
This is an author version of the contribution published on:

Gamba, Marco; Friard, Olivier; Riondato, Isidoro; Righini, Roberta;
Colombo, Camilla; Miaretsoa, Longondraza; Torti, Valeria; Nadhurou, Bakri;

Giacoma, Cristina
Comparative Analysis of the Vocal Repertoire of Eulemur: A Dynamic Time

Warping Approach
INTERNATIONAL JOURNAL OF PRIMATOLOGY (2015)

DOI: 10.1007/s10764-015-9861-1

The definitive version is available at:
http://link.springer.com/content/pdf/10.1007/s10764-015-9861-1

http://link.springer.com/content/pdf/10.1007/s10764-015-9861-1


Comparative analysis of the Eulemur vocal repertoire: a dynamic time warping 1 

approach. 2 

 3 

Authors: Marco Gambaa, Olivier Friarda, Isidoro Riondatoa, Roberta Righinia, Camilla 4 

Colomboa, Longondraza Miaretsoab, Valeria Tortia, Bakri Nadhuroua, Cristina 5 

Giacomaa. 6 

 7 

a Department of Life Sciences and Systems Biology, University of Torino, Italy. 8 

b Faculté de Sciences, University of Mahajanga, Madagascar. 9 

 10 

Corresponding author: Marco Gamba, Department of Life Sciences and Systems 11 

Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy. 12 

Tel. +390116704560 13 

Fax. +390116704508 14 

Email: marco.gamba@unito.it 15 

 16 

Word count:  17 

Keywords: vocal communication, true lemurs, species-specific differences, acoustic 18 

analysis, unsupervised classification, cluster analysis. 19 

  20 

Blinded Manuscript
Click here to view linked References

mailto:marco.gamba@unito.it
mailto:marco.gamba@unito.it
http://www.editorialmanager.com/ijop/viewRCResults.aspx?pdf=1&docID=1819&rev=4&fileID=42494&msid={B0214376-8C93-4844-B5A4-F755324667FD}


ABSTRACT 21 

The diversity of qualitative approaches and analytical methods has often undermined 22 

comparative research on primate vocal repertoires. The purpose of the present work is 23 

to introduce a quantitative method based on dynamic time warping to the study of 24 

repertoire size in Eulemur spp. We obtained a large sample of calls of E. coronatus, 25 

E. flavifrons, E. fulvus, E. macaco, E. mongoz, E. rubriventer and E. rufus, recorded 26 

between 1999 and 2013 from captive and wild lemurs. We inspected recordings 27 

visually using spectrograms, then cut and saved high-quality vocal emissions to single 28 

files for further analysis. We extracted the acoustic features of all vocalizations of a 29 

species using the Hidden Markov Model toolkit, an application of dynamic time 30 

warping, then compared cepstral coefficients (a feature widely used in automatic 31 

speaker recognition) pairwise. We analysed the results using Affinity Propagation 32 

clustering. We found that Eulemur species share most of their vocal repertoire but 33 

species-specific calls determine repertoire size differences. Repertoire size varied 34 

from 9 and 14 vocalisation types among species, with a mean of 11. Group size is 35 

thought to favour the evolution of vocal complexity at the species level but our results 36 

suggest that this relationship should be reconsidered, as Eulemur rubriventer has the 37 

largest vocal repertoire but shows a relatively small average group size when 38 

compared to congeneric species. 39 

  40 



INTRODUCTION 41 
 42 

Vocal repertoires provide essential information to the study of how communication 43 

systems evolve (Maynard Smith and Harper 2003). For example, studies of nonhuman 44 

primate vocal communication have provided valuable contributions to the debate 45 

about the basis for the evolution of language in humans (Dunbar 2009). Nonhuman 46 

primate vocal repertoire size correlates with time spent grooming and with group size 47 

