σ =

⊕
j∈J a j .σi under the

assumptionsΓ, we notice that they can be inferred for suchρ andσ in system⊲inf only by means of
rules(CPL

⊕
-R) or (CPL

⊕
-L) and that their form is, respectively,recx.

∨
i∈I 〈ai,ε〉. fi or recx.

∨
j∈J〈ε,a j〉. f j ,

where thefis and thef js are the orchestrators for the pairsρi,σ andρ ,σ j , respectively. This accounts for
the fourth clause in the synthesis algorithm. We can prove the algorithm to be sound.

Lemma 3.4. If Synth(Γ,ρ ,σ) = F 6= /0 then, for all f∈ F , Γ ⊲inf f : ρ ⊣ds σ is derivable.

On the other hand, the algorithm is complete in the followingsense:

Lemma 3.5. If f : ρ ⊣⊣ds σ andSynth( /0,ρ ,σ) terminates then there exists g such that g∈Synth( /0,ρ ,σ).

Theg of the above lemmarepresents f. In particular it could be got bydelayingthe termination of the
algorithm when the first clause is applicable. Moreover, it could be got out off by replacing syncronous
actions by pairs of asyncronous ones (or also by simply adding asyncronous actions). For instance, for
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Synth(Γ,ρ ,σ) =

if x : ρ ⊣ds σ ∈ Γ then {x}

else if ρ = 1 then {1}

else if ρ = ∑i∈I ai .ρi and σ = ∑ j∈J a j .σ j then
let Γ′ = Γ, x:ρ ⊣ds σ in

⋃
i∈I{ recx.〈ai ,ε〉. f | f ∈ Synth(Γ′,ρi ,σ)} ∪

⋃
j∈J{ recx.〈ε ,aj〉. f | f ∈ Synth(Γ′,ρ ,σ j)}

else if ρ =
⊕

i∈I ai .ρi and σ =
⊕

j∈J a j .σi then
let Γ′ = Γ, x:ρ ⊣ds σ in

{ recx.
∨

i∈I 〈ai ,ε〉. fi | fi ∈ Synth(Γ′,ρi ,σ)} ∪ { recx.
∨

j∈J〈ε,a j〉. f j | f j ∈ Synth(Γ′,ρ ,σ j)}

else if ρ =
⊕

i∈I ai .ρi and σ = ∑ j∈J a j .σ j then
let Γ′ = Γ, x:ρ ⊣ds σ in

{ recx.(
∨

h∈H〈ah,ε〉. fh) ∨ (
∨

k∈K〈ak,ak〉. fk)
| I = H ∪K,K ⊆ J, fh ∈ Synth(Γ′,ρh,σ), fk ∈ Synth(Γ′,ρk,σk)}

∪
⋃

j∈J{ recx.〈ε,a j〉. f | f ∈ Synth(Γ′,ρ ,σ j }

else if ρ = ∑i∈I ai .ρi and σ =
⊕

j∈J a j .σ j then
let Γ′ = Γ, x:ρ ⊣ds σ in

{ recx.(
∨

h∈H〈ε ,ah〉. fh) ∨ (
∨

k∈K〈ak,ak〉. fk)
| J = H ∪K,K ⊆ I , fh ∈ Synth((Γ′,ρ ,σh), fk ∈ Synth(Γ′,ρk,σk)}

∪
⋃

i∈I{ recx.〈ai ,ε〉. f | f ∈ Synth(Γ′,ρi ,σ)}

else /0

Figure 3: The algorithmSynth.

ρ = recx.a.x andσ = recx.a.x the orchestratorf = 〈a,ε〉.〈ε,a〉.recx.〈a,a〉.x correctly mediates between
ρ andσ , the algorithm terminates, butf 6∈ Synth( /0,ρ ,σ). On the other hand,g= recx.〈a,a〉.x belongs
to Synth( /0,ρ ,σ) and it is related tof in the sense above. It can be shown, besides, that iff is respectful
in the sense of Sect. 4 below, there exists a respectfulg in Synth( /0,ρ ,σ).

It remains to show thatSynth is terminating:

Lemma 3.6. For all Γ, ρ andσ , the execution ofSynth(Γ,ρ ,σ) terminates.

