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Ramsey Theorem as an Intuitionistic Property

of Well Founded Relations

Stefano Berardi and Silvia Steila

Dipartimento di Informatica, Università di Torino
{stefano,steila}@di.unito.it

Abstract. Ramsey Theorem for pairs is a combinatorial result that can-
not be intuitionistically proved. In this paper we present a new form of
Ramsey Theorem for pairs we call H-closure Theorem. H-closure is a
property of well-founded relations, intuitionistically provable, informative,
and simple to use in intuitionistic proofs. Using our intuitionistic version
of Ramsey Theorem we intuitionistically prove the Termination Theorem
by Poldenski and Rybalchenko. This theorem concerns an algorithm infer-
ring termination for while-programs, and was originally proved from the
classical Ramsey Theorem, then intuitionistically, but using an intuition-
istic version of Ramsey Theorem different from our one. Our long-term
goal is to extract effective bounds for the while-programs from the proof
of Termination Theorem, and our new intuitionistic version of Ramsey
Theorem is designed for this goal.

Keywords: Intuitionism, Ramsey Theorem, inductive definitions,
termination of while-programs.

1 Introduction

Podelski and Rybalchenko [1] defined an algorithm taking in input an imperative
programmade with the instructionswhile, if and assignment, and able to decide
in some case whether the program is terminating or not, and in some other cases
leaving the question open. The authors prove a result they call the Termination
Theorem, stating the correctness of their algorithm. The authors use in their
proof Ramsey Theorem for pairs [2], from now on called just “Ramsey” for
short. Ramsey is a classical result that cannot be intuitionistically proved: we
refer to [3] for a detailed analysis of the minimal classical principle required to
prove Ramsey. According to the Π0

2 -conservativity of Classical Analysis w.r.t.
Intuitionistic Analysis [4], the proof of Termination Theorem hides some effective
bounds for the while program which the theorem shows to terminate. Our long-
term goal is to find them, by first turning the proof of Termination Theorem
into an intuitionistic proof.

Our first step is to formulate a version of Ramsey which has a purely in-
tuitionistic proof, that is, a proof which does not use Excluded Middle, nor
Brouwer Thesis nor Choice. Our version of Ramsey is informative, in the sense
that it has no negation, while it has a disjunction. We say that a relation R
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is H-well-founded if the tree of all R-decreasing transitive sequences is well-
founded. We express Ramsey as a property of well-founded relations, saying
that H-well-founded relations are closed under finite unions. For short we will
call this statement the H-closure Theorem. Thus, we are able to split the proof
of Ramsey into two parts: the intuitionistic proof of the H-closure Theorem,
followed by an easy classical proof of the equivalence between Ramsey and the
H-closure Theorem.

The result closest to H-closure we could find is by Coquand [5]. Coquand, as
Veldman and Bezem did before him [6], considers almost full relations and proves
that they are closed under finite intersections. Veldman and Bezem use Choice
Axiom of type 0 (if ∀x ∈ N.∃y ∈ N.C(x, y), then ∃f : N → N.∀x ∈ N.C(x, f(x)))
and Brouwer’s thesis. Coquand’s proof, instead, is purely intuitionistic, and it
may be used to give a purely intuitionistic proof of the Termination Theorem
[7]. However, it is not evident what are the effective bounds hidden in Coquand’s
proof of Termination Theorem. If we compare H-closure with the Almost Full
Theorem, in the most recent version by Coquand [5], we find no easy way to
intuitionistically deduce one from the other, due to the use of de’ Morgan laws
to move from the definition of almost full to the definition of H-closure. H-
closure is in a sense more similar to the original Ramsey Theorem, because
it was obtained from it with just one classical step, a contrapositive (see §2),
while almost fullness requires one application of de’ Morgan Law, followed by
a contrapositive. We expect that H-closure, hiding one application less of de’
Morgan laws, should be a version of Ramsey simpler to use in intuitionistic
proofs and for extracting bounds.

Our motivation for producing a new intuitionistic version of Ramsey is to
provide a new intuitionistic proof of the Termination Theorem. We expect that,
by analysing this new proof, we will be able to extract effective bounds from the
Termination Theorem, and possibly, from other concrete applications of Ramsey.

This is the plan of the paper. In section 2 we present Ramsey Theorem for
pairs and we informally introduce H-closure. In section 3 we formally define
inductive well-foundedness and H-well-foundedness, whose main properties are
stated in section 4. The goal of section 5 is to present what we call Nested Fan
Theorem, which is a part of the proof of the H-closure Theorem, as shown in
section 6. In section 7 we intuitionistically prove the Termination Theorem. In
section 8 we compare our result with the previous works along the same line and
we draw some conclusions. Unless explicitly stated, our proofs use intuitionistic
second order arithmetic, without Choice Axiom, Brouwer Thesis, Bar-Induction.