(McComb and Semple 2005), providing support for the theory that the complexity of 48 

human language has gradually evolved with the increase of social complexity 49 

(Dunbar 2009). However, comparative studies of repertoire size are often undermined 50 

by two factors. First, vocal repertoire data are derived from studies using different 51 

methods (McComb and Semple 2005). Second, identification of the signal categories 52 

have traditionally relied on human observers' assessment of differences among 53 

vocalizations, and are thus subject to individual criteria. Although multivariate 54 

techniques have demonstrated that such categories may be appropriate (e.g. Range 55 

and Fischer 2004; Gamba and Giacoma 2007; Maretti et al. 2010; Fuller 2014), 56 

human assessment of vocalization types may reflect differences perceived by humans 57 

but not necessarily by the species (Green 1975; Hauser 1996; Fuller 2014). 58 

 59 

New methodologies in the study of acoustic communication allow standardization 60 

across large datasets with limited assumptions (Clemins et al. 2006). These methods 61 

provide researchers with computer tools for exploring large databases without the 62 

disadvantages of subjective a priori classification, and are often referred to as 63 

‘unsupervised’ (Stowell and Plumbley 2014; Kogan and Margoliash 1998; 64 

Stathopoulos et al. 2014). Among the many methods (Garcia and Reyes Garcia 2003; 65 

Koolagudi et al. 2012), some used for automatic speech recognition, such as dynamic 66 



time warping, are increasingly used to investigate animal communication. Dynamic 67 

time warping has been useful for the classification of animal sounds in amphibians 68 

(Chen et al. 2012), birds (Anderson et al. 1996; Trawicki et al. 2005; Clemins and 69 

Johnson 2006; Ranjard and Ross 2008; Tao et al. 2008), marine mammals (Brown 70 

and Miller 2007), and primates (Riondato et al. 2013). These methods can be used to 71 

investigate the vocal repertoire across populations and species (Mercado III and 72 

Handel 2012; Ranjard et al. 2010) and improve our ability to make inferences about 73 

the evolution of human language (Fedurek and Slocombe 2011). Although 74 

unsupervised classification cannot guarantee to classify calls in a way that is 75 

meaningful to animals, it does ensure quantitative objective classification (Pozzi et al. 76 

2010). 77 

 78 

Due to their unique evolutionary history, lemurs are important subjects for 79 

comparative studies of vocal communication and may provide insights into the 80 

selective pressures that may have linked social and vocal complexity (Oda 2009). 81 

True lemurs (Eulemur spp.) are conspicuously vocal and that their vocal repertoire 82 

comprises low-pitched and high-pitched sounds (Petter and Charles-Dominique 1979, 83 

Macedonia and Stanger 1994; Gamba and Giacoma 2005). The presence of various 84 

call variants and combinations has also been demonstrated qualitatively (Macedonia 85 

and Stanger 1994). Previous studies showed that vocal repertoire may differ between 86 

species in Eulemur fulvus (Paillette and Petter 1978), E. mongoz (Curtis 1997), E. 87 

macaco (Gosset et al. 2001) and E. coronatus (Gamba and Giacoma 2007).  88 

 89 

The aim of this study was to investigate objectively the vocal repertoire across 90 

Eulemur species to understand whether different species show different repertoire size 91 



and vocalization types. We used an algorithm based on dynamic time warping to 92 

assess sound similarity (Ranjard et al. 2010). We then applied cluster analysis to 93 

identify groups of similar calls. To understand whether vocal repertoire size differs 94 

across Eulemur species we applied the same analytical process to datasets for 95 

different species, including the brown lemur (E. fulvus), the mongoose lemur (E. 96 

mongoz), the black lemur (E. macaco), and the crowned lemur (E. coronatus), whose 97 

repertoires were investigated in previous studies. We also analysed three species that 98 

were not included in previous quantitative vocal repertoire studies: the red-bellied 99 

lemur (E. rubriventer), the rufous brown lemur (E. rufus), and the blue-eyed black 100 

lemur (E. flavifrons). Qualitative studies of Eulemur species have shown a degree of 101 

similarity in the acoustic structure of the calls but shed little light on the quantitative 102 

evaluation of similarities and differences, and suffered from subjective identification 103 

of the call types (Macedonia and Stanger 1994; Gamba and Giacoma 2005). No 104 

previous study has combined, to our knowledge, the study of lemurs’ vocal repertoire 105 

across different species using a quantitative unsupervised methodology. 106 

 107 

We tested whether or not our unsupervised analyses identified the same vocalization 108 

types as previously described. Human sound recognition mechanisms are robust 109 

against noise changes and integrate many factors, resulting in accurate low-level 110 

acoustic classification. Humans can differentiate calls as discrete types when an 111 

unsupervised program, and possibly other species, would recognize a single type 112 