Proof. (Sketch) The proof is based on the fact that all session contracts in the recursive calls ofSynth
are a sub-expression of eitherρ or σ or of a session contract in a judgment inΓ (which is finite). Since
session contracts are regular trees, their sub-expressions are a finite set, so that the testx:ρ ⊣ds σ ∈ Γ
(wherex is any variable) at the beginning ofSynth cannot fail infinitely many times.

Corollary 3.7. The relation⊣⊣ds is decidable; moreover ifρ ⊣⊣ds σ then it is possible to compute a setF

of orchestrators forρ andσ

Recall that the computed orchestratorsrepresentall the possible orchestrators, in the sense of the
discussion after Lemma 3.5.

4 Respectfulness

The definition of orchestrators implies they have bufferingcapabilities. The sort of buffer taken into
account in [19], as well as by us, is made of a number of bi-directional buffers (where only a finite
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subset is actually non empty), one for each possible name. A bi-directional buffer is actually made of
two distinct buffers, one containing the messages receivedfrom the client that have to be delivered to the
server, and the other one containing the messages received from the server that should be delivered to the
client.

In [19] orchestrators are restricted to have bounded buffering capabilities and such a restriction is
used in the proofs of several properties concerning contract orchestrators. In our setting we can eliminate
that restriction, so allowing more client/server pairs to be compliant, like for instancerecx.a.x and
recx.b.a.x, and the example in the introduction. We will now formalise the notion of buffer.

Definition 4.1 (Buffers). 1. A bi-directional bufferB is a set of the form{caasa | a ∈ N } where,
for any a∈ N , ca,sa ∈ Z. The ca in caasa represents the number of a’s in the part of the buffer
containing messages sent by the client to the server. The sa in caasa represents the number of a’s in
the part of the buffer containing messages sent by the serverto the client.

2. We define:̃/0= {0a0 | a∈ N } and

⌊+aB = (B\{caasa })∪{ca+1asa }

⌊−aB = (B\{caasa })∪{ca−1asa }

B+
a⌋ = (B\{caasa })∪{caasa+1}

B−
a⌋ = (B\{caasa })∪{caasa−1}

3. We denote by|B|a the number of a’s in the server-to-client part of the buffer,i.e. |B|a = sa and
similarly for the client-to-server part, i.e.a|B|= ca.

4. The state of a bufferB after an orchestration actionµ will be denoted byBµ , defined by

B〈a,ε〉 = ⌊−aB

B〈a,ε〉 = ⌊+aB
B〈α ,α〉 = B

B〈ε,a〉 = B−
a⌋

B〈ε,a〉 = B+
a⌋

5. ByBµµµ we denote the bufferB after the sequenceµµµ of orchestration actions.

In Definition 2.8 we considered the relation⊣⊣ds, which we have studied so far. This is however
much weaker than expected, and it is time to face the issue. Consider the simple orchestrated system

a.b‖ f a.c.d where f = 〈a,a〉.〈b,ε〉.1.
It is easy to check thatf : a.b⊣⊣ds a.c.d since f is strict for the given client/server pair and

a.b‖ f a.c.d
µµµ

=⇒ 1‖1 c.d 6−→ , whereµµµ = 〈a,a〉〈b,ε〉. It is definitely true that all the client’s “requests”
have been satisfied, but not all by the server! The actionb of the client has been taken care of exclusively
by the orchestrator, which in that case has not acted simply as a mediator, but has effectively participated
to the completion of the client’s requests.

So, in order to strengthen Definition 2.8 (i), in caseρ ′ ‖ f ′ σ ′ 6−→ , we have to impose some conditions
on the client-to-server buffer associated tof ′; in particular, that it should be empty. Of course, a similar
condition must hold also for infinite interactions; this implies that in an infinite interaction, for any
possible name, saya, used by the orchestrator, the latter cannot indefinitely perform input actions for
a from the client (even if interspersed with actions for othernames) without ever delivering ana to
the server. We must therefore forbid a client likerecx.a.c.x to be compliant with the serverrecx.c.x by
means of the orchestratorrecx.〈a,ε〉.〈c,c〉.x. Orchestrated finite and infinite interaction sequences which
do not correspond to unwanted situations like those just sketched will be calledclient-respectful.