2 Ramsey Theorem and a Variant of It, H-Closure

We first recall the statement of Ramsey Theorem for pairs, just Ramsey for short.
Assume G is a countable non-oriented graph which is complete, i.e., between any
two different elements of G there is exactly one edge in G. Assume we “colored”
the edges of G with n > 0 different colors, that is, we partioned the edges of G
into n sets. Then there is an infinite set X ⊆ G such that all the edges between
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any two different x, y ∈ X have the same color: for some k = 1, . . . , n, all the
edges of X fall in the k-th subset of the partition. We call X an homogenous set
of color k.

Assume σ = x0, x1, . . . , xn, . . . is an injective enumeration of the elements of
G, that is: G = range(σ). We represent a non-oriented edge, between two points
xi, xj in G with j < i, by the pair (i, j), arbitrarily oriented from i to j. The
opposite edge from xj to xi is the same edge of G, and it is again represented
with (i, j). Thus, a partition of edges in n sets S1, . . . , Sn may be represented
by a partition of the set {(xi, xj) : j < i} into n binary relations S1, . . . , Sn.
Therefore one possible formalization of Ramsey is the following.

Theorem 1 (Ramsey for pairs [2]). Assume I is a set having some injective
enumeration σ = x0, x1, . . . , xi, . . .. Assume S1, . . . , Sn are binary relations on I
which are a partition of {(xi, xj) ∈ I × I : j < i}, that is:
1. S1 ∪ · · · ∪ Sn = {(xi, xj) ∈ I × I : j < i}
2. for all 1 ≤ k < h ≤ n: Sk ∩ Sh = ∅.
Then for some k = 1, . . . , n there exists some infinite X ⊆ N such that: ∀i, j ∈
X.(j < i =⇒ xiSkxj).

In the statement above three assumptions may be dropped.

1. First of all, we may drop the assumption that S1, . . . , Sn are pairwise dis-
joint. Suppose we do. Then, if we set S′

1 = S1, S
′
2 = S2\S′

1, S
′
3 = S3\(S′

1∪S′
2),

. . . , we obtain a partition S′
1, . . . , S

′
n of {(xi, xj) : j < i}. Therefore there

exists a k = 1, . . . , n and some infinite X ⊆ N, such that ∀i, j ∈ X.(j <
i =⇒ xiS

′
kxj), and with more reason, ∀i, j ∈ X.(j < i =⇒ xiSkxj).

2. Second, we may drop the assumption “σ is injective” (in this case, range(σ)
may be a finite set). Assume we do. Then, if we set S′

k = {(i, j) : xiSkxj}
for all k = 1, . . . , n, we obtain n relations S′

1, . . . , S
′
k on N, whose union

is the set {(i, j) ∈ N× N : j < i}. Therefore there exists a k = 1, . . . , n and
some infinite X ⊆ N, such that ∀i, j ∈ X.(j < i =⇒ iS′

kj), and with more
reason, ∀i, j ∈ X.(j < i =⇒ xiSkxj).

3. Third, we may drop the assumption that σ is an enumeration of I. Sup-
pose we do. Then, if we restrict S1, . . . , Sn to I0 = range(σ), we ob-
tain some binary relations S′

1, . . . , S′
n on I0 such that S′

1 ∪ . . . ∪ S′
n =

{(xi, xj) ∈ I0 × I0 : j < i}. Again, we conclude that there exists some k =
1, . . . , n and some infiniteX ⊆ N, such that ∀xi, xj ∈ X.(j < i =⇒ xiS

′
kxj),

and with more reason, ∀i, j ∈ X.(j < i =⇒ xiSkxj).

Summing up, we showed that, classically, we may restate Ramsey Theorem as
follows:

For all sequences σ = x0, x1, x2, . . . on I, if ∀i, j ∈ N.(j < i =⇒ xi(S1∪ . . .∪
Sn)xj), then for some k there is some infinite X ⊆ N, such that ∀i, j ∈ X.(j <
i =⇒ xiSkxj).

It is likely that even this statement cannot be intuitionistically proved, because
the sequence τ is akin to an homogeneous set, and there is no effective way to
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produce homogeneous sets (see for instance [3]). By taking the contrapositive,
we obtain the following corollary:

If for all k = 1, . . . , n, all sequences τ = y0, . . . , yn, . . . such that ∀i, j ∈
N.(j < i =⇒ yiSkyj) are finite, then all sequences σ = x0, . . . , xn, . . . such that
∀i, j ∈ N.(j < i =⇒ xi(S1 ∪ . . . ∪ Sn)xj) are finite.

It is immediate to check that, classically, this is yet another version of Ramsey.
We call this property classical H-closure.