(Hauser 1996; Lippmann 1997). We, therefore, predicted that unsupervised clustering 113 

would find fewer vocalization types than previous studies. We also predicted that 114 

more variable vocalization types mask variation at a lower level, as in a clustering 115 

analysis of Guinea baboon calls (Papio papio, Maciej et al. 2013). Alternatively, 116 



cluster analysis may highlight variants of vocal types showing a particular contextual 117 

occurrence and other types which overlap with the a priori classification.  118 

 119 

Methods 120 

 121 

Subjects, study sites, equipment, data collection and analysis. 122 

The recordings analysed for the purpose of this study were part of a large collection of 123 

lemur sounds at the Department of Life Sciences and Systems Biology, University of 124 

Torino. The recordings originate from various recording campaigns focused on lemur 125 

vocal behaviour that took place between 1999 and 2013. They were recorded in the 126 

wild and in captivity. The number of recording campaigns (hereafter corpora) and the 127 

number of calls within a corpus vary with species. We only considered calls emitted 128 

by adults. Detailed information about the corpora, sampling, data collection, and 129 

associated references is given in the Supporting Information (Appendix S1).  130 

 131 

Clustering analyses 132 

To identify independent groupings and to visualize emerging vocal types (Nowicki 133 

and Nelson 1990), we clustered vocalizations of each species on the basis of their 134 

degree of dissimilarity, as measured by the pairwise comparison using dynamic time 135 

warping (Ranjard et al. 2010). Detailed information about the calculation of 136 

dissimilarity indices is given in the Supporting Information (Appendix S1). We used 137 

the affinity propagation tool (Frey and Dueck 2007) of the apcluster package in R 138 

(Bodenhofer et al. 2011; Hornik 2013). We labelled clusters with the ‘representative’ 139 

vocalization (the 'exemplar'), which was automatically chosen during the affinity 140 

propagation clustering process (see Supporting Information 1 (Appendix S2). The 141 



cluster analysis used a squared negative Euclidean distance to measure dissimilarity 142 

and identify clusters. This clustering algorithm is based on similarities between pairs 143 

of data points. Affinity propagation clustering simultaneously considers all the data 144 

points as potential cluster centers (exemplars), then chooses the final centers through 145 

an iterative process, after which the corresponding clusters also emerge. Although we 146 

did not define the number of clusters or the number of exemplars (Bodenhofer et al. 147 

2011), the preference (p) with which a data point is chosen as a cluster center 148 

influences the number of clusters in the final solution. Because affinity propagation 149 

clustering does not automatically converge to an optimal clustering solution, we used 150 

two external validation procedures. The first validation was based on the q-scanning 151 

process (where q corresponds to the sample quantile of p, modified from Wang et al. 152 

2007; see also Bodenhofer et al. 2011). We evaluated the clusters obtained using 153 

different preferences using the Adjusted Rand Index (Hubert and Arabie 1985) to 154 

assess the stability of successive cluster solutions (Hennig 2007). The second cluster 155 

validation procedure was based on the Silhouette Index, which reflects the 156 

compactness and separation of clusters in the final solution (Maciej et al. 2013). 157 

When ranked and averaged between species both procedures indicated the median of 158 

all the similarities between data points to be the optimal value for the preference. We 159 

kept all the analysis settings the same across all datasets. We used the calls used as 160 

exemplars in the final clustering solution to label the respective clusters. 161 

 162 

A posteriori evaluation 163 

We evaluated the agreement between the clustering analyses and the a priori 164 

classification using the Adjusted Rand Index (Hubert and Arabie 1985; Table 1). 165 

