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Abstract 1 

The growing interest for peptide therapeutics calls for new strategies to determine the physico-2 

chemical properties responsible for the interactions of peptides with the environment. This study 3 

reports about the lipophilicity of two fragments of the amyloid -peptide, A25-35 and A12–28 4 

Firstly, computational studies showed the limits of log D7.4
oct in describing the lipophilicity of 5 

medium-sized peptides. 6 

Chromatographic lipophilicity indexes (expressed as log k’, the logarithm of the retention factor) 7 

were then measured in three different systems to highlight the different skills of A25-35 and A12–28 in 8 

giving interactions with polar and apolar environments. CD studies were also performed to validate 9 

chromatographic experimental conditions. 10 

Results show that A12–28 has a larger skill in promoting hydrophobic and electrostatic interactions 11 

than A25-35. This finding proposes a strategy to determine the lipophilicity of peptides for drug 12 

discovery purposes but also gives insights in unraveling the debate about the aminoacidic region of 13 

A responsible for its neurotoxicity. 14 

 15 

1. Introduction 16 

In recent years, peptide-based drug discovery has gained a lot of relevance because of good safety, 17 

tolerability and efficacy of peptides. Consequently, there is an important focus on new approaches 18 

to improve the use of peptides in pharmaceutical research (Otvos and Wade, 2014) (Fosgerau and 19 

Hoffmann, 2015).  20 

Peptides behavior depends on their skill to interact with the environment (e.g. membranes and 21 

receptors) and on their aggregation properties. For instance, the amyloid β-peptide (Aβ, a peptide 22 

composed of 39−42 amino acids), is the most abundant component of -amyloid plaques related to 23 

Alzheimer’s disease (AD) (Hardy, 2009). Plaques formation is probably due to the skills of Aβ to 24 

form aggregates through the interaction with biomembranes (Wood et al., 2003)(Meier and Seelig, 25 

2008)(Dies et al., 2014). 26 

Lipophilicity studies provided a lot of information in the understanding of the interaction mechanisms 27 

between classical drugs (i.e. small organic compounds) and the environment (Testa et al., 1996) but 28 

poor information is reported in the literature about peptides.  29 

We recently undertook a study to predict lipophilicity of small peptides (maximum length = 6 30 

aminoacids) (Visconti et al., 2015). For these molecules, we found that they could be considered 31 

standard organic structures. However, the most relevant peptides in drug discovery are larger than six 32 

aminoacids and conformational effects are expected to strongly influence their behavior in the human 33 

body. 34 
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In this study, we characterize the lipophilicity of two flexible peptides of 11 and 17 aminoacids, 1 

respectively. In particular, we unravel the skills of two A fragments, A25–35 and A12–28 in 2 

undertaking hydrophobic and polar interaction (the two main components of lipophilicity (El Tayar 3 

et al., 1992)) with polar and apolar environments. It should be recalled that shorter sequences of 4 

Aare often used as models of the full-length amyloid peptide, since they are easier to handle.  5 

Computational studies were performed to highlight the limits of log D7.4
oct for characterizing the 6 

lipophilicity of the two medium-sized peptides. 7 

Then we measured three chromatographic indexes (expressed as log k’) using one reversed-phase 8 

(RP) and two Hydrophilic Interaction Chromatography (HILIC) (Buszewski and Noga, 2012) 9 

systems. The idea is to use two distinguished sets of chromatographic systems to catch the different 10 

skills of the two peptides to engage hydrophobic (RP) and electrostatic interactions (HILIC) with 11 

different environments. The determination of lipophilicity indexes by chromatography is supported 12 

by a number of advantages (e.g. small amounts of material are required, impurities can be separated 13 

during the measurements, there is no need for concentration determination, the process is fast and 14 

can be easily automated) (Poole and Poole, 2003).  15 

CD studies were undertaken to validate some experimental settings used in the chromatographic 16 

determinations. 17 

 18 

2. Material and methods 19 

 20 

2.1 Materials 21 

A12–28 and A25–35 were purchased from Polypeptide Laboratories France (Strasbourg, France, 22 

www.polypeptide.com). 23 

1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP), acetonitrile (ACN), dimethylsulfoxide (DMSO) and 24 

ammonium acetate were purchased from Alfa Aesar GmbH&Co (Karlsruhe, Germany, 25 

www.alfa.com).  26 

Deionized water was used throughout. 27 

 28 

2.2 Circular Dichroism 29 

Solutions of A12–28 and A25–35 in the concentration range 30 - 400μM, both in pure HFIP and 10 30 

