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Extraction of bilberry (Vaccinium myrtillus) 

antioxidants using supercritical/subcritical 

CO2 and ethanol as co-solvent 

Oxana Babovaa, Andrea Occhipintia, b, Andrea Capuzzob, Massimo E. Maffeia, b, ,  

Highlights 

•Bilberry antioxidant compounds are selectively extracted by subcritical CO2. 

•Anthocyanins, flavonoids, phenolics and proanthocyanidins show antioxidant properties. 

•Cyanidin-3-O-glucoside and cyanidin-3-O-arabinoside are selectively extracted. 

 

Abstract 

Anthocyanins and other phenolic compounds of bilberry (Vaccinium myrtillus) are known for their 

antioxidant properties. Supercritical (SC) and subcritical (SubC) CO2 extractions have been used to 

improve extraction and selectivity of plant bioactive compounds. Bilberry was extracted by SC CO2 

followed by SubC CO2 with 10% v/v ethanol as co-solvent. Total phenolic compounds, 

anthocyanins and proanthocyanidins were quantified and chemically characterized by HPLC-DAD-

ESI-MS/MS. Antioxidant activity was tested by reducing power assay, free radical scavenging 

activity (DPPH) and ABTS radical cation assay. SubC CO2 selectively extracted cyanidin-3-O-

glucoside and cyanidin-3-O-arabinoside. Delphinidin-3-O-glucoside, ellagic acid pentoside, 

feruloyl hexoside and several quercetin glycosides were also extracted. SubC CO2 extracts showed 

a high antioxidant activity [DPPH IC50 = 102.66 (±2.64); ABTS IC50 = 8.49 (±0.41) and reducing 

power activity IC50 = 10.30 (±0.10)]. SubC-CO2 extraction of bilberry is an efficient method to 

recover selectively compounds with a high antioxidant activity and a high potential for 

pharmacological applications. 

 

Graphical abstract 

Supercritical and subcritical CO2 extraction of bilberry allowed to recover selectively cyanidin-3-O-

glucoside and other compounds with a high antioxidant activity. 

 

http://www.sciencedirect.com/science/article/pii/S089684461530142X#fx1
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1. Introduction 

The dietary intake of natural antioxidants such as vitamins, polyphenols and carotenoids might help 

to reduce the risk of degenerative diseases such as cardiovascular disorders, ageing-induced 

oxidative stress and inflammatory responses. In the last few years, the market of dietary 

supplements exploited the natural antioxidants of Vaccinium berry extracts [1]. The biological 

activity of these extracts is correlated to the high content of anthocyanins, a large group of water-

soluble flavonoids that provide the characteristic blue/red colour to fruits, flowers and vegetables 

[2]. Bilberry (Vaccinium myrtillus L.) is one of the richest natural sources of this class of 

polyphenols. Bilberry contains five of the six common natural anthocyanidins: cyanidin, 

delphinidin, malvidin, peonidin, and petunidin, which accumulate in both peel and flesh and occur 

mainly as glycosides [1] and [3]. Besides anthocyanins, bilberry also contains other phenolic 

compounds with health promoting activities [4]. 

Bilberry extraction techniques can significantly influence the anthocyanin concentration. In the last 

decade, anthocyanin extraction has been widely investigated by using green technologies such as 

ultrasound assisted extraction [5] and supercritical fluid extraction [6] as alternatives methods to 

conventional solvent extraction. Supercritical CO2 (SC CO2) extraction uses carbon dioxide above 

its critical point and exhibits liquid-like properties (solvent power, negligible surface tension) as 

well as gas-like proprieties (matrix penetration and transport) [7]. SC CO2 is widely used for the 

extraction of natural compounds since it is a colourless, odourless, nontoxic, non-flammable, safe, 

highly pure and cost-effective solvent. Moreover, the CO2 critical point is at relatively low 

pressures and near room temperature (Pc = 7.38 MPa and Tc = 31.1 °C) and the use of mild 

extraction parameters is known to limit thermal and oxidative degradation of bioactive compounds 

[8], [9], [10], [11] and [12]. However, the lipophilic properties of SC CO2 make this solvent poorly 

suitable for extraction of polar compounds such as glycosylated phenolic compounds. Nevertheless, 

the addition of small amounts of co-solvents such as water or ethanol (<5% w/w) can increase the 

polarity of SC CO2 by enhancing the solubility of more polar compounds; in these conditions, the 

system moves in a two-phases subcritical state [8] and [9]. The effectiveness of subcritical 
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extraction of anthocyanins and other polyphenols has been investigated in the food industry [13], 

[14] and [15]. 