 166 



The terminology we use in the description of the polar dendrograms refers to Drout 167 

and Smith (2013). Each branch of the polar dendrogram is termed a 'branch' or a 168 

'clade' while the terminal portion of each clade is called a 'leaf'. Two-leaved clades are 169 

called 'bifolious', but the number of leaves in a clade is not limited. While the 170 

horizontal orientation of dendrograms is irrelevant, its vertical arrangement is 171 

meaningful. The vertical position of the branch points indicates how similar or 172 

different they are from each other. Branches departing from the same branch point are 173 

most similar and belong to the same 'level'. In the polar dendrograms, levels are 174 

numbered from the center (root) to the outer ring. 175 

 176 

We also ran a stepwise Discriminant Function Analysis (sDFA, IBM SPSS Statistics 177 

21; Lehner 1996) using the acoustic parameters measured (Supporting Information 2, 178 

Appendix S3, see Gamba and Giacoma 2007 for details) using Praat (University of 179 

Amsterdam, Boersma and Weenink 2014). We used the sDFA to identify the weight 180 

of the different parameters contributing to the clustering process, although the 181 

acoustic analysis does not necessarily simulate feature extraction during the dynamic 182 

time warping. We ran the sDFA with the cluster information as the grouping variable 183 

to estimate how the acoustic parameters contributed to the classification of calls using 184 

leave-one-out cross-validation. 185 

 186 

Results 187 

 188 

Vocal repertoire 189 



The cluster analysis showed variation in both the number of clusters and the 190 

distribution of calls across clusters with species (Table 1; see Supporting Information 191 

3, Appendix S 5). 192 

 193 

 E. fulvus vocalizations were grouped into 11 clusters (Fig. 1; Table 1). sDFA showed 194 

an overall correct classification of 84.2% (cross-validated) when we used the clusters 195 

as the grouping variable. Signal duration (on the first discriminant function) and the 196 

first formant (F1, on the second discriminant function) had the highest loads in the 197 

model (Table 2). 198 

[Table. 1 HERE] 199 

[Fig. 1 HERE] 200 

E. rufus vocalizations grouped into 10 clusters (Fig. 2; Table 1). sDFA showed an 201 

overall correct classification of 94.7% (cross-validated) when we used the clusters as 202 

the grouping variable. Signal duration (on the first discriminant function) and 203 

minimum Fundamental frequency (MinF0, on the second discriminant function) had 204 

the highest loads in the model (Table 2). 205 

[Fig. 2 HERE] 206 

E. rubriventer vocalizations grouped into 14 clusters (Fig. 3; Table 1). sDFA showed 207 

a correct classification of 73.5% (cross-validated) when we used the clusters as the 208 

grouping variable. Signal duration (on the first discriminant function) and the second 209 

formant (F2, on the second discriminant function) had the highest loads in the model 210 

(Table 2). 211 

[Fig. 3 HERE] 212 



E. mongoz vocalizations grouped into nine clusters (Fig. 4; Table 1). sDFA showed a 213 

correct classification of 69.2% (cross-validated) when we used the clusters as the 214 

grouping variable. Signal duration and the third formant (F3) showed the highest 215 

loading values on the first and the second discriminant functions respectively (Table 216 

2). 217 

[Fig. 4 HERE] 218 

E. coronatus vocalizations grouped into 13 clusters (Fig. 5; Table 1). sDFA showed a  219 

correct classification of 83.4% (cross-validated) when we used the clusters as the 220 

grouping variable. Signal duration (on the first discriminant function) and the first 221 

formant (F1, on the second discriminant function) had the highest loads in the model 222 

(Table 2). 223 

[Fig. 5 HERE] 224 

E. flavifrons vocalizations grouped into 10 clusters (Fig. 6; Table 1). sDFA showed a 225 

correct classification of 71.4% (cross-validated) when we used the clusters as the 226 

grouping variable. Signal duration and the first formant had the highest loads on the 227 

first two discriminant functions (Table 2). 228 

[Fig. 6 HERE] 229 

E. macaco vocalizations grouped into 10 clusters (Fig. 7; Table 1). sDFA showed a 230 

correct classification of 82.0% when we used the clusters as the grouping variable. 231 