mM PBS buffer at pH 7.4 + 10% HFIP, were scanned in the far-UV spectral range (four 31 

accumulations) over the wavelength region 180 - 260 nm with a scanning speed of 50 nm/min using 32 

a Jasco J-815 spectropolarimeter equipped with a Xe arc lamp. Spectra were recorded in a quartz 33 
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circular cuvette (optical path length 0.1 cm). Buffers baselines were subtracted for each 1 

measurement. 2 

Secondary structure was estimated from the mean residue ellipticity [θ] with the CDNN CD spectra 3 

deconvolution software (Version 2.1, Copyright (C) 1997 Gerald Böhm). 4 

 5 

2.3 Chromatography 6 

The mobile phase consisted of 20 mM ammonium acetate buffer at pH 7.0 and acetonitrile in 7 

varying proportions. For all mobile phases, the given pH is the pH of the buffer before the addition 8 

of organic modifier.  9 

The flow rate was 1 mL/min. The solvent front were used to determine t0, i.e., the dead time in RP 10 

systems, toluene was used to determine t0 under HILIC conditions.  11 

HFIP solutions of both peptides were prepared (concentration range of 50-100 g/mL) and injected 12 

in the HPLC systems. The choice of HFIP was made on the basis of preliminary tests, which 13 

evidenced the modest solubility of the two peptides in phosphate buffered saline (PBS) and DMSO. 14 

Conversely, they were largely soluble in HFIP. 15 

The retention time (tR) were measured on three columns: 1) PLRP-S polymeric reversed phase 16 

column (Agilent, 5cmx4.6mm, 5m packing, 100Å pore size); 2) ZIC-HILIC column 17 

(sulfoalkylbetaine zwitterionic phase on a silica gel support, 10 cm × 4.6 mm, 5μm packing, 200Å 18 

pore size) from SeQuant (Umeå, Sweden) and 3) ZIC-cHILIC column (phosphorylcholine 19 

zwitterionic phase on a silica gel support, 10 cm × 4.6 mm, 3μm packing, 100Å pore size) from 20 

SeQuant (Umeå, Sweden). Measures were performed in triplicate. 21 

The chromatographic indexes are expressed as log k’ (Eq. 1) 22 

 23 

log k’ = log ((tR - t0)/t0) Eq. 1 24 

 25 

where k’ is the retention factor, tR is the retention time and t0 is the dead time. 26 

A HPLC Varian ProStar instrument equipped with a 410 autosampler, a PDA 335 LC Detector and 27 

Galaxie Chromatography Data System Version 1.9.302.952 was used. 28 

2.4 Ionization and calculated lipophilicity 29 

Ionization constants were calculated with MoKa (Version 2.5.4, http://www.moldiscovery.com); log 30 

D7.4
oct values were calculated with a model recently published by some of us (Visconti et al., 2015). 31 

 32 
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2.5 Molecular Dynamics simulations 1 

All simulations and analysis described below were done using the AMBER14 package that also 2 

includes the trajectory analysis software AmberTools and the module xLEaP used to prepare 3 

starting structures (Case et al., 2012). In particular, MM minimizations and MD simulations were 4 

performed using sander and pmemd modules, respectively. 5 

The starting structures of Aβ12−28 and Aβ25-35 were obtained from the crystallographic structure of 6 

Aβ1−42 (PDB id: 1IYT) after deleting unnecessary aminoacids. MD simulations were performed 7 

with constant protonation states for titrable residues. Peptides were modeled in the electrical state 8 

dominating at pH = 7.0. Histidine was considered neutral and the -tautomer was used in the 9 

simulations according to default AMBER choice and to MoKa prediction.  10 

Input files were prepared submitting all starting structures to the xLEaP module. The ff99SB force 11 

field was employed. 12 

During the chromatographic experiments, peptides experience different environments that depend 13 

on the eluent composition. To obtain reliable simulations we tried to approach the experimental 14 

conditions used to register chromatograms. In particular, we considered two limit conditions. In the 15 

first, epsilon was fixed at 78.5 to mimic an aqueous environment. The second epsilon was set at 16 

37.5 to mimic acetonitrile. Solvation effects for the investigated solvents (water and acetonitrile) 17 

were incorporated using the pairwise Generalized Born model with parameters described by Tsui 18 

and Case (Tsui and Case, 2000). This model uses the default radii set up by xLEaP. 19 

Before launching MD simulations, all atoms were optimized without any constrain (500 cycles of 20 

steepest descent followed by 500 cycles of conjugate gradient minimization). After minimization, 21 

all systems were gradually heated from 0 to 325 K with a time step of 0.5 fs over a period of 35 ps. 22 