Let us callH(S) the set of all lists such that 1 ≤ j < i ≤ n implies xiSxj . Then
classical H-closure may be restated as follows: if S1, . . . , Sn are binary relations
over some set I, andH(S1), . . . ,H(Sk) are sets of lists well-founded by extension,
then H(S1 ∪ . . . ∪ Sk) is a set of list well-founded by extension. Thus, classical
H-closure is a property classically equivalent to Ramsey Theorem, but which
is about well-founded relations. In Proof Theory, there is plenty of examples of
classical proofs of well-foundedness which are turned into intuitionistic proofs,
and indeed from H-closure we will obtain an intuitionistic version of Ramsey.

There is a last step to be done. We call intuitionistic H-closure, or just H-
closure for short, the statement obtained by replacing, in classical H-closure, the
classical definition of well-foundedness (all decreasing sequences are finite) with
the inductive definition of well-foundedness, which is customary in intuitionistic
logic. We will recall the inductive definition of well-foundedness in §3.1: thus, for
the formal definition of H-well-foundedness we have to wait until §3.2.

3 Well-Founded Relations

In this section we introduce the main objects we will deal with in this paper:
well-founded relations.

We will use I, J, . . . to denote sets, R, S, T, U will denote binary relations,
X, Y, Z will be subsets, and x, y, z, t, . . . elements. We identify the properties
P (·) of elements of I with their extensions X = {x ∈ I : P (x)} ⊆ I.

Let R be a binary relation on I. Classically x ∈ I is R-well-founded if there
is no infinite decreasing R-chain . . . xnRxn−1R . . . x1Rx0 = x from x in I. Clas-
sically R is well-founded if and only if every x ∈ I is R-well-founded.

The inductive definition of well-founded relations is more suitable than the
classical one in the intuitionistic proofs. In the first subsection we introduce this
definition; in the last subsection we present the definition of H-well-foundedness,
which is fundamental to state the new intuitionistic form of Ramsey Theorem.

3.1 Intuitionistic Well-Founded Relations

The intuitionistic definition of well-founded relation uses the definition of induc-
tive property. For short we will say that a relation is “well-founded” to say that
it is intuitionistically well-founded.

Let R be a binary relation on I. A property is R-inductive if whenever
it is true for all R-predecessors of a point it is true for the point. x ∈ I is
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R-well-founded if and only if it belongs to every R-inductive property; R is
well-founded if every x in I is R-well-founded. Formally:

Definition 1. Let R be a binary relation on I.

– A property X ⊆ I is R-inductive if and only if INDR
X ; where

INDR
X := ∀y. (∀z. (zRy =⇒ z ∈ X) =⇒ y ∈ X).

– An element x ∈ I is R-well-founded if and only if WFR(x); where
WFR(x) := ∀X.

(
INDR

X =⇒ x ∈ X
)
.

– R is well-founded if and only if WF(R); where WF(R) := ∀x.WFR(x).

A binary structure, just a structure for short, is a pair (I, R), where R is a
binary relation on I. We say that (I, R) is well-founded if R is well-founded.

We need to introduce also the notion of co-inductivity. A property X is R-co-
inductive in y ∈ I if it satisfies the inverse property ofR-inductive: if the property
X holds for a point, then it holds also for all its R-predecessors. Formally:

Definition 2. Let R be a binary relation on I.

– A property X is R-co-inductive in y ∈ I if and only if CoINDR
X(y); where

CoINDR
X(y) := ∀z. (zRy =⇒ z ∈ X) .

– A property X is R-co-inductive if and only if CoINDR
X ; where

CoINDR
X := ∀y.(y ∈ X =⇒ ∀z. (zRy =⇒ z ∈ X)).

In general we will intuitionistically prove that if there exists an infinite de-
creasing R-chain from x then x is not R-well-founded. Classically, and by using
the Axiom of Choice, x is R-well-founded if and only if there are no infinite
decreasing R-chains from x, and R is well-founded if and only if there are no
infinite decreasing R-chains in I.

3.2 H-Well-Founded Relations

In order to define H-well-foundedness we need to introduce some notations.
We denote a list on I with 〈x1, . . . , xn〉; 〈〉 is the empty list. We define the
operation of concatenation of two lists on I in the natural way as follows:
〈x1, . . . , xn〉∗〈y1, . . . , ym〉 = 〈x1, . . . , xn, y1, . . . , ym〉. We define the relation of
one-step expansion � between two lists (L, M) on the same I, as L � M ⇐⇒
L = M∗〈y〉, for some y.

Definition 3. Let R be a binary relation on I.

– H(R) is the set of the R-decreasing transitive finite sequences on I:

〈x1, . . . , xn〉 ∈ H(R) ⇐⇒ ∀i, j ∈ [1, n].i < j =⇒ xjRxi.

– R is H-well-founded if H(R) is �-well-founded.

H-well-founded relations are more common than well-founded relations.

Proposition 1. 1. R well-founded implies that R H-well-founded.
2. R H-well-founded and R transitive imply that R well-founded
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4 Basic Properties of Well-Founded Relations

There are several methods to intuitionistically prove that a binary relation R is
well-founded by using the well-foundedness of another binary relation S.