In this study, we investigate the use of supercritical and subcritical fluids for the selective extraction 

of antioxidant bioactive compounds from V. myrtillus. To our knowledge, the use of subcritical CO2 

(SubC-CO2) by has never been tested on bilberry. 

2. Materials and methods 

2.1. Chemicals 

Ethanol (95%), potassium ferricyanide (99.8%), 1,1-diphenyl-2-picryl-hydrazil stable radical 

(DPPH ) (>98%) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid) (98%) were 

purchased from Sigma–Aldrich, USA; procyanidin A2 (>99%) and cyanidin-3-O-glucoside (96%), 

were purchased from Extrasynthese, France; trichloracetic acid (99%) was purchased from Carlo 

Erba, Italy, Trolox® (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) (98%) and DMAC 

(4-dimethylamino-cinnamaldehyde) (99%) were purchased from TCI-Europe, Belgium; acetonitrile 

was purchased from Panreac, Spain. 

2.2. Plant material 

Dried bilberry fruits (V. myrtillus L.) marketed by Herbamea S.r.l. (Italy) were ground in a blender 

and stored in closed containers at 4 °C in the dark until use. 

2.3. Supercritical and subcritical CO2 extraction 

A multistage supercritical/subcritical extraction of ground bilberries was performed with a pilot 

plant kindly provided by Separeco S.r.l. (Piscina – Turin, Italy) with the aim to extract polar 

phenols from dried ground bilberries. To improve the solubility of target compounds, the extraction 

of anthocyanins and phenols was performed with the use of aqueous ethanol as co-solvent. Berries 

were air dried to 5% moisture and were directly ground with a blender and passed through a sieve 

with a 4 mm diameter. The system was equipped with a 5 L extractor, a gravimetric and a cyclonic 

separator (1.2 L). The gravimetric and the cyclonic separators were kept at P = 2.5 MPa and 

T = 40 °C, respectively (Fig. 1). Dried bilberry (430 g) extraction was carried out in three steps at 

P = 25 MPa, T = 45 °C: (1) SC-CO2 extraction (flow-rate 8 kg h−1 CO2) with 6% w/w of co-solvent 

(30% distilled water, 70% ethanol, Sigma–Aldrich, USA); (2) Subcritical CO2 extraction (SubC-

CO2) (flow-rate 6 kg h−1 CO2) with 6% w/w of co-solvent (50% distilled water, 50% ethanol) at 

6 ml min−1; and (3) SubC-CO2 extraction (flow-rate 6 kg h−1 CO2) with 9% w/w of co-solvent (90% 

distilled water, 10% ethanol). During the SubC-CO2, the solvent flow through the extraction vessel 

was reversed from the previous bottom-up to a top-down direction. The first and second extraction 

steps were carried out for 1 hour, the last step for 3 h. Extracts were collected from both gravimetric 

and cyclonic separators. The system was equipped with a cyclonic separator to assure the complete 

recovery of extract and to avoid the reflux of extract into the CO2 storage tank. Three extractions 

were performed. 
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Fig. 1.  

Schematic representation of the supercritical fluid extractor used in this work. A CO2 tank 

provides the CO2 used for extraction. (1) Fluid circulation during supercritical extraction; 

(2) fluid circulation during sub-critical extraction; (A) CO2 buffer storage tank; (B) co-

solvent storage tank; (E) extraction vessel; (S1) gravimetric separator; (S2) cyclonic 

separator; (P) diaphragm pumps; (H1–H3) heat exchangers; (C) condenser; (HV1–HV6) hand 

valves; (MV1, MV2) membrane valves. 

Courtesy of Separeco S.r.l. (Italy). 

2.4. Determination of total phenols, anthocyanin and proanthocyanidin content 

The total phenolic content of berry extracts was determined according to the Folin–Ciocalteu 

method [16] and the data were expressed as mg g−1 of dry weight (d.wt). 