The temperature plot was used to confirm the attainment of the equilibrium of the heating phase. 23 

Finally, 50 ns MD simulations were performed with a time step of 2 fs. During the MD simulations, 24 

the atom coordinates were saved every 500 steps. All the covalent bonds involving hydrogen atoms 25 

were constrained with the SHAKE algorithm and the Berendsen thermostat was used, both as 26 

implemented in AMBER14. For temperature control a heat bath coupling of 1.0 ps and 0.5 ps were 27 

used during heating and MD simulation, respectively. 28 

The MD Movie tool of USCF Chimera (Version 1.10, http://www.cgl.ucsf.edu/chimera) was used to 29 

cluster the trajectories based on pairwaise best-fit root-mean-square deviations (RMSDs) calculated 30 

on the backbone atoms and to identify a representative frame for each cluster. For any peptide we 31 

considered those clusters that taken together include about 80% of the entire population of 32 

conformers. 33 
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For validation purposes it should be mentioned that the most stable structure of A1–42 obtained with 1 

our approach (data not shown) is in agreement with that reported in the literature (Kobayashi and 2 

Takahashi, 2010). This result represents therefore an indirect validation of the applied 3 

computational method.  4 

Processing was done on a two 8 cores Xeon E5 at 3.3GHz CPUs and 128GB of RAM. 5 

 6 

3. Results and discussion 7 

 8 

3.1 Ionization 9 

The 2D chemical structures of Aβ12−28 an Aβ25-35 are shown in Figure 1. A12–28 has five basic 10 

centers and three acidic centers. All but histidine residues are fully ionized at physiological pH (in 11 

blue basic centers and in red acidic groups, Figure 1). Aβ25-35 bears two basic (in blue) and one 12 

acidic (in red) groups, completely ionized at pH = 7.0. Summing up, at pH = 7.0 the net charge of 13 

Aβ12−28 is 0 (three positive and three negative charges), whereas the net charge of Aβ25-35 is +1 (two 14 

positive and one negative charges). 15 

 16 

Please insert Figure 1 here 17 

 18 

3.2 Lipophilicity 19 

The most commonly used measure of lipophilicity is log D7.4
oct. Calculation of Log D7.4

oct of the 20 

two peptides could be determined using a tool recently reported in the literature by some of us 21 

(Visconti et al., 2015). Since the method uses as an input the 3D structure of the investigated 22 

peptide, MD simulations of the monomeric form of A12–28 and A25–35 were performed in two 23 

environments (polar and apolar, see the MD simulations Section for more details) and some 24 

representative conformers were identified through cluster analysis. In particular, 11 conformers 25 

were retained for A12–28 in both environments whereas 12 and 13 conformers were considered for 26 

A25–35 in apolar and polar media, respectively. 27 

All the representative conformations were submitted to the aforementioned tool (Visconti et al., 28 

2015) to predict log Doct
7.4. Results are summarized in Figure 2.  29 

 30 

Please insert Figure 2 here 31 

 32 
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Predicted log Doct
7.4 in Figure 2 outline that both peptides are very hydrophilic and thus their log 1 

Doct
7.4 may be experimentally inaccessible through standard experimental techniques (e.g. shake-2 

flask, potentiometry). Please note that when calculated log D7.4
oct are considered, caution should be 3 

exercised since the model on which the prediction is based was developed using a dataset of small 4 

peptides (Visconti et al., 2015).  5 

Moreover, data in Figure 2 show that log Doct
7.4 is strongly dependent on conformational changes in 6 

both environments (apolar=yellow; polar=cyan). This represents a major issue in the prediction of 7 

log Doct
7.4 of investigated peptides but it is also expected that this result could be generalized and 8 

extended to most medium-sized peptides.  9 

The limits of prediction called for experimental determinations. In particular, we measured the 10 

lipophilicity of A12-28 and A25-35 using a set of chromatographic lipophilicity indexes. 11 

The determination of chromatographic lipophilicity indexes is widely applied to small organic 12 

molecules. The application to peptides is less common and thus some precautions were taken. In 13 

particular, since peptides could form aggregates, HFIP solutions of both samples were injected in 14 

the HPLC systems (see CD measurements).  15 

Three chromatographic systems which show a different predominant mechanism of interaction with 16 

the solutes (Ermondi and Caron, 2012) were selected. Their main features are reported in Table 1.  17 

The PLRP-S is a reversed phase (RP) system and thus solutes retention is mostly due to 18 

hydrophobic interactions between the solutes and the system (Ermondi and Caron, 2012). On the 19 

contrary, the HILIC systems, which are characterized by zwitterionic stationary phases, are 20 

expected to mainly describe electrostatic, polar and hydrogen bond (HB) interactions (Ermondi and 21 