The goal of this section is to prove these results. In §4.1 we are going to define
simulation relations, in §4.2 we introduce some operations which preserve well-
foundedness, while in §4.3 we will show the main properties of well-foundedness.

4.1 Simulation Relations

A simulation relation is a binary relation which correlates two other binary
relations.

Definition 4. Let R be a binary relation on I and S be a binary relation on J .
Let T be a binary relation on I × J .

– Domain of T . dom(T ) = {x ∈ I : ∃y ∈ J.xTy}.
– Morphism. f : (I, R) → (I, S) is a morphism if f is a function such that

∀x, y ∈ I.xRy =⇒ f(x)Sf(y).
– Simulation. T is a simulation of R in S if and only if it is a relation and

∀x, z ∈ I.∀y ∈ J. ((xTy ∧ zRx) =⇒ ∃t ∈ J. (tSy ∧ zT t))

– Total simulation. A simulation relation T of R in S is total if dom(T ) = I.
– Simulable. R is simulable in S if there exists a total simulation relation T

of R in S.

If we have a simulation T of R in S and xTy holds, we can transform each
finite decreasing R-chain in I from x in a finite decreasing S-chain in J from
y. By using the Axiom of Choice this result holds also for infinite decreasing
R-chains from a point in dom(T ). Then if there are no infinite decreasing S-
chains in J there are no infinite decreasing R-chains in dom(T ). If, furthermore,
the simulation is total there are no infinite decreasing R-chains in I. By using
classical logic and the Axiom of Choice we may conclude that if S is well-founded
and T is a total simulation relation of R in S then R is well-founded. In the last
subsection of this section we will present an intuitionistic proof of this result
that does not use the Axiom of Choice.

We may see binary relations as abstract reduction relations. Recall that an
abstract reduction relation is a simply binary relation (for example rewriting
relations). A reduction relation is said to be terminating or strongly normalizing
if and only if there are no infinite chains [8]. Observe that we use simulation
to prove well foundedness and this is the same method used for labelled state
transition systems [9]; for us all the set of labels is a singleton.

4.2 Some Operations on Binary Structures

In this subsection we introduce some operations mapping binary structures
into binary structures. In §4.3 we prove that these operations preserves well-
foundedness.

The first operation is the successor operation (adding a top element).
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Definition 5. Let R be a relation on I and let � be an element not in I. We
define the relation R + 1 = R ∪ {(x,�) : x ∈ I} on I + 1 = I ∪ {�}. We define
the successor structure of (I, R) as (I, R) + 1 = (I + 1, R+ 1).

Another operation on binary structures is the relation defined by components,
inspired by the order by components.

Definition 6. Let R be a binary relation on I, and let S be a binary relation
on J . The relation R⊗ S of components R, S is defined as below:

R⊗ S := (R ×Diag(J)) ∪ (Diag(I)× S) ∪ (R× S),

where Diag(X) = {(x, x) : x ∈ X}.
Equivalently R⊗ S is defined for all x, x′ ∈ I and for all y, y′ ∈ J by:

(x, y)R ⊗ S(x′, y′) ⇐⇒
((xRx′) ∧ (y = y′)) ∨ ((x = x′) ∧ (ySy′)) ∨ ((xRx′) ∧ (ySy′)) .

If R, S are orderings then R⊗ S is the componentwise ordering, also called the
product ordering. In this case R⊗ S = R× S, while in general R ⊗ S ⊇ R× S.

4.3 Properties of Well-Foundedness

Now we may list the main intuitionistic properties of well-founded relations.

Proposition 2. Let R be a binary relation on I, and let S be a binary relation
on J .

1. Well-foundedness is both an inductive and a co-inductive property:

x is R-well-founded ⇐⇒ ∀y.(yRx =⇒ y is R-well-founded ).

2. If R, S are well-founded, then R⊗ S is well-founded.
3. If T is a simulation of R in S and if xTy and y is S-well-founded, then x

is R-well-founded.
4. If T is a simulation of R in S and S is well-founded, then dom(T ) is R-

well-founded.
5. If R is simulable in S and S is well-founded, then R is well-founded.
6. If f : (I, R) → (J, S) is a morphism and if S is well-founded, then R is

well-founded.
7. If R is included in S and S is well-founded then R is well-founded.

Corollary 1. Let R be a binary relation on I. (I, R) well-founded implies that
(I, R) + 1 well-founded.

Corollary 2. Let R be a binary relation on I and x ∈ I. If there exists an
infinite decreasing R-chain from x, then x is not R-well-founded.
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So the intuitionistic definition of well-founded intuitionistically implies the
classical definition; while the other implication is purely classical.

When I and R are finite, we may characterize the well-foundedness and the
H-well-foundedness in an elementary way.