Even if the notion of compliance enforces the sense of the bias towards the client (any client request
must be eventually satisfied by the server), some conditionsneed to be imposed on the part of interactions
on behalf of the server. In fact, we wish to prevent a server tobe compliant with a client by means of an
orchestrator that, from a certain moment on, interacts infinitely many times with the server only, like in
the orchestrated system
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a.b‖ f recx.c.b.x where f = 〈a,ε〉.recx.〈ε,c〉.〈ε,b〉.x
We wish to prevent this kind of infinite interaction that we dub definitely server-inputted. Notice that,
however, we can permit interactions in which the orchestrator can perform the input of somea from the
server infinitely many times, without ever performing an output of a to the client, like it happens for
wind in the example in the introduction.

We observe that the problem – whether an orchestrator will ever engage in any of the aforementioned
pathological interactions – might well be undecidable for contracts in general; indeed, it shares similari-
ties with, for example, termination of two-counter machines [17]. However, we stress that we are in the
restricted setting of session contracts, which suffices to make such properties decidable.

Among the properties we have to take care of, one is that in an interaction sequence there cannot exist
an orchestrator action removing an element from an empty buffer, i.e. asoundsequence never sends an
elementa to a server or to a client if thea has not been previously received. We call the sum of all the
above propertiesrespectfulness.

Definition 4.2. Given µµµ ∈ OrchAct ∗ ∪OrchAct ∞, we definea⇃µµµ , its left-restriction to a name a, as
follows (λ is the empty sequence):

a⇃λ = λ ,
a⇃(µµµµ ′′′) = µ a⇃µµµ ′′′, if µ ∈ {〈ε,a〉,〈a,ε〉},
a⇃(µµµµ ′′′) = a⇃µµµ ′′′ otherwise.

Definition 4.3 (Respectful sequences and orchestrators). Letµµµ ∈OrchAct∗∪OrchAct∞ andµ ∈OrchAct .

a) Given S⊆ OrchAct , we sayµµµ to bedefinitely-S whenever:

∃k ∀m≥ k [ the m-th element ofµµµ belongs to S];

For sets that are singletons we write ‘definitely-µ ’ instead of ‘definitely-{µ }.’

b) We sayµµµ to be asound sequencewhenever:

∀a∈ N ∀n≤ |µµµ | [a| /̃0µ1 · · ·µn | ≥ 0 and | /̃0µ1 · · ·µn |a ≥ 0]

c) We sayµµµ to beclient-respectfulsequence whenever, for any a∈ N :

a⇃µµµ is finite anda| /̃0µµµ |= 0 or a⇃µµµ is infinite and non-definitely-〈a,ε〉

d) We sayµµµ to benon-definitely server–inputtedwhenever:

µµµ is infinite =⇒ µµµ is non-definitely-{〈ε,a〉 | a∈ N }

e) We sayµµµ to berespectfulwheneverµµµ is sound, client-respectful and non-definitely server-inputted.

f) We say that an orchestrator f isrespectfulwhenever everyµµµ ∈MaxTr( f ) is so.

We will look now at a few examples in order to get a better intuition about the above definition.

Example 4.4. • The finite sequence〈a,ε〉.〈ε,b〉.〈ε,a〉 is not respectful since it is not sound. In fact,
for the name b, we have that| /̃0.〈a,ε〉.〈b,ε〉 |b =−1< 0.

• The sequence〈a,ε〉.〈b,ε〉.〈ε,a〉 instead, is sound, but nonetheless it is not client-respectful, since
it is not infinite and for the name b we haveb| /̃0〈a,ε〉.〈b,ε〉.〈ε,a〉 |= 1 6= 0.

• The orchestrator f= 〈c,c〉.recx.(〈a,a〉 ∨ 〈c,ε〉.〈b,b〉.x) is not respectful since it is not client-
respectful. In fact, for the sequenceµµµ = 〈c,c〉.〈c,ε〉.〈b,b〉.〈c,ε〉.〈b,b〉 · · · ∈MaxTr( f ) and the name
c, we have thatc⇃µµµ is infinite andc⇃µµµ = 〈c,ε〉.〈c,ε〉.〈c,ε〉 · · · is definitely-〈c,ε〉. In fact, from the
very first element on it is made of〈c,ε〉 actions.
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• The orchestrator f= 〈c,c〉.recx.(〈a,a〉 ∨ 〈ε,b〉.〈ε,c〉.x) is not respectful since it is not definitely
server-inputted. In fact, the infinite sequenceµµµ = 〈c,c〉.〈ε,b〉.〈ε,c〉.〈ε,b〉.〈ε,c〉 · · · ∈ MaxTr( f )
is definitely-{〈ε ,a〉 | a ∈ N }. The orchestratorf in the introduction, instead, is non-definitely
server-inputted, and also respectful, as a matter of fact.