Duration and F1 showed strongest correlation with the first two discriminant 232 

functions, respectively (Table 2). 233 

[Fig. 7 HERE] 234 



[Table 2 HERE] 235 

External cluster evaluation 236 

The agreement between the a priori classification and the grouping identified by the 237 

clustering analysis was relatively low across the species, ranging 0.18 - 0.32 (Table 238 

1). 239 

 240 

DISCUSSION  241 

Our approach succeeded in categorizing vocalizations emitted by seven species using 242 

dissimilarity indices. Dissimilarity indices have the advantage of being synthetic and 243 

convenient but lack the detail of acoustic analysis (Maciej et al. 2013; Riondato et al. 244 

2013). The discriminant model based on measures of temporal and frequency 245 

parameters demonstrated that true lemurs calls can be assigned to independently 246 

derived clusters identified on the basis of dissimilarity indices with a high rate of 247 

correct classification. Furthermore, the accuracy achieved is in the range of that found 248 

when the combination of pitch and filter features is classified a priori (Gamba and 249 

Giacoma 2005; Gamba 2006). 250 

 251 

Diversity of the vocal repertoire  252 

True lemurs differ remarkably in their social organization and ecology (Tattersall and 253 

Sussman 1998; Mittermeier et al. 2008). Thus we predicted differences in their vocal 254 

communication signals, in line with previous studies (Macedonia and Stanger 1994; 255 

McComb and Semple 2005). Our results support this prediction: we found that 256 

different species show different repertoire size and vocalization types. The audio-257 



visual identification of vocal categories varied from a minimum of 7 vocalization 258 

types in E. coronatus to 14 types in E. fulvus, E. rubriventer, and E. mongoz. The 259 

overall range obtained by the unsupervised analysis was similar, ranging 9 - 14 260 

clusters. Thus, audio-visual identification and unsupervised classification of 261 

vocalization types gave comparable estimates.  262 

 263 

Our results support the prediction that average group size influences vocal repertoire 264 

size in part. Both audio-visual identification and unsupervised classification of 265 

vocalization types provide a repertoire size estimate of 14 calls for E. rubriventer, an 266 

estimate that is surprisingly larger than those observed for other species except E. 267 

coronatus, which have group sizes is 8.4 (Kappeler and Heymann 1996), while E. 268 

rubriventer has a mean group size of just 3 (Overdorff 1996) or 3.2 (Kappeler and 269 

Heymann 1996). E. mongoz have a similar average group size of 3.0-3.5 (Kappeler 270 

and Heymann 1996; Nadhurou et al. 2015) and show a repertoire size of 9 calls. 271 

Several authors have suggested a relationship between a species' social organization 272 

and its communication, proposing that an egalitarian social structure or stable social 273 

groups may favor diversity in communication signals (Mitani 1996). E. rubriventer is 274 

the only species we studied to have a stable, pair-bonded group structure (Tecot 275 

2008). The other species live in one-male, multi-female groups or multi-male, multi-276 

female groups (Fuentes 2002). The social organization in E. mongoz varies between 277 

populations, and includes both pair bonding and one-male, multi-female groups 278 

(Fuentes 2002). The larger distribution of E. rubriventer may also influence the 279 

diversity of vocal communication, as may the fact that we included only captive E. 280 

rubriventer in the analysis. However, vocal repertoire appears to be consistent across 281 

captive, wild-caught individuals (Colombo, unpublished data), suggesting that other 282 



factors may have a stronger effect than the distribution range size. The strong 283 

relationships between repertoire size and stable social organization have been 284 

proposed for facial expressions (Preuschoft and van Hooff 1995) and the rate of vocal 285 

emissions (Mitani 1996), and further studies are needed to clarify whether pair-286 

bonding also ‘places a selective premium’ (Mitani 1996, p. 246) on vocal repertoire 287 

size. In support of this proposal, pair-bonding is considered a key factor favoring the 288 

convergent evolution of complex singing displays (Geissmann 2000; Torti et al. 2013) 289 

in the 'singing primates' (Indri indri, Tarsius spp., Presbytis spp., and Hylobates spp., 290 