Definition 7. Let R be a binary relation on I and x ∈ I. A finite sequence
〈x0, . . . , xn〉 is an R-cycle from x if n > 0 and

x = xnRxn−1Rxn−2R . . . Rx0 = x.

If n = 1 (that is, if xRx), we call the R-cycle an R-loop.

Proposition 3. Assume I = {x1, . . . , xk} for some k ∈ N. Let R be any binary
relation on I.

1. R is well-founded if and only if there are no R-cycles.
2. R is H-well-founded if and only if there are no R-loops.

Thanks to Proposition 3 we may prove H-closure Theorem if R1, . . . , Rn are
relations over a finite set I. In fact R = (R1 ∪R2 ∪ · · · ∪Rn) is H-well-founded
if and only if there are no R-loops. This is equivalent to: there are no Ri-loops
for any i ∈ [1, n]. Hence R is H-well-founded if and only if for each i ∈ [1, n], Ri

is H-well-founded.
Now we want to prove H-closure Theorem for any set I.

5 An Intuitionistic Version of König’s Lemma

In this section we deal with binary trees. In the first part we introduce binary
trees with some equivalent definitions, while in the second part we use binary
trees to prove an intuitionistic version of König Lemma for nested binary trees
(binary trees whose nodes are themselves binary trees), which we call Nested Fan
Theorem. As in the classical case [3], there is a strong link between intuitionistic
Ramsey Theorem and Nested Fan Theorem.

5.1 Binary Trees

Let R be a binary relation. Then we can define the set of all binary trees where
each child node is in relation R with its father node. If R is well-founded, this set
will be well-founded with respect to the relation “one-step extension” between
trees.

A finite binary tree may be defined in many ways, the most common runs as
follows.

Definition 8. A finite binary tree on I is defined inductively as an empty tree,
called Nil, or a triple composed by one element of I and two trees, called imme-
diate subtrees: so we have Tr = Nil or Tr = 〈x,Tr1,Tr2〉.

BinTr = {Tr : Tr is a binary tree }
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Let Tr = 〈x,Tr1,Tr2〉, then
– Tr is a tree with root x;
– if Tr1 = Tr2 = Nil, we will say that Tr is a leaf-tree;
– if Tr1 �= Nil and Tr2 = Nil, we will say that Tr has exactly one left child;
– if Tr1 = Nil and Tr2 �= Nil, we will say that Tr has exactly one right child;
– if Tr1 �= Nil and Tr2 �= Nil, we will say that Tr has two children: one right

child and one left child.

A binary tree may be also define as a labelled oriented graph on I, empty
(if Tr = Nil) or with a special element, called root, which has exactly one path
from the root to any node. Each edge is labelled with a color c ∈ C = {1, 2} in
such a way that from each node there is at most one edge in each color.

Equivalently we may define firstly colored lists and then the binary tree as a
set of some colored lists.

Definition 9. A colored list (L, f) is a pair, where L = 〈x1, . . . , xn〉 is a list
on I equipped with a list f = 〈c1, . . . , cn−1〉 on C = {1, 2}. nil = (〈〉, 〈〉) is the
empty colored list and ColList(C) is the set of the colored lists with colors in C.

We should imagine that the list L is drawn as a sequence of its elements and
that for each i ∈ [1, n − 1] the segment (xi, xi+1) has color ci. Observe that if
L = 〈〉 or if L = 〈x〉, then f = 〈〉: if there are no edges in L, then there are no
colors (L, f).

We use λ, μ, . . . to denote colored lists in ColList(C). Let c ∈ C. We define
the composition of color c of two colored lists by connecting the last element of
the first list (if any) with the first of the second list (if any) with an edge of color
c. Formally we set nil ∗cλ = λ∗c nil = λ, and (L, f)∗c(M, g) = (L∗M, f∗〈c〉∗g)
whenever L,M �= nil.

We can define the relation one-step extension on colored lists: �c is the one-
step extension of color c and �col is the one-step extension of any color. Assume
C = {1, 2} and x ∈ I and λ, μ ∈ ColList(C). Then we set:

– λ∗c(〈x〉, 〈〉) �c λ.
– λ �col μ if λ �c μ for some c ∈ C.

Now we can equivalently define a binary tree on I as a particular set of some
colored lists.

Definition 10. A binary tree Tr is a set of colored lists on I, such that:

1. nil is in Tr;
2. If λ ∈ Tr and λ �col μ, then μ ∈ Tr;
3. Each list in Tr has at most one one-step extension for each color c ∈ C: if

λ1, λ2, λ ∈ Tr and λ1, λ2 �c λ, then λ1 = λ2.