Remark 4.5. By Definition 4.2, the sequencea⇃µµµ in Definition 4.3(c) cannot contain synchronous or-
chestration actions like〈a,a〉. Hence, for example, the orchestrator g= 〈a,ε〉.recx.〈a,a〉.x is not client-
respectful, and so it is not respectful at all. This is because the first a coming from the client will never
be delivered to the server since any subsequent outputa will be paired with a further input of a. This
might be irrelevant when distinct occurrences of the same message are indistinguishable, but in general
the number of input-output actions matters.

On the other hand forcing the orchestrator to immediately forward a message is a desirable capabil-
ity, which would be definitely lost by equating〈a,ε〉.〈ε,a〉 to 〈a,a〉, and by ruling out the latter.

We can now properly define the full notion of compliance and characterise it.

Definition 4.6 (Orchestrated Session Compliance). i) We say that a clientρ is compliant with a server
σ through the orchestration of f , and denote this by f: ρ ⊣⊣ σ , whenever

a) ρ ‖ f σ µµµ
=⇒ ρ ′ ‖ f ′ σ ′ 6−→ implies ρ ′ = 1 and µµµ is respectful, and

b) ρ ‖ f σ µµµ
=⇒ with µµµ ∈ OrchAct ∞ implies µµµ is respectful.

ii) We writeρ ⊣⊣ σ whenever there exists an orchestrator f such that f: ρ ⊣⊣ σ .

Notice that we cannot define orchestrated compliance by simply imposing f to be respectful in
Def. 4.6(i), since that would prevent the possibility ofa be compliant witha through the mediation
of the orchestrator〈a,a〉∨ 〈ε,b〉. This orchestrator is not respectful, but its sequences of actions in any
possible orchestration betweena anda are respectful.

We can show that, if compliance could be obtained by means of anon-respectful orchestrator, it is
always possible to get it through a respectful one. Besides,we can show the correspondence between⊣⊣
and⊣⊣ds.

Proposition 4.7. i) f : ρ ⊣⊣ σ =⇒ ∃ f ′ [ f ′ : ρ ⊣⊣ σ such that f′ is ρ-σ strict].

ii) f : ρ ⊣⊣ σ and f isρ-σ strict ⇔ f : ρ ⊣⊣ds σ and f is respectful.

iii) ρ ⊣⊣ σ ⇔ ∃ f [ f : ρ ⊣⊣ds σ where f is respectful].

In order to show decidability, we provide a characterisation of respectfulness based on the notion of
buffer-aware trees and its related labelings below.

Definition 4.8 (Buffer-aware trees off ). a) Let a∈ N . We define thebuffer-awarea-tree of an orches-
trator f , denoted bycTsa( f ), as the tree defined by induction in Figure 4. The edges of the tree have a
left- and a right-weight denoting, respectively, the increment of the client-to-server and of the server-
to-client buffer for the name ‘a’ caused by the orchestration actions performed by f .

Given an edge e of a buffer-aware a-tree t, we denote is left (resp. right) weight bylwt(e) (resp.rwt(e)).

b) We define thebuffer-aware∗-tree of an orchestratorf , denoted bycTs∗( f ), as the tree with the
same nodes and edges as anycTs

a( f ), but such that the left (resp. right) weight of an edge e is
∑a∈N lw

cTs
a( f )(e) (resp.∑a∈N rwcTs

a( f )(e) ).