Caron, 2012). Moreover, to get more specific information in the nature of electrostatic interactions, 22 

we used two HILIC systems which differ in the spatial orientation of the positive and negative 23 

charged groups (Di Palma et al., 2011). 24 

 25 

Please insert Table 1 here 26 

 27 

Retention factors were firstly determined using the polymeric PLRP-S column with a mobile phase 28 

containing small quantities of ACN due to the high polarity of the two peptides (Figure 3A). To 29 

obtain the maximum retention under RP conditions, the most non-polar available column should be 30 

used and thus we preferred the PLRP-S to either C8 or C18 columns. Under these conditions the log 31 

k’ value of A12–28 is larger than that of A25–35 (Figure 3A). This is an expected result since A12–28 is 32 

larger than A25–35 in any environment (see MD results, Figure S1 in the Supplementary Material) 33 
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and thus should be retained more by a RP system whose retention is predominantly due to 1 

hydrophobicity (Ermondi and Caron, 2012).  2 

In RP systems we expect that log k’ decreases when the amount of organic solvent in the mobile 3 

phase increases. This was verified as shown in Figure 3A. An additional increase of the amount of 4 

acetonitrile in the mobile phase cannot be checked since under these experimental conditions the 5 

two peptides elute together with the solvent front (t0 = tR).  6 

 7 

Please insert Figure 3 here 8 

 9 

In order to characterize peptides polar properties, peptides retention was also determined using 10 

direct chromatographic systems (i.e. the HILIC and C-HILIC systems, see Table 1). This is a 11 

crucial step which distinguishes strategies for determining lipophilicity of peptides from those 12 

applied to small organic molecules. Peptides in fact are generally more ionized than classical drugs 13 

and thus have more propensity to form electrostatic interaction with the environment. This feature 14 

has to be determined with polar systems. 15 

Figure 3B and 3C show that A12–28 is more retained on the HILIC columns than A25–35. This could 16 

be ascribed to the larger number of ionized centers present on A12–28, which favor the interaction 17 

with the zwitterionic moiety present on the column surface.  18 

The recently developed C-HILIC system differs from the HILIC for the structure and orientation of 19 

the zwitterionic group present on the stationary phase (Table 1). These structural differences should 20 

permit to discriminate positively from negatively charged compounds. A25–35 has an excess of 21 

positive charges and thus we expected that it has a larger affinity for the HILIC system in which the 22 

negative charge is more accessible than the positive one. Unexpectedly, results show that the C-23 

HILIC system provides similar information than the HILIC system suggesting that the peptides 24 

interaction with HILIC and C-HILIC depends on a complex balance of factors not simply due to the 25 

number and nature of molecular charges but also on conformational effects. Additional studies are 26 

in progress to generalize this finding. 27 

Taken together chromatographic data show that A12-28 has a larger skill to interact with both apolar 28 

and polar environments than A25–35.  29 

 30 

3.3 Circular dichroism (CD) studies 31 

CD studies were undertaken to unravel a) the influence of HFIP on the solutions injected in the 32 

HPLC systems and b) the propensity of the two peptides to self-aggregation.  33 
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The effect of HFIP on the secondary structure of peptides and proteins is largely controversial in the 1 

literature. Some reports attribute to HFIP a denaturing effect (Wei and Shea, 2006) whereas others 2 

consider such non-polar organic solvent ( = 16.7) a disaggregating agent or an inductor and 3 

stabilizer of α-helix structures (Yanagi et al., 2011) (Ryan et al., 2013). 4 

Increasing concentrations (30, 125, 250 and 400 μM) of both peptides were dissolved in pure HFIP 5 

and in PBS at pH 7.4 added with 10% v/v of HFIP (hereafter called PBSHFIP). Solutions were 6 

analyzed by CD immediately after their preparation (Figure 4 and 5, panel A and B). PBSHFIP 7 

solutions were also submitted to CD analysis 24h after preparation (Figure 4 and 5, panel C).  8 

The CD profiles of A12–28 (Figure 4A and B) and A25–35 (Figure 5A and B) in PBSHFIP are completely 9 

different from those registered in HFIP. In particular, HFIP favors unordered conformations. The 10 

PBS buffer seems to better stabilize ordered conformations of both peptides, favoring an increase of 11 

α-helices and β-sheet structures (more details about interpretation of CD spectra are reported in the 12 