For all sets L ⊆ ColList(C) of colored lists, BinTr(L) is the set of binary trees
whose branches are all in L.
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For instance the empty tree is the set Nil = {nil}. From (〈x〉, 〈〉) �c nil we
deduce that there is at most one (〈x〉, 〈〉) ∈ Tr: x is root of Tr. The leaf-tree of
root x is equal to {(〈x〉, 〈〉), nil}. The tree with only one root x and two children
y, z is equal to

{(〈x, y〉, 〈1〉), (〈x, z〉, 〈2〉), (〈x〉, 〈〉), nil} .
The last definition we need is the one-step extension �T between binary trees;

Tr′ �T Tr if Tr′ has one leaf more than Tr.

Definition 11 (One-step extension for binary trees). If Tr is a binary tree
and λ ∈ Tr and μ �c λ and λ′ �c λ for no λ′ ∈ Tr, then

Tr∪{μ} �T Tr

5.2 Nested Fan Theorem

König Lemma is a result of classical logic which guarantees that if every branch
of a binary tree is finite then the tree is finite.

There exists a corresponding intuitionistic result, intuitionistically weaker
than the original one that we may state as follows.

Lemma 1 (Fan Theorem). Each inductively well-founded binary tree is finite.

Here we are interested to an intuitionistic version of Fan Theorem for nested
trees (trees whose nodes are trees), that we will call Nested Fan Theorem.

Let consider a tree Tr whose nodes are finite binary trees, and whose fa-
ther/child relation between nodes is the one-step extension �T . Classically we
may say: if for each branch of Tr the union of the nodes in this branch is a binary
tree with only finite branches, then each branch of Tr is finite.

In the intuitionistic proof of the intuitionistic Ramsey Theorem we will use an
intuitionistic version of this statement, in which the finitess of the branches is re-
placed by inductive well-foundedness of branches. Intuitionistic Nested Fan The-
orem states that if a set of colored lists L is well-founded then the set BinTr(L),
of all binary trees whose branches are all in L, is well-founded.
Lemma 2 (Intuitionistic Nested Fan Theorem). Let C = {1, 2} be a set
of colors and let L ⊆ ColList(C) be any set of colored lists with all colors in C.
Then

(L,�col) is well-founded =⇒ (BinTr(L),�T ) is well-founded.

Proof (sketch). Let c ∈ C, λ ∈ ColList(C). We define BinTr(L, λ, c) as the set
of binary trees {Tr ∈ BinTr(L) : λ∗cTr ⊆ L}. BinTr(L, λ, c) is the set of trees
occurring in some tree of BinTr(L), as immediate subtree number c of the last
node of the branch λ. For instance, BinTr(L, nil, c) = BinTr(L).

Since L is well-founded, it can be proved that (BinTr(L, λ, c),�T ) is well-
founded for all λ ∈ L by induction over λ. The thesis will follow if we set
λ = nil, c = 1 (a dummy value).
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6 An Intuitionistic Form of Ramsey Theorem

In this section we present a new intuitionistic version of Ramsey Theorem, the
H-closure Theorem. In the first part of the section we state it and we prove the
easy classical equivalence between it and Ramsey Theorem, in the second part
we prove the H-closure Theorem.

6.1 Stating an Intuitionistic Form of Ramsey Theorem

In [3] we proved that the first order fragment of Ramsey Theorem is equivalent to
the purely classical principle Σ0

3- LLPO [10], so it is not an intuitionistic result.
The H-closure Theorem is a version of Ramsey Theorem intuitionistically valid.

Theorem 2. [H-closure Theorem] The H-well-founded relations are closed un-
der finite unions:

(R1, . . . , Rn H-well-founded) =⇒ ((R1 ∪ · · · ∪Rn) H-well-founded).

H-closure Theorem is classically true, because there exists a simple classical
proof of the equivalence between Ramsey Theorem and H-closure Theorem.
This is one reason for finding an intuitionistic proof of H-closure Theorem: it
splits the proof of Ramsey Theorem into two parts, one intuitionistic and the
other classical but simple (it could be proved using the sub-classical principle
LLPO-3 [3]). We claim we may derive Ramsey for recursive colorings in Heyting
Arithmetic plus the following sub-classical schema:

Assume T is an infinite r.e. k-branching tree. There is an arithmetical formula
defining a branch r of T and some i ≤ k such that r includes infinitely many
“i-children”.

6.2 Proving the Intuitionistic Form Ramsey Theorem

We introduce a particular set of colored lists: the (R1, R2)-colored lists. This set
will be well-founded if R1, R2 are H-well-founded. Let (L, f) be a colored list.
We say that (L, f) is a (R1, R2)-colored list if for every segment (xi, xi+1) of
(L, f), if it has color k ∈ {1, 2} then xi is Rk-greater than all the elements of L
that follows it. Informally, a sequence is a (R1, R2)-colored list if whenever the
sequence decreases w.r.t. Ri, then it remains smaller w.r.t. to Ri. Formally:

Definition 12. (L, f) ∈ ColList(C) is a R1, R2-colored list if either L = 〈〉 and
f = 〈〉 or L = 〈x1, . . . , xn〉, f = 〈c1, . . . , cn−1〉, and

∀i ∈ [1, n− 1].(ci = k =⇒ (∀j ∈ [1, n].i < j =⇒ (xjRkxi))).