Note that the left and right weights of the edges of a buffer-aware ∗-tree of an orchestratorf are
either 0,−1, or+1.
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cTs
a(1) = 1 cTs

a(x) = x

cTs
a(〈ε,a〉. f ′) =

◦
0 | -1

cTs
a( f ′)

cTs
a(〈a,ε〉. f ′) =

◦
+1 | 0

cTs
a( f ′)

cTs
a(〈a,ε〉. f ′) =

◦
-1 | 0

cTs
a( f ′)

cTs
a(〈ε,a〉. f ′) =

◦
0 | +1

cTs
a( f ′)

cTs
a(µ . f ′) =

◦
0 | 0

cTs
a( f ′)

if µ 6∈ {〈ε,a〉,〈a,ε〉,〈a,ε〉,〈ε,a〉}

cTs
a( f1∨ . . .∨ fn) =

◦
� . . .�

cTs
a( f1) . . .cTs

a( fn)
cTs

a(recx. f ′) =
recx.
|

cTs
a( f ′)

Figure 4: Buffer-awarea-tree

Definition 4.9 (Buffer-labelling of cTsa( f )). We define thebuffer-labelling ofcTsa( f ) by labelling its
nodes with left and right labels as follows: given a node N andthe path P incTsa( f ) from the root to N,
we left-label N with the sum of all the left-weights of the edges in P, whereas we right-label N with the
sum of all the right-weights of the edges in P.

We now provide characterisations for the properties defining respectfulness.

Definition 4.10 (Sound buffer-labelling). The buffer-labelling ofcTsa( f ) is soundwhenever

a) there is no negative left-label and no negative right-label and

b) for any leaf x and correspondingrecx. node, if k is the left (resp. right) label of x and h is the left
(resp. right) label ofrecx., then: k−h≥ 0.

Proposition 4.11. f is sound ⇔ for any a∈ N , the buffer-labelling ofcTsa( f ) is sound.

Proof. (⇐) By the labelling, it is impossible to get a non-client-respectful sequence out off .
(⇒) By contraposition; assume that for a nameb∈ N , the buffer-labelling ofcTsb( f ) be unsound. Then
we have two cases to consider:

(a) There is a negative label. We then get immediately an unsound sequence.

(b) There exists a leafx and its correspondingrecx. node, wherek is the left(or right-)-label ofx andh
is the left-(or right-)label ofrecx., s.t. k−h< 0. It is immediate to get an unsound sequence.

We say that a nodegets to1 whenever its subtree contains a1 node.

Definition 4.12 (Client-respectful buffer-labelling). The buffer-labelling ofcTsa( f ) is client-respectful
whenever

a) any1 node is left-labelled with0;

b) for any leaf x and corresponding node of its binderrecx., if k is the left-label of x and h is the left-label
of recx., then
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1) if therecx. node gets to1, then h= k;

2) otherwise, if all the left-labels of the edges from x torecx. are0 then h= 0;

c) for any path from a leaf x to its correspondingrecx. node, either no edge is right-weighted with+1
or there is at least an edge with right-weight−1.

Proposition 4.13.
f is client-respectful ⇔ for any a∈ N , the buffer-labelling ofcTsa( f ) is client-respectful.

Proof. (⇐) By the labeling rule it is impossible to get a non client-respectful sequence out off . For
finite sequences this impossibility is guaranteed by clauses (a) and (b) of Definition 4.12, for infinite
ones by clause (c).
(⇒) By contraposition; assume that for a nameb ∈ N , the buffer-labelling ofcTsb( f ) be non-client-
respectful. We consider the four possible cases:

1. A label of a1 leaf is not 0. In that case we immediately get a finite sequenceout of f which is
non-client-respectful.

2. There is a nodex labelled withk and its corresponding noderecx. gets to1 and it is labelled with
h, with k 6= h. Then the sequence out off corresponding to going torecx., then from noderecx.
to x a non negative number of timesn and finally to the1 node cannot be client-respectful, since
at the end the client-to-server buffer forb would haven∗ (h−k) elements in it.

3. There is a nodex labelled withk, its corresponding noderecx. does not get to1, all the left-labels
of the edges fromx to recx. are 0 andh= 0. In that case the traceµµµ corresponding to the infinite
path starting from the root and then keeping indefinitely on passing throughrecx. andx is such
thatb⇃µµµ is finite and| /̃0(b⇃µµµ)| 6= 0.

4. there exists a path from a leafx to its correspondingrecx. such that there are some right-weighted
edges right-weighted with+1 and no edge with right-weight−1. Then it is immediate to get
an infinite definitely server-inputted sequence out off which is definitely-〈b,ε〉 and hence not
client-respectful.

Definition 4.14 (Non definitely server-inputted∗-tree). Given an orchestrator f , its∗-tree cTs
∗( f ) is

non-definitely server-inputtedwhenever, for any path from a leaf x to its correspondingrecx. node,
either no edge is right-weighted with+1 or there is at least an edge with right-weight−1.