Total anthocyanin content was determined according to the pH differential method by Giusti and 

Wrolstad [17]. Briefly, samples were properly diluted in either 1 M KCl buffer at pH 1.0 or 0.4 M 

ammonium acetate buffer at pH 4.5. Absorbance was read at 510 and 700 nm at room temperature 

using a Pharmacia Biotech Ultrospec 3000 UV-Visible spectrophotometer. Quantification of total 

anthocyanins was calculated based on the cyanidin-3-O-glucoside molar extinction coefficient (ɛ 

26,900) and molecular weight (449.2 Da) using the following formula: 

C(mg/l)=A∗MW∗DF∗1000ε∗l 

 
where A=[(Aλmax−A700)pH1.0−(Aλmax−A700)pH4.5]A=(Aλmax−A700)pH1.0−(Aλmax−A700)pH4.5, 

MW is the molecular weight of cyanidin-3-O-glucoside; DF is the dilution factor; ɛ is the molar 

extinction coefficient of cyanidin-3-O-glucoside and l is the cuvette path length (1 cm). Total 

anthocyanins were quantified by using a cyanidin-3-O-glucoside calibration standard curve 

(R = 0.997). 

Total proanthocyanidin (PACs) content was quantified by BL-DMAC method [18]. The 

spectrophotometric assay was performed in a final volume of 1.12 ml with 0.28 ml of diluted 

sample and 0.84 ml of DMAC (4-dimethylamino-cinnamaldehyde) solution. Total PACs were 

quantified by using a Procyanidin A2 calibration standard curve (R = 0.998). 
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2.5. HPLC-DAD-ESI-MS/MS of anthocyanins, proanthocyanidins and phenolic 

compounds 

Samples were analyzed by liquid chromatography (1200 HPLC, Agilent Technologies, USA) 

equipped with a Luna reverse phase C18 (3.00 μm, 150 mm × 3.0 mm, Phenomenex, USA) column. 

The binary solvent system for identification and quantification of anthocyanins was: (A) MilliQ 

H2O (Millipore, U.S.A.) with 10% v/v of formic acid and (B), methanol/water/formic acid 50/40/10 

v/v with 10% v/v of formic acid. The chromatographic separation was carried out at constant flow 

rate (200 μl min−1) with the following conditions: linear gradient from 15% to 45% of B in 15 min, 

at 35 min 70% of B and at 55 min 100% of B. The initial mobile phase was re-established for 

11 min before the next injection. To analyze phenolic compounds, the solvent system was: (A) 

MilliQ H2O with 0.1% v/v of formic acid and (B) acetonitrile with 0.1% v/v of formic acid. The 

separation was performed at constant flow rate (200 μl min−1) with the following conditions: 

isocratic elution with 3% of B for 5 min, from 3% to 10% in 5 min, at 43 min 25% of B, 50% of B 

at 47 min, and 90% of B at 50 min. Mass spectrometry analyses were performed with a 6330 Series 

Ion Trap LC–MS System (Agilent Technologies, U.S.A.) equipped with an electrospray ionization 

source (ESI) operating in positive mode for anthocyanins and negative mode for phenolic 

compounds. Qualitative analyses were performed in scan mode (500–850 m/z) while quantitative 

analyses were obtained by Multiple Reaction Monitoring (MRM). To analyze proanthocyanidins, 

the solvent system was: (A) MilliQ H2O (Millipore, U.S.A.) with 0.1% v/v of formic acid and (B), 

acetonitrile (VWR International, USA) with 0.1% v/v of formic acid. The chromatographic 

separation was carried out at constant flow rate (200 μl min−1) with the following conditions: linear 

gradient from 5% to 30% of B in 10 min, isocratic elution for 5 min, at 20 min 50% of B and 90% 

of B at 24 min. The initial mobile phase was re-established for 10 min before the next injection. The 

initial mobile phase was re-established for 10 min before the next injection. Tandem mass 

spectrometry analyses were performed with a 6330 Series Ion Trap LC–MS System (Agilent 

Technologies, USA) equipped with an electrospray ionization source (ESI) operating in negative 

mode. Identification of PACs was performed by Multiple Reaction Monitoring (MRM). 

2.6. Determination of antioxidant activity 

The reducing power assay was performed by mixing a proper dilution of samples (100 μl) with 

250 μl of phosphate buffer (0.2 M, pH 6.6) and 250 μl of 1% w/v potassium ferricyanide [19]. The 

mixture was incubated at 50 °C for 20 min. At the end of incubation, 250 μl of 10% w/v of 

trichloracetic acid were added and the mixture and centrifuged at 1000 × g for 2 min. The 

supernatant (500 μl) was mixed with distilled water (500 μl) and 0.1% w/v iron (III) chloride 

(100 μl). The absorbance was measured at 700 nm against a blank sample. Trolox® (6-hydroxy-

2,5,7,8-tetramethylchromane-2-carboxylic acid) was used as reference antioxidant compound. 