ColList(R1, R2) ⊆ ColList(C) is the set of (R1, R2)-colored lists.
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We may think of a (R1, R2)-colored list as a simultaneous construction of one
R1-decreasing transitive list and one R2-decreasing transitive list. We call an
Erdős-tree over R1, R2, a (R1, R2)-tree for short, any binary tree whose branches
are all in ColList(R1, R2). Erdős-trees are inspired by the trees used first by
Erdős then by Jockusch in their proofs of Ramsey [11], hence the name. We may
think of a (R1, R2)-tree as a simultaneous construction of many R1-decreasing
transitive lists and many R2-decreasing transitive lists.

BinTr(ColList(R1, R2)) is the set of all (R1, R2)-trees. We will considering
the one-step extension �col on colored lists in ColList(R1, R2), and the one-step
extension �T on binary trees in BinTr(ColList(R1, R2)).

Now we note that each one-step step extension in a R1 ∪R2-decreasing tran-
sitive list may be simulated as an one-step step extension of some Erdős-tree on
(R1, R2), that is, as an one-step extension either of one R1-decreasing transitive
list or of oneR2-decreasing transitive list, among those associated to the branches
of the (R1, R2)-tree. From the well-foundedness of the set BinTr(ColList(R1, R2))
of Erdős-trees we will derive our intuitionistic version of Ramsey Theorem.

Lemma 3. (Simulation) Let R1, R2 be binary relations on a set I.

1. (ColList(R1, R2),�col) is simulable in (H(R1)×H(R2),� ⊗ �) + 1.
2. H(R1 ∪R2,�) is simulable in (BinTr(ColList(R1, R2)),�T ).

Corollary 3. Let R1, R2 be binary relations H-well-founded on a set I.

1. The set (ColList(R1, R2),�col) of R1, R2-colored lists is well-founded.
2. The set (BinTr(ColList(R1, R2)),�T ) is well-founded.

Proof. 1. (H(R1)×H(R2),� ⊗ �) is well-founded by Proposition 2.2, since its
components are. By Corollary 1, (H(R1)×H(R2),� ⊗ �)+1 is well-founded.
Since (ColList(R1, R2),�col) is simulable in (H(R1)×H(R2),� ⊗ �)+ 1 by
Lemma 3, then it is well-founded by Proposition 2.5.

2. Since (ColList(R1, R2),�col) is well-founded thanks to the previous point,
(BinTr(ColList(R1, R2)),�T ) is well-founded by Lemma 2.

Let ∅ be the empty binary relation on I. Then H(∅) does not contain lists
of length greater or equal than 2. Hence H(∅) = {〈x〉 : x ∈ I} ∪ {〈〉}. H(V ) is
�-well-founded since each 〈x〉 is �-minimal, and 〈〉 has height less or equal than
1. Thus, the empty relation is H-well-founded.

Theorem 3. Let n ∈ N. If R1, . . . , Rn H-well-founded then (R1 ∪ · · · ∪ Rn) is
H-well-founded.

Proof. We may prove it by induction on n ∈ ω. If n = 0 then (R1∪· · ·∪Rn) = ∅:
we already considered this case. Assume that n > 0 , and that the thesis holds
for any m < n. Then R1 ∪ · · · ∪Rn−1 is H-well-founded. Thus, in order to prove
that (R1 ∪ · · · ∪Rn) is H-well-founded, it is enough to consider the case n = 2.

Assume R1, R2 are H-well-founded relations: then by applying Corollary 3.2,
(BinTr(ColList(R1, R2)),�T ) is well-founded. By Lemma 3, (H(R1 ∪ R2),�)
is simulable in (BinTr(ColList(R1, R2)),�T ), well-founded, therefore it is itself
well-founded by Proposition 2.5.
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Corollary 4. Let n ∈ N. R1, . . . , Rn are H-well-founded if and only if (R1 ∪
· · · ∪Rn) is H-well-founded.

Proof. ⇒ Theorem 3.
⇐ If R and S are binary relations such that R ⊆ S, then S is H-well-founded

implies that R is H-well-founded. In fact we have H(R) ⊆ H(S); so by
Proposition 2.7, if (H(S),�) is well-founded then (H(R),�) is well-founded.
Since ∀i ∈ [1, n].Ri ⊆ R1 ∪ · · · ∪Rn, then Ri is H-well-founded.

7 Podelski and Rybalchenko’s Termination Theorem

In this last section we prove that the Termination Theorem [1, Theorem 1] is
intuitionistically valid. For all details we refer to this paper: here we only include
the definitions of program, computation, transition invariant and disjunctively
well-founded relations that Podelski and Rybalchenko used.