Proposition 4.15. f is not definitely server-inputted⇔ cTs
∗( f ) is non-definitely server-inputted.

Proof. (⇐) By the labelling it is impossible to get a definitely server-inputted sequence out off .
(⇒) By contraposition; assume thatcTs∗( f ) be definitely server-inputted. So there exists a path from a
leaf x to its correspondingrecx. such that there are some right-weighted edges right-weighted with+1
and no edge with right-weight−1. Then it is immediate to get a definitely server-inputted sequence out
of f .

Theorem 4.16.Orchestrator respectfulness is decidable.

From the above result and from decidability of⊣⊣ds ( Corollary 3.7) we can get decidability of⊣⊣. The
algorithm to decide whetherρ ⊣⊣ σ will first computeF = Synth( /0,ρ ,σ); then if F 6= /0 it suffices to
check whether there is a strict and respectfulf ∈ F , which is a decidable problem by the above.

Theorem 4.17.Givenρ andσ , it is decidable whetherρ ⊣⊣ σ .
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We conclude by observing that in [19] the lack of unbounded buffering capabilities prevents or-
chestrators to be used to ensure client compliance with a server that might send an unbounded number
of unnecessary outputs. To let such sort of interaction possible, in [2] the notion ofskp-compliance
(dubbed⊣skp) was investigated for session contracts, where a client is compliant with a server whenever
all its requests can be satisfied thanks to the possibility ofdiscarding a (possibly unbounded) number
of unnecessary server outputs. Interactions of this sort can actually be carried out by means of our ses-
sion orchestrators, since it is possible to prove thatρ ⊣skp σ implies ρ ⊣⊣ds σ . In the example in the
introduction, in fact, thewind information is unbounded and “discarded” by the orchestrator.

5 Related and future work

The notion of compliance naturally induces a substitutability relation on servers that may be used for
implementing contract-based query engines (see [19] for a detailed discussion). Hence it seems worth-
while to investigate the session sub-contract relation induced by our orchestrated compliance on session
contracts. Whereas server substitutability is at the core of the results in [19], we deem it relevant to
investigate alsoclient substitutability, in the style of what was done in [1, 3] for session contract and in
[10] for the more general notion of contract.

An approach to the formal description of service contracts in terms of automata has been recently
developed in [6]. The notion ofcontract automatonis related to that ofcontractas well as ofsession
contract. Besides, the notion ofcontract agreementin [6] somewhat resembles that ofcompliance. In
the framework of that paper, orchestrators are synthesisedto enforce contract composition to adhere to
the requirements for contract agreement. Even if the authors of [6] work on the overall satisfaction in
a multiparty composition of principals, it is definitely worthwhile, as a future investigation, to study
the relation between the notion of orchestration, as developed in [19] and in the present paper, and the
approach of [6], which in turn has been related in [7] to the model of choreography of communicating
finite state machines (CFMS) [11]. For what concernssession contractsin particular, the investigation
of the correspondence with the above mentioned formalisms could start from the result concerning the
correspondence ofbinary session types with a particular two-communicating-machines subclass (see
[15] for references). Such a correspondence between session types and communicating machines has
been pushed further to the multiparty setting in [15].

Many properties of the model of CFSM which are untractable ceases to be so when Bags, instead
of - or together with - FIFO queues are taken into account [14]. The similarity of contracts and session
contracts with the CFSM model suggests to investigate the use of bags for session-contract interactions
to reduce decidability problems in our context to problems in the CFSM model with bags. What does a
bag correspond to in our context is however not immediate to device. In fact, by putting a bag in between
a.b anda+b would result in a number of possible non-deterministic evolutions of the system: as soon
asa is in the bag, it could be used as input for the server; or, in case botha andb get into the bag, the
server could non-deterministically choose amongst them; etc. Such a behaviour of the system, however,
goes far beyond the session setting we are in, where non-determinism is restricted to occur only inside
the client and server.

Session contracts have been also investigated in papers like [4, 5] where, overloading the name, they
also have been dubbedsession types. In [4] the authors establish a relation between session contracts
and a model based on game-theoretic notions, showing that compliance corresponds to the existence of
particular winning strategies. It should be interesting toinvestigate the meaning and role of the notion of
orchestration in such a game-theoretical setting.
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