Haimoff 1986; Indri indri, Bonadonna et al. 2014). 291 

 292 

We predicted that the unsupervised procedure would recognise a lower number of 293 

vocalization types. This was true for Eulemur fulvus (11 in the unsupervised analysis 294 

versus 14 in the audio-visual a priori assessment), E. mongoz (9 vs. 14), E. rufus (10 295 

vs. 12) and E. macaco (10 vs. 11). The repertoire estimate derived from a previous 296 

study of E. macaco (N = 13; Gosset et al. 2001) exceeds both that observed during the 297 

reassessment process (N = 10) and the result of the cluster analysis (N = 10). 298 

Although the calls in our sample may be incomplete, we suspect that this discrepancy 299 

arose due to the different criteria used to assess vocalization types in these studies. 300 

 301 

Our prediction that the unsupervised procedure would recognise a lower number of 302 

vocalization types was not supporeted in two cases: Eulemur coronatus (13 303 

unsupervised versus seven audio-visual vocal types) and E. mongoz (14 vs. nine). In 304 

both cases, the unsupervised procedure recognized more than one type of alarm call. 305 

Previous studies of these species estimated a vocal repertoire size of 15 vocalizations 306 



for E. mongoz (nine validated using sDFA; Nadhurou et al. 2015) and 10 307 

vocalizations for E. coronatus (all validated using DFA, Gamba and Giacoma 2007). 308 

It is clear that different methods led to different estimates, but interesting that, in 309 

principle, dynamic time warping allows the identification of vocalization types using 310 

a smaller number of calls than sDFA. Whether these differences in vocal repertoire 311 

size reflect different arousal states or contexts is an interesting direction for future 312 

research. 313 

 314 

Cluster versus a priori classification  315 

Agreement between the clustering process and the a priori criteria was low, with 316 

values of the Adjusted Rand Index ranging between 0.18 (in E. rubriventer) and 0.32 317 

(in E. coronatus and E. macaco and E. rufus). This supports the prediction that 318 

unsupervised clustering of the vocalizations would not find the vocalization types 319 

identified in previous studies. However, despite the differences with the a priori 320 

classification, the clusters obtained using dynamic time warping-generated 321 

dissimilarity indices revealed a remarkable potential for grouping calls on the basis of 322 

acoustic measurements of different parameters. Among the parameters, duration 323 

showed the heaviest loadings on the first discriminant function. Thus, the 324 

mismatching between the a priori classification and cluster analysis is in line with the 325 

suggestion that humans tend to recognize as discrete vocal types sounds that may be 326 

grouped into a single type when perceived by other species or classified by 327 

quantitative analyses (Hauser 1996).  328 

 329 



Both duration and formants contributed to the identification of clusters in almost all 330 

the species considered. Formants are known to be crucial for the identification of 331 

vocalization types (Gamba 2014; Gamba and Giacoma 2007; Giacoma et al. 2011) 332 

and have the potential to provide listeners with individual and species-specific cues 333 

(Gamba et al. 2012a). 334 

 335 

Snorts, clicks, and hoots were not selected as cluster representatives and were often 336 

grouped with different vocalization types to form fairly dishomogeneous clusters. 337 

This result is consistent across the species and is in line with previous data which 338 

suggest that low-pitched calls may be part of a graded system more than discrete 339 

emissions (Gamba and Giacoma 2007). Identifiable vocalization types are common, 340 

but calls with intermediate acoustic structure may also occur and may be either 341 

‘oversplit’ by human listeners or not recognized as discrete by the unsupervised 342 

methodology we adopted. Eulemur low-pitched calls (grunts, clicks, grunted hoots, 343 

hoots, snorts, and possibly long grunts) are usually classified as contact calls (Rendall 344 