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A parallel implementation is presented of a series of algorithms for the evaluation of several one-
electron properties of large molecular and periodic (of any dimensionality) systems. The electron
charge and momentum densities of the system, the electrostatic potential, X-ray structure factors,
directional Compton profiles can be effectively evaluated at low computational cost along with a
full topological analysis of the electron charge density of the system according to Bader’s quantum
theory of atoms in molecules. The speedup of the parallelization of the different algorithms is
presented. The search of all symmetry-irreducible critical points of the electron charge density of
the crystallized crambin protein and the evaluation of all the corresponding bond paths, for instance,
would require about 32 days if run in serial mode and reduces to less than 2 days when run in parallel
mode over 32 processors.

I. INTRODUCTION

Through the ab initio quantum-chemical solution of
the static Schrödinger equation Ĥ |Ψ〉 = E|Ψ〉 of the
ground-state of a molecular or periodic system, much at-
tention is commonly devoted to the total electronic en-
ergy E and to its derivatives as they allow to determine
a variety of properties of interest (equilibrium structures,
binding energies, relative stabilities, vibrational spec-
tra, thermodynamic functions, elastic constants, etc.).
Nonetheless, a wealth of chemical information on the
system can be fruitfully extracted from the analysis of
the corresponding wave-function |Ψ〉. Being a rather
complex function of N space-spin coordinates (with N
number of electrons), |Ψ〉 is commonly replaced by n-
particle density matrices Γn (functions of just 2n space-
spin variables), which allow for the evaluation of the ex-
pectation value of any n-particle operator. In particular,
from the one-electron density matrix Γ1(x,x

′) any one-
electron property of the system can be effectively com-
puted (electron charge density, ECD ρ(r), X-ray struc-
ture factors, electrostatic potential, electron momentum
density, EMD π(p), Compton profiles, etc.).1

Among one-electron properties, the ECD is by far the
most studied as it embodies rich information on the struc-
ture and chemical nature of the bonding of the system.
From a fundamental point of view, the density functional
theory (DFT) has given the ECD an even more relevant
role in quantum chemistry as the energy of the system
has been demonstrated to be a functional of it: E[ρ].2,3

The ECD ρ(r) is a relatively simple function of just three
position space coordinates, which exhibits the point- or
group-symmetry of the system. Several schemes have
been proposed in the last decades to extract from ρ(r)
as much chemical information as possible, which involve
its visualization (profiles, 2D maps, 3D graphical rep-
resentations), partition according to different schemes,
topological analysis, etc.4–15 In this respect, one of the
most powerful and popular techniques is represented by

Bader’s quantum theory of atoms in molecules (QTAIM),
which relies on the topological analysis of ρ(r).16

If a routine analysis of the wave-function |Ψ〉 of a small
system is a non particularly demanding task from a com-
putational point of view (when compared to the conver-
gence of the self-consistent field, SCF, procedure or to the
analytical evaluation of energy gradients), this is clearly
no more the case either when rather sophisticated tech-
niques are adopted (such as QTAIM) or when large sys-
tems are studied. In this respect, one of the challenges
state-of-the-art ab initio quantum chemistry is facing is
indeed that of extending its applicability range to realis-
tic systems of large dimensions for which the analysis of
|Ψ〉 can easily take several days of computation if run in
serial mode.

In this paper, we present an efficient parallel imple-
mentation, in the Crystal program, of a series of den-
sity matrix-based algorithms for computing, at the ab

initio level of theory, a variety of one-electron properties
of large systems. The present implementation takes ad-
vantage of the several significant improvements recently
made in Crystal in terms of increased parallel and
massive-parallel scalability, reduced use of memory per
node and increased exploitation of symmetry at all steps
of the calculation, which recently allowed the program to
be run in parallel mode over 32’000 CPUs and to study
systems containing up to about 14’000 atoms and 200’000
basis functions.17–19 Specific features of the current im-
plementation are: i) possibility of studying systems of
any dimensionality within the same formal and numeri-
cal framework (from 0D molecules, to 1D polymers, nan-
otubes, helices and nano-rods, to 2D slabs and 3D crys-
tals); ii) efficient use of several DFT functionals, belong-
ing to four rungs of the well-known “Jacob’s ladder”20

(local density approximation, LDA, generalized gradi-
ent approximation, GGA, global or range-separated hy-
brids and meta-GGA); iii) full exploitation of any resid-
ual symmetry; iv) parallelization of all algorithms related
to the evaluation of ρ(r), its gradient and Laplacian, of
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FIG. 1: (color online) Graphical representation of the crys-
tal structure of (a) the crambin protein and (b) the pyrope
silicate garnet. The crambin unit cell contains two crambin
molecules.

the X-ray structure factors, of Bader’s topological anal-
ysis (as generalized to periodic systems by C. Gatti’s
Topond package,21,22 which has recently been merged
into the Crystal program), of directional Compton pro-
files, of the electrostatic potential and its derivatives, of
the electronic band structure and density-of-states. The
Crystal program adopts an atom-centered basis set of
Gaussian-type functions (GTF); all density matrix-based
algorithms have been parallelized on the number of or-
bital shell-shell pairs, which guarantees a good load bal-
ance among processors and thus a satisfactory speedup
for most systems.

We consider two rather different 3D systems in order
to discuss the scalability of the present parallel imple-
mentation: the pyrope silicate garnet and the crystalline
form of the crambin protein. Pyrope, Mg3Al2(SiO4)3, is
the most abundant of silicate garnets, which are among
the main constituents of the Earth’s lower crust, upper
mantle and transition zone. This family of crystals is
characterized by a cubic structure with space group Ia3d
and formula X3Y2(SiO4)3, where the X site hosts diva-
lent cations such as Ca2+, Mg2+, Fe2+ and Mn2+ and
the Y site is occupied by trivalent cations such as Al3+,
Fe3+ and Cr3+.23,24 The primitive cell contains four for-
mula units (80 atoms, for a total of 1488 atomic orbitals
with the present basis set) and the structure consists of
a network of corner-sharing SiO4 tetrahedra and YO6

octahedra. Crambin is a 46-residues protein, belong-
ing to the family of thionins, which can be extracted

from the Abyssinian cabbage and crystallizes in a well-
resolved structure with two proteins per unit cell,25 for
a total of 1284 atoms per cell (corresponding to 12’354
atomic orbitals with the present basis set). The crambin
molecule has recently been used as a test-case to investi-
gate the convergence of atom-atom electrostatic interac-
tion energy from the computation of high-rank topolog-
ical atomic multipole moments.26 The atomic structure
of the two crystals is graphically represented in Figure 1.

The structure of the paper is as follows: Section II
is devoted to the formal presentation of the one-electron
properties whose algorithms have been parallelized in the
present implementation; in Section III we will discuss the
speedup of the parallel implementation along with some
specific features of the present implementation; in Section
IV conclusions are drawn.

II. COMPUTATIONAL METHODOLOGY AND

SETUP

A. One-electron Properties

The present parallelized implementation of the wave-
function analysis of molecules and periodic systems of
different dimensionality (1D, 2D, 3D) has been made
into the Crystal14 program, which adopts a basis set
of atom-centered GTFs. Within a linear-combination-
of-atomic-orbitals scheme, crystalline orbitals can be ex-
pressed as:

ψj,κ(r) =
∑

µ

aj,κ
µ





∑

g

eı κ·g χg
µ(r)



 , (1)

where the band index j runs from 1 to N/2 (for a closed-
shell system), χg

µ is an atomic orbital centered on a cell
identified by the g lattice vector and the wave-vector κ is
one of the L vectors in the first Brillouin Zone of recip-
rocal space, which correspond to the number of cells in
the cyclic crystal determined by the Born von Kármán
periodic boundary conditions. The one-electron density
matrix of the system can then be expressed as follows,
in a matrix representation on the basis of the atomic or-
bitals:

P g
µν = 2

N/2
∑

j=1

∑

κ

e−ı κ·g

[

aj,κ
µ

(

aj,κ
ν

)

∗

]

. (2)

The ECD ρ(r) of the system is evaluated at each position
r of direct space as:27

ρ(r) =
∑

g,l

∑

µ,ν

P g−l
µν χg

µ(r)χl
ν (r) . (3)

Depending on the selected set of r points where the above
expression is evaluated, 2D maps or 3D plots of the ECD



3

can easily be obtained. X-ray structure factors {Fhkl}
are given by the Fourier transform of the ECD as:28

Fhkl =

∫

ρ(r)eı κ·rdr , (4)

with κ = hb1 + kb2 + lb3 being one of the lattice points
of reciprocal space (b1, b2 and b3 being the three fun-
damental reciprocal lattice vectors). The EMD π(p) of
the system is given by:29

π(p) =
∑

µ,ν

∑

g

P g
µνe

ıp·(rν−rµ−g) χµ(p) [χν(p)]∗ , (5)

where χµ(p) is the Fourier transform of the atomic or-
bital χµ(r) centered on the origin of the spatial coordi-
nates and rµ is the position the atomic orbital χµ is cen-
tered on within the reference cell. For the analysis and
manipulation of the EMD, reference can also be made to
the auto-correlation function, B(r), first introduced by
Pattison et al. in 1977.30 The auto-correlation function
is defined as the 3D Fourier transform of the EMD or as
the auto-correlation integral of the position density ma-
trix and can be given the following definition in the basis
of the atomic orbitals:

B(r) =
∑

µ,ν

∑

g

P g
µν S

g
µν(r) , with:

Sg
µν(r) =

∫

χ0
µ(r′) χg

ν(r + r′) dr′ . (6)

Directional Compton profiles can be efficiently computed
from the B(r) function.31–33 Also the electrostatic po-
tential V (r) can be evaluated from the knowledge of the
one-electron density matrix. While the nuclear term is
evaluated via the usual Ewald scheme for the calculation
of the periodic lattice interactions, the electronic term is
given by:

Vele(r) =
∑

µ,ν

∑

g

P g
µν





∑

l

∫

χµ(r′)χν(r′ − g)

|r′ − (r − l)|
dr′



 .

(7)
All the algorithms for the evaluation of the above
mentioned density matrix-related one-electron properties
have been parallelized on (µν) orbital shell pairs.

B. Topological ECD Analysis

Bader’s QTAIM probably represents the most popular
and complete theoretical framework for the topological
analysis of the ECD of a molecular system.16 Its gener-
alization to periodic systems, as implemented since 1998
by C. Gatti in the Topond package,22,34 has recently
been fully merged into the Crystal program.17 A fun-
damental aspect of the topological analysis of the ECD
is the determination of its critical points (CP), i.e. those
points in space where ∇ρ(r) = 0. Any CP can be clas-
sified in terms of the eigenvalues λ1, λ2 and λ3 of the

Hessian matrix of the ECD second-derivatives evaluated
at the CP; accordingly, each CP is labeled by a com-
bined index (r, s) where r is the number of non-zero
eigenvalues λi (r = 3 for all CPs of stable 3D molecu-
lar or solid structures) and s is the difference between
the number of positive and negative eigenvalues. The
value of s can be 3 for a minimum (all three eigenvalues
are positive), -3 for a maximum (all three eigenvalues are
negative) and +1 or -1 for saddle points in one or two
dimensions. Among others, critical points of (3,-1) type
(i.e. bond critical points) are of particular chemical in-
terest. By default, CPs are searched using a standard
Newton-Raphson scheme;22 a more sophisticated eigen-

vector following approach can also be used.35,36 Several
quantities can be evaluated at CPs, such as the Laplacian
∇2ρ(r), the potential energy density V (r), the positive
definite kinetic energy density G(r), and the electronic
energy density H(r) = V (r) +G(r), which are related to
the ECD Laplacian through the local virial theorem:34

1

4
∇2ρ(r) = V (r) + 2G(r) = H(r) +G(r) . (8)

The |V (r)|/G(r) ratio and the bond degree (BD) index
H(r)/ρ(r) also prove useful in the chemical description of
different bonds, as the nature of the interactions can be
rationalized as follows:37 i) covalent bonds exhibit nega-
tive Laplacian, negative H(r) and a |V (r)|/G(r) ratio
larger than 2; ii) transit bonds are associated with a
positive Laplacian, an almost zero value of BD and a
value of |V (r)|/G(r) between 1 and 2; (iii) ionic bonds,
hydrogen-bonds and van der Waals interactions show
positive Laplacian and H(r) and a |V (r)|/G(r) ratio
lower than 1. Integration over atomic basins gives fur-
ther information such as atomic volumes, Bader’s atomic
charges and the partition of the energy density in atomic
contributions.

C. Computational Setup

All calculations are performed with the Crystal14

program.17 All-electron atom-centered GTF basis sets
are adopted. For pyrope, oxygen atoms are described by
a (8s)-(411sp)-(1d) contraction of primitive GTFs, silicon
by a (8s)-(6311sp)-(1d) one, aluminum by a (8s)-(611sp)-
(1d) one and magnesium by a (8s)-(511sp)-(1d) one. A
6-21G(d) basis set is used for the crambin crystal. A
Linux cluster of Intel-Xeon processors, working at 2.13
GHz, with Ethernet connection is used for all calcula-
tions. The machine has 8 cores per node and 2 GB of
memory per core.

III. RESULTS AND DISCUSSION

As recalled in the introduction, the most interesting
one-electron property of a system is by far the ECD ρ(r),
out of which a wealth of chemical information can be
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FIG. 2: (color online) Speedup of the calculation of the ECD
ρ(r) on a 500×500×500 3D grid of points of pyrope (red cir-
cles) and crambin (blue squares) as a function of the number
of processors used Nproc. The three black lines of decreasing
thickness mark the 100%, 85% and 75% efficiency of the par-
allelism, respectively. The inset shows the reduction of the
wall-clock time of the calculation in the case of crambin as a
function of Nproc.

extracted. The efficiency of the current parallel imple-
mentation of its calculation according to equation (3) is
shown in Figure 2 where we report the speedup of the cal-
culation as a function of the number of processors Nproc

used (up to 64). The speedup is defined as the t1/tNproc

ratio between the wall-clock time needed to run the cal-
culation in serial mode t1 (i.e. on one processor) and
that needed to run it in parallel mode on Nproc proces-
sors tNproc

. The speedup is given for both the pyrope
silicate garnet (red circles) and for the crambin crystal-
lized protein (blue squares) and corresponds to the eval-
uation of ρ(r) on a 500×500×500 3D grid of points. A
high efficiency of the parallelization (greater than 75%)
is observed for both systems up to 64 processors, pyrope
showing a slightly larger speedup than crambin. Up to 16
processors, the efficiency is above 85% for both systems.
The inset of the figure reports the absolute wall-clock
time required by such a calculation in the case of cram-
bin (where such a dense grid of points corresponds to a
spatial resolution of 0.08×0.03×0.04 Å) as a function of
the number of cores used. It is seen that about 550 hours
(i.e. about 23 days!) would be required to compute such
property on serial mode, whereas it only takes 10 hours
for a calculation run in parallel mode on 64 processors.

In general, the evaluation of the electrostatic poten-
tial is not a prohibitive computational task; however, for
large systems it might become demanding. In Figure 3,
we report the speedup of the evaluation of the electro-

FIG. 3: (color online) Speedup of the calculation of the elec-
trostatic potential on 3D grid of 250’000 points of pyrope
(red circles) and crambin (blue squares) as a function of the
number of processors used Nproc. The three black lines of de-
creasing thickness mark the 100%, 75% and 50% efficiency of
the parallelism, respectively. The inset shows the reduction
of the wall-clock time of the calculation in the case of crambin
as a function of Nproc.

static potential (whose electronic contribution is given
by equation 7) at a 3D grid of 250’000 points for pyrope
and crambin. In this case, it is seen that the speedup of
the calculation significantly reduces when passing from
pyrope to crambin, as there are small parts of the al-
gorithm which have not been parallelized. Anyhow, the
efficiency of the scaling is seen to be always larger than
75% and 50% for pyrope and crambin, respectively up to
32 cores. Above 32 cores the speedup flattens, particu-
larly so in the case of crambin. The inset of the figure
reports the absolute wall-clock time of such a calculation
for crambin; it is seen that it would require about two
hours if run in serial mode, reducing to about 5 minutes
if run in parallel mode on 64 processors. The evaluation
of the ECD of a system on a 3D grid of points might be
performed when one wants to obtain 3D plots of ρ(r). A
standard option of this kind of graphical representations
is that of coloring the ECD iso-density surfaces according
to the value of the electrostatic potential at each position
in space, as it constitutes a useful tool for identifying
possible active sites in complex structures. By combin-
ing the two algorithms discussed above, these represen-
tations can be achieved at low computational cost and
short wall-clock time even for large molecular or periodic
systems. Figure 4 shows such a graphical representation
for the cell of the crambin protein crystal.
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FIG. 4: (color online) 3D graphical representation of an iso-
density ECD surface of the crambin crystal, colored according
to the value of the electrostatic potential at each point of
space.

A. Topological Analysis

As recalled in Section II B, the critical points of the
ECD ρ(r) can be classified in different types depending
on the number of negative eigenvalues of the Hessian ma-
trix computed at the critical point. Bond critical points,
of (3,-1) type, are of particular interest due to the fact
that several indicators computed at those points can give
valuable information on the particular chemical nature
of the interatomic interactions. Generally, one wants to
determine CPs of just a chemically meaningful portion
of the system. However, such determination might be-
come a demanding computational task if a large portion
of the system is considered and if bond paths are to be
computed. Let us consider the whole cell of both pyrope
and crambin: pyrope has 18 symmetry-irreducible criti-
cal points per cell while for crambin they are as many as
2052. A serial calculation for the search of the CPs and
for the evaluation of the bond paths would require about
40 minutes for pyrope and 760 hours for crambin. Figure
5 reports the speedup of this calculation as a function of
the number of processors used, up to 32. It is seen that
up to 8 processors the scaling of pyrope is almost ideal,
with an efficiency close to 100%, and that of crambin
is above 75%; from 8 to 32 processors the efficiency of
the parallelization decreases but still remains larger than
75% for pyrope and 50% for crambin. This speedup al-
lows to determine the critical points and the bond paths of

FIG. 5: (color online) Speedup of the determination of ECD
critical points and bond paths of pyrope (red circles) and cram-
bin (blue squares) as a function of the number of processors
used Nproc. The three black lines of decreasing thickness mark
the 100%, 75% and 50% efficiency of the parallelism, respec-
tively. The inset shows the reduction of the wall-clock time of
the calculation in the case of crambin as a function of Nproc.

the crambin crystallized protein in a bit less than 2 days
when running in parallel on 32 processors with respect to
the 32 days that would be required in serial mode. The
reduction of the wall-clock time on such a calculation is
documented in the inset of the figure.

As introduced in Section II B, several quantities of
chemical interest (atomic partition of the kinetic and po-
tential energy density, Bader’s atomic charges, atomic
volumes, etc.) can be extracted from the analysis of the
ECD by performing an integration over atomic basins.
This part of the ECD topological analysis is by far
the most computationally expensive; if the symmetry-
irreducible portion of the system is large, it is generally
convenient to select a chemically-interesting fragment of
the system on which to perform such an analysis. Py-
rope has a relatively small asymmetric unit so that the
integration has been performed over all of it, whereas
for crambin a tyrosine fragment has been selected that
is known to constitute one of the active sites for water
absorption in the crystalline structure. The default value
of 0.001 a.u. is used for the tolerance that governs the
determination of zero flux surfaces in the Topond pack-
age, which generally ensures very high accuracy; it may
be noticed that less strict values of this tolerance (ap-
proximately in the range from 0.002 to 0.004 a.u.) could
be safely used, which would reduce the required CPU
time. In Figure 6 we report the speedup of such a calcu-
lation up to 32 processors; the selected tyrosine fragment
of crambin is graphically represented in the inset of the
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FIG. 6: (color online) Speedup of the calculation of inte-
grated ECD-related properties of pyrope (red circles) and of
the tyrosine fragment (in the inset) of crambin (blue squares)
as a function of the number of processors used Nproc. The
three black lines of decreasing thickness mark the 100%, 85%
and 75% efficiency of the parallelism, respectively. The inset
shows the reduction of the wall-clock time of the calculation
in the case of crambin as a function of Nproc.

figure. It is seen that the efficiency of the speedup is
above 85% for both systems almost up to 16 processors;
up to 32 processors it remains larger than 85% for pyrope
and it reduces to 75% for crambin. This speedup proves
extremely useful for practical purposes, given the compu-
tationally demanding character of these calculations. As
in the previous figures, also in this case the inset shows
the reduction in wall-clock time of the calculation in the

case of crambin. It is seen that such a characterization
would require almost 44 days (1048 hours) if run in se-
rial mode on one processor; the calculation only takes 2
days if run in parallel mode over 32 processors or 1 day if
run over 128 processors (not shown in the inset). In the
case of pyrope, the calculation takes about 32 hours on 1
processor and just 1.1 hours in parallel on 32 processors.

As a final consideration on the efficiency of the current
parallelization, we may note that even if all speedups
are rather satisfactory and effectively serve the practical
purpose of making all of the present calculations feasible
in a reasonable amount of time, none of them are actu-
ally ideal for large systems. This is due to the fact that
some small parts of the algorithms (as the construction
of the grid) have not been parallelized yet, which are al-
most negligible for small systems but deteriorate a bit
the scaling for larger systems.

For practical purposes, a critical discussion of the rel-
ative performance of different functionals on the descrip-
tion of the chemical nature of various interactions does
constitute a relevant quantum-chemical topic. In this re-
spect, a further point of strength of the present scheme
is given by the fact that it takes advantage of the pro-
gresses made in the last years in the implementation
into the Crystal program of several functionals of the
DFT.17 In particular, Crystal is well-known for its effi-
cient evaluation of the non-local Hartree-Fock exact ex-
change and for its inclusion in global or range-separated
hybrid functionals. Four rungs of the so-called “Jacob’s
ladder” proposed by John Perdew to rationalize various
DFT functionals in terms of increased accuracy20 are
currently implemented in the program: the local den-
sity approximation (LDA),38 several formulations of the
generalized-gradient approximation (GGA), such as the
popular PBE or PW91 functionals,39,40 global hybrids,
such as B3LYP and PBE0,41,42 and meta-GGA, such as
the M06 one.43

TABLE I: Several properties (ECD ρ, its Laplacian ∇2ρ, the |V |/G ratio and the bond degree H/ρ, all in atomic units)
computed at two bond critical points (a covalent O−H, whose length is 0.99 Å, and a hydrogen O· · ·H one, whose length is
1.83 Å) of the tyrosine fragment of crambin with different DFT functionals at fixed geometry (B3LYP optimized). For the
O· · ·H bond the strength of the hydrogen bond is estimated by its energy E (in kJ/mol). The fractional distance xCP of the
CP from the O atom, given with respect to the length of the bond, is also reported for both bonds.

O−H O· · ·H

ρ ∇2ρ |V |/G H/ρ xCP ρ ∇2ρ |V |/G H/ρ E xCP

LDA 0.311 -1.96 9.66 -1.78 0.82 0.032 0.10 0.93 0.05 -28.2 0.66

PBE 0.320 -1.89 9.11 -1.69 0.81 0.031 0.10 0.89 0.08 -27.6 0.65

PW91 0.320 -1.89 9.11 -1.69 0.81 0.031 0.10 0.90 0.08 -27.6 0.65

B3LYP 0.320 -1.97 9.80 -1.74 0.81 0.031 0.11 0.88 0.09 -27.9 0.65

PBE0 0.320 -2.01 10.05 -1.77 0.82 0.030 0.11 0.88 0.10 -27.8 0.66

M06 0.310 -1.78 8.61 -1.65 0.81 0.033 0.11 0.92 0.06 -29.7 0.65
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In Table III A we report a series of ECD-related prop-
erties as evaluated at two (3,-1) bond critical points of
the tyrosine fragment of the crambin protein as computed
with these 6 different functionals at fixed geometry (as
optimized at B3LYP level). The ECD ρ, its Laplacian
∇2ρ, the |V |/G ratio and the bond degree H/ρ are given
for the covalent O−H bond and for the O· · ·H hydro-
gen bond; for the latter, its strength is also estimated
by means of its energy E = 1/2V (where V is evaluated
at the corresponding critical point) according to the pro-
posal by Espinosa et al.44 The position of the two CPs
is also reported in the table, expressed as the fractional
distance xCP from the O atom with respect to the bond
length. Differences in the location of the CPs provided
by different functionals are tiny. The sensitiveness of
different indices to the description provided by different
functionals is shown in the table. It is seen, for instance,
that GGA and global hybrid functionals describe a higher
density in the O−H covalent bond than LDA and meta-
GGA functionals and, conversely, a lower density in the
region of the O· · ·H hydrogen bond.

IV. CONCLUSIONS

A parallel implementation in the Crystal program
has been presented of a series of algorithms related to the

electron density analysis of large molecular and periodic
systems. The a posteriori analysis of the wave-function
can become a computationally demanding task, particu-
larly so if sophisticated techniques are used to extract as
much chemical information as possible out of the wave-
function of large systems, such as the topological analysis
or the high-resolution 3D graphical representation on a
dense grid of points. Electron charge and momentum
densities, electrostatic potential, X-ray structure factors,
Compton profiles and Bader’s topological indices can now
be computed even for large systems (as large as a crys-
tallized crambin protein which is used to document the
efficiency of the speedup of the current implementation)
at reduced computational cost for several DFT function-
als belonging to four levels of approximation.
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