The free radical scavenging activity was measured using 1,1-diphenyl-2-picryl-hydrazil stable 

radical (DPPH ) [19]. Five hundred microliter of DPPH working solution (0.1 mM in 95% v/v 

ethanol) were added to different volumes (10–500 μl) of diluted samples (50% v/v ethanol). The 

reaction mixture was left to stand for 30 min in the dark at room temperature and periodically 

shaken. The absorbance was measured at 517 nm against a blank sample. Trolox® was used as a 

reference antioxidant compound. For each extract, the antioxidant activity of samples was 

calculated using the following equation: % = [(Ablank − Asample)/Ablank] * 100; where Ablank is the 

absorbance of blank, and Asample the absorbance of sample at 517 nm. 

ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) was dissolved in MilliQ water at the 

final concentration of 7 mM and stored at −80 °C until use [19]. The ABTS radical cation (ABTS +) 

was obtained by mixing the ABTS stock solution (7 mM) with 2.45 mM potassium persulfate. The 
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reaction was left in the dark at room temperature for 12–16 h before use. The ABTS + solution was 

diluted with 95% v/v ethanol to an absorbance of 0.70 (±0.02) at 734 nm and equilibrated at 30 °C 

before use. The samples were properly diluted with 50% v/v ethanol before the assay. For the 

colorimetric reaction, 450 μl of ABTS•+ solution were mixed with increasing volumes of samples 

(2.2–50 μl). The absorbance was read exactly after 2 min at 734 nm. Trolox® was used as a 

reference antioxidant compound. The antioxidant activity of samples was calculated using the 

following equation: % = [(Ablank − Asample)/Ablank] * 100; where Ablank is the absorbance of blank, and 

Asample the absorbance of sample at 734 nm. 

2.7. Statistical analysis 

All experiments were carried out in triplicate and the results are expressed as mean ± standard 

deviation (SD). Statistic differences were estimated by ANOVA followed by the post hoc 

Bonferroni test. Values were considered statistically significant at P < 0.05. Regarding DPPH and 

ABTS antioxidant assays, the sample concentration that reduces by 50% the initial radical 

concentration (IC50) was calculated by interpolation of experimental points. Regarding the reducing 

power assay, IC50 values were expressed as the concentration at which absorbance was 0.5. All 

statistical analyses were carried out using SYSTAT 10.0. 

3. Results and discussion 

3.1. Subcritical CO2 extraction of bilberry phenolics 

Bilberry is a rich source of anthocyanins and other phenolic compounds and several methods have 

been used to improve their extraction. In the present work, SC CO2 was applied for the pre-

treatment of bilberry to improve extraction and was followed by a subsequent SubC CO2 extraction 

with the use of a polar solvent. As expected, SC CO2 was too lipophilic to extract phenolics and the 

extraction of anthocyanins and other phenolic compounds occurred only during SubC CO2, using 

10% v/v ethanol as co-solvent. Fig. 2 shows the kinetics of anthocyanin extraction; after 0.5 h the 

system was switched from supercritical to subcritical conditions and the anthocyanin recovery 

peaked about 30 min after the beginning of SubC CO2, using 10% v/v ethanol as co-solvent. The 

yield of extraction was 0.62 (±0.05) mg g−1 d.wt anthocyanins. In grape pomace, the subcritical 

extraction achieved the efficient recovery of anthocyanins with the use of 50% and 70% v/v of 

ethanol/water mixtures [15]. Our results are in agreement with the use of co-solvents for the 

efficient extraction of phenolics and anthocyanins from dried berries [20] and [21]. 
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Fig. 2.  

Kinetics of anthocyanin extraction. The extraction starts in supercritical CO2 conditions and 

after 30 min the system is switched to SubC CO2, using 10% v/v ethanol as co-solvent. The 

highest recovery of anthocyanins occurs after 30 min of subcritical CO2 extraction. 

The total content of phenols with SubC-CO2 + 10% v/v ethanol was 72.18 (±1.13) mg g−1 d.wt., 

which is in line with the literature data [1], [3] and [22]. The BL-DMAC assay allows the specific 

quantification of flavan-3-ols and proanthocyanidins at 640 nm excluding the anthocyanin 

interferences [18]. The quantification of total PACs performed by BL-DMAC method by SubC-

CO2 was 2.77 mg g−1 d.wt. 