Supplementary Material). 13 

 14 

Please insert Figure 4 here 15 

 16 

Please insert Figure 5 here 17 

 18 

Self-aggregation phenomena could be present under chromatographic conditions where peptides 19 

concentration was about 400 μM. CD spectra analysis also reveals a substantial difference between 20 

the two analyzed samples after 24 hours (Figures 4 and 5, panel C): while the Aβ12–28 tends to form 21 

agglomerates marked by the increase in intermolecular β-sheets, the A25–35 amyloid maintains a 22 

shape of the spectra indicative of a very high percentage of disordered structures. These results 23 

suggests that A12–28 has a higher propensity to self-assembly than A25–35. To avoid self-aggregation, 24 

chromatograms were obtained immediately after samples preparation. 25 

 26 

4. Conclusion 27 

This study provides some general guidelines about the determination of the lipophilicity of 28 

medium-sized peptides. In particular, we evidenced that peptides lipophilicity cannot be properly 29 

determined by traditional descriptors such as log Doct
7.4 for two main reasons: a) peptides are too 30 

polar and thus log Doct
7.4 is experimentally inaccessible, b) predictions of log Doct

7.4 are unreliable 31 

because of the peptides conformational variability. Moreover, lipophilicity varies with the 32 
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environment and thus the octanol/water system is insufficient to mimic the different biological 1 

conditions. 2 

To overcome these limits and to determine the physico-chemical profile of peptides for drug 3 

discovery purposes a set of three chromatographic descriptors have been proposed. In particular, we 4 

characterized the lipophilicity of A12-28 and A25–35 under RP, HILIC and C-HILIC conditions. 5 

Taken together log k’ data showed that A12-28 has a larger skill to interact with hydrophobic and 6 

polar media than A25–35. Moreover, the two HILIC systems provided similar log k’ values for A12-28 7 

and A25–35. This was an unexpected result for A25–35 since its net charge is +1 and thus a larger 8 

retention on the HILIC than on the C-HILIC column was expected. 9 

Since A12-28 and A25–35 are used as models of the amyloid peptide, these results definitively may 10 

improve the understanding of A neurotoxicity, which originates from its interaction with lipid 11 

membranes. In general terms, the interaction of compounds with biomembranes is driven by two 12 

main mechanisms. The first is due to hydrophobic interactions with the alkyl chains of 13 

phospholipids, whereas the second is related to electrostatic interactions with their polar heads (van 14 

Balen et al., 2004). Since we proved that A12–28 has more propensity to form both types of 15 

interactions, the region of A comprised between residues 12 and 28 is expected to be the 16 

responsible for the toxicity of the whole peptides. This contributes to unravel the discussion 17 

reported in the literature about this topic (Liu et al., 2004). 18 

 19 
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Figure Captions 1 

 2 

Figure 1. The chemical structures of the two peptides. Acidic centers ionized at pH=7.0 are in red 3 

whereas basic centers ionized at the same pH are in blue. A) A12–28 and B) A25–35. 4 

 5 

Figure 2. Predicted log D7.4
oct of the representative conformers resulting from MD simulations 6 

performed in the two different environments that mimic acetonitrile (=37.5 in cyan) and water 7 

(=78.5 in yellow) solvent, respectively. A12–28 is in black, A25–35 is in grey. 8 

 9 

Figure 3. Lipophilicity data. A12–28 is in black, A25–35 is in grey. A) PLRP-S, B) HILIC, C) C-10 
HILIC. 11 

 12 

Figure 4. CD spectra of A12–28 in pure HFIP A), in PBSHFIP B) and in PBSHFIP 24 h after samples 13 

preparation C) are reported in the top panels at increasing concentration 30, 150, 250 and 400µM 14 

(corresponding to lines a, b, c and d respectively). CD spectra of pure secondary structures as 15 

indicated in literature (α-helix, β-sheet, turns and random coils corresponding to lines α, β, t and rc 16 

respectively) are reported in the bottom panels for the sake of a qualitative comparison (Kelly et al. 17 

2005).  18 

 19 

Figure 5. CD spectra of A25–35 in pure HFIP A), in PBSHFIP B) and in PBSHFIP 24 h after samples 20 

preparation C) are reported in the top panels at increasing concentration 30, 150, 250 and 400µM 21 

(corresponding to lines a, b, c and d respectively). CD spectra of pure secondary structures as 22 

indicated in literature (α-helix, β-sheet, turns and random coils corresponding to lines α, β, t and rc 23 

respectively) are reported in the bottom panels for the sake of a qualitative comparison (Kelly et al. 24 

2005). 25 



Table 1. Features of the four chromatographic systems used in the paper 
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