Definition 13 (Transition Invariants). As in [1]:

– A program P = (W, I,R) consists of:
• W : a set of states,
• I: a set of starting states, such that I ⊆ W ,
• R: a transition relation, such that R ⊆ W ×W .

– A computation is a maximal sequence of states s1, s2, . . . such that
• s1 ∈ I,
• (si, si+1) ∈ R for all i ≥ 1.

– The set Acc of accessible states consists of all states that appear in some
computation.

– A transition invariant T is a superset of the transitive closure of the transi-
tion relation R restricted to the accessible states Acc. Formally,

R+ ∩ (Acc×Acc) ⊆ T.

– The program P is terminating if and only if R∩ (Acc×Acc) is well-founded.
– A relation T is disjunctively well-founded if it is a finite union T = T1 ∪

· · · ∪ Tn of well-founded relations.

Lemma 4. If T = R ∩ (Acc×Acc) is well-founded then U = R+ ∩ (Acc×Acc)
is well-founded.

Theorem 4 (Termination). The program P is terminating if and only if there
exists a disjunctively well-founded transition invariant for P .

Proof. ⇐ Let T = T1 ∪ · · · ∪ Tn with T1, . . . , Tn well-founded and T transitive,
then by H-closure Theorem 3 and thanks to the Proposition 1 we obtain T
is well-founded, so P is terminating.

⇒ Let P be terminating then R ∩ (Acc×Acc) is well-founded. By Lemma 4
R+ ∩ (Acc×Acc) is well-founded. Then we are done.
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8 Related Works and Conclusions

In [3] we studied how much Excluded Middle is needed to prove Ramsey Theo-
rem. The answer was that the first order fragment of Ramsey Theorem is equiv-
alent in HA to Σ0

3-LLPO, a classical principle strictly between Excluded Middle
for 3-quantifiers arithmetical formulas and Excluded Middle for 2-quantifiers
arithmetical formulas [10]. Σ0

3 -LLPO may be interpreted as König’s Lemma re-
stricted to trees definable by some Δ0

3-predicate (see again [10]).
However, Ramsey Theorem in the proof of the Termination Theorem [1] may

be replaced by H-closure, obtaining a fully intuitionistic proof. It is worth notic-
ing that we obtained the result of H-closure by analyzing the proof of Termina-
tion Theorem, not by building over any existing intuitionistic interpretation.

We could not find any evident connection with the intuitionistic interpre-
tations by Bellin, Oliva and Powell. Bellin [12] applied the no-counterexample
interpretation to Ramsey theorem, while Oliva and Powell [13] used the dialec-
tica interpretation. They approximated the homogeneous set by a set which may
stand any test for some initial segment (a segment dependent by the try itself).
Instead we proved a well-foundedness result.

Instead, we found interesting connections with the intuitionistic interpreta-
tions expressing Ramsey Theorem as a property of well-founded relations. This
research line started in 1974: the very first intuitionistic proof used Bar Induc-
tion. We refer to §10 of [6] for an account of this earlier stage of the research.
Until 1990, all intuitionistic versions of Ramsey were negated formulas, hence
non-informative. In 1990 [6] Veldman and Bezem proved, using Choice Axiom
and Brouwer thesis, the first intuitionistic negation-free version of Ramsey: al-
most full relations are closed under finite intersections, from now on the Almost-
Full Theorem.

We explain the Almost-full theorem. Brouwer thesis says: a relationR is induc-
tively well-founded if and only if all R-decreasing sequences are finite. Brouwer
thesis is classically true, yet it is not provable using the rules of intuitionistic
natural deduction. In [5] (first published in 1994, updated in 2011) Coquand
showed that we may bypass the need of Choice Axiom and Brouwer thesis in
the Almost Full Theorem, provided we take as definition of well-founded directly
the inductive definition of well-founded (as we do in this paper).

In [6], a binary relation R over a set is almost full if for all infinite sequences
x0, x1, x2, . . . , xn, . . . on I there are some i < j such that xiRxj . We claim that,
classically, the set of almost full relations R is the set of relations such that
the complement of the inverse of R is H-well-founded. Indeed, let ¬R−1 be the
complement of the inverse of R: then, classically, ¬R−1 almost full means that in
all infinite sequences we have xi¬R−1xj for some i < j, that is, xj¬Rxi for some
i < j, that is, all sequences such that xjRxi for all i < j are finite. Classically,
this is equivalent to H-well-foundedness of R. The fact that the relationship
between H-well-founded and almost full requires a complement explains why we
prove closure under finite unions, while Veldman, Bezem and Coquand proved
the closure under finite intersections.
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For the future, we plan to use our proof to extract some effective bounds for
the Termination Theorem. Another challenge is to extract the bounds implicit
in the intuitionistic proof [7], which, as we said, uses Ramsey Theorem in the
form: “almost full relations are closed under intersection”, and to compare the
two bounds.
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