3.2. Chemical composition of bilberry SubC-CO2 extracts 

The chemical composition of bilberry anthocyanins extracted by SubC-CO2 + 10% v/v ethanol was 

characterized by the presence of delphinidin, cyanidin, petunidin and peonidin glycosides, whereas 

the presence of malvidin glycosides was not detected. In particular, subcritical CO2 selectively 

extracted cyanidin-3-O-glucoside and cyanidin-3-O-arabinoside, which account for 60 and 24% of 

total detected anthocyanins, respectively. Delphinidin-3-O-glucoside was the most extracted among 

delphinidin glycosides, whereas the extraction of petunidin and peonidin glycosides was very low ( 

Table 1). The qualitative profile and the relative percentage of anthocyanins are consistent with the 

reported literature data [1] and [23]. 
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Table 1.  

Anthocyanin chemical composition of bilberry SubC-CO2 (10% v/v ethanol) extract. Values 

are expressed as percentage of total anthocyanins [0.62 (±0.05) mg g−1 d.wt] (standard 

deviation). 

Compound Molecular ion [M]+ (m/z) Fragment ion (m/z) Percentage 

Delphinidin-3-O-galactoside 465 303 0.62 (0.09) 

Delphinidin-3-O-glucoside 465 303 8.90 (0.72) 

Delphinidin-3-O-arabinoside 435 303 0.63 (0.04) 

Cyanidin-3-O-galactoside 449 287 4.94 (0.61) 

Cyanidin-3-O-glucoside 449 287 60.26 (1.15) 

Cyanidin-3-O-arabinoside 419 287 23.81 (1.14) 

Petunidin-3-O-galactoside 479 317 0.42 (0.07) 

Petunidin-3-O-glucoside 479 317 0.10 (0.03) 

Petunidin-3-O-arabinoside 449 317 0.02 (0.003) 

Peonidin-3-O-galactoside 463 301 0.22 (0.04) 

Peonidin-3-O-glucoside 463 301 0.03 (0.001) 

Peonidin-3-O-arabinoside 433 301 0.01 (0.002) 

HPLC-ESI-MS2 analyses showed also the presence of several phenolic compounds including 

benzoic acid derivatives, phenyl propanoids and flavonoids in accordance to literature data 

[22] and [24]. The most abundant compound of this fraction was ellagic acid pentoside, followed by 

relatively high amounts of feruloyl hexoside (Table 2). Several quercetin glycosides were also 

present, with particular reference to quercetin-3-O-galactoside and quercetin-3-O-glucoside. Very 

low amounts of myricetin-3-O-galactoside were also present. Among other compounds, ellagic 

acid, chlorogenic acid, and dihydroxiybenzoic acid hexoside were also detected ( Table 2). 
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Table 2.  

Chemical composition of other phenolic compounds present in the bilberry SubC-CO2 (10% 

v/v ethanol) extract (standard deviation). 

Compound 
Molecular ion 

[M]+ (m/z) 

Fragment ions 

(m/z) 

Content (mg g−1 of 

dry extract) 

Caffeic acid 179 135 0.028 (0.01) 

Ferulic acid 193 134 0.014 (0.003) 

Ellagic acid 301 257, 229 0.242 (0.02) 

Dihydroxybenzoic acid 

hexoside 
315 153, 162 0.274 (0.01) 

Vanilic acid hesoside 329 167 0.010 (0.002) 

Caffeoyl hexoside 341 179, 135 0.014 (0.01) 

Chlorogenic acid 353 191, 179 0.712 (0.07) 

Feruloyl hexoside 355 193, 134 1.201 (0.06) 

Unknown quinic acid 

derivative 
383 191 0.081 (0.01) 

Ellagic acid pentoside 433 301 2.609 (0.88) 

Quercetin-3-O-galactoside 463 301 0.812 (0.05) 

Quercetin-3-O-glucoside 463 301 0.752 (0.07) 

Quercetin-3-O-rutinoside 609 301 0.129 (0.03) 

Quercetin-3-O-glucuronide 477 301 0.018 (0.002) 

Quercetin-3-O-xyloside 433 301 0.023 (0.004) 

Quercetin-3-O-arabinoside 433 301 0.099 (0.01) 

Myricetin-3-O-galactocside 479 317 0.005 (0.001) 

Kaempferol-3-O-galactoside 447 285 0.005 (0.001) 

Kaemferol-3-O-glucoside 447 285 0.017 (0.002) 

Kaempferol-3-O-(-6-

coumaroyl)-glucoside 
593 285 0.014 (0.002) 

Dimeric and trimeric proanthocyanidins were already reported in V. myrtillus, although they were 

tentatively quantified by depolymerisation methods of fresh berry [25] and [26]. From a qualitative 

point of view, only dimeric B-type proanthocyanidins were detected in HPLC-ESI-MS/MS analyses 

and only one peak was detected at m/z 577 with base fragment ions m/z 289 and 407 

(Supplementary Fig. S1). The presence of proanthocyanidins can also significantly affect the 

antioxidant activity of extracts [27]. Fig. 3 depicts the structure formulae of some identified 

phenolic compounds. 
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Fig. 3.  

Structure formulae of some identified anthocyanins, flavonoids and other phenolic 

compounds. 

3.3. Antioxidant activity of bilberry SubC-CO2 extracts 

In order to assess the bioactive properties of the SubC-CO2 extract, we evaluated their reducing 

power by ferric thiocyanate assay and the free radical scavenging activities by ABTS and DPPH 

radical assays. The antioxidant activity was compared to Trolox® as a reference compound. In 

general, the extracts were more active as antioxidants when tested by the ABTS assay (Table 3) 

since the steric accessibility of DPPH nitrogen-centred radical strongly affects the reaction rate of 

antioxidant compounds [28]. Extracts showed always a high antioxidant activity, with values 

comparable to those reported for berries containing anthocyanins [5], [26] and [29]. However, 

SubC-CO2 extract values were always significantly lower when compared to Trolox® (Table 3). 
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Table 3.  

Antioxidant activity of SubC-CO2 (10% v/v ethanol) fraction and comparison with Trolox®. 

Data are expressed as the IC50 in μg of dry extract (standard deviation). 

Assay SubC-CO2 + ethanol 10% Trolox® 

DPPH 102.66 (2.64)a 20.80 (0.26)b 

ABTS 8.49 (0.41)a 0.82 (0.02)b 

Reducing power 10.30 (0.10)a 3.00 (0.01)b 

In the same row, different letters indicate significant (P < 0.05) differences. 

The antioxidant activity of the bilberry SubC-CO2 extract correlates with the selective extraction of 

cyanidin-3-O-glucoside. This compound is a potent antioxidant anthocyanin, which has been shown 

to reduce Reactive Oxygen Species (ROS) formation and possess radical scavenging activity 

through inhibition of glutamate-induced Zn2+ signalling. Cyanidin-3-O-glucoside has been involved 

in protection from oxidation-dependent protein damage [30], interaction with lipid and glucose 

metabolism [31], protection against the adverse effects of UV-B radiation [32], protection from 

hepatic damage through antioxidant and anti-inflammatory mechanisms [33], reduction of 

photoreceptor damage and functionally improve scotopic visual functions [34] and protection 

against various stressors preventing several pathological conditions [35] and [36]. 

SubC-CO2 extracts were also rich in delphinidin-3-O-glucoside. This compound is another potent 

antioxidant with antinflammatory properties that prevents hypoxia-induced apoptosis of embryonic 

cells [37] and has been used to treat diabetes mellitus complications [38], suppress cancer cell 

invasion [39], with higher activity when the glycoside is hydrolyzed to its aglycon form [40]. 

In Vaccinium species, the antioxidant activity is related not only to anthocyanins but also to 

chlorogenic acid, caffeic acid derivatives, flavonoids and proanthocyanidins [3], [22] and [24]. 

Among the several phenolics present in the bilberry SubC-CO2 extract, ellagic acid is known for its 

antioxidant activity and was recently found to show anti-inflammatory and antiapoptotic properties 

[41]. The selective extraction of several quercetin glycosides was also of particular interest owing to 

its anticancer [30] and antioxidant [42] properties. 

4. Conclusion 

This study investigated the selective recovery of high value molecules from bilberry by a stepwise 

extraction procedure through supercritical/subcritical CO2 with ethanol as co-solvent. SubC-CO2 

selectively extracted a phenolic/anthocyanin rich faction with high antioxidant activity. The 

preliminary supercritical treatment allowed the selective extraction in subcritical conditions of 

cyanidin glycosides, ellagic acid and quercetin glycosided, whose biological activity is known and 

important for pharmaceutical and nutraceutical applications. Possible improvement of the extraction 

efficiency can be obtained by the use of different drying techniques, as recently reported [43]. The 

SubC-CO2 extraction of bilberry performed with ethanol as co-solvent may be considered an 

efficient extraction method to recover fractions with high antioxidant and potential pharmacological 

activity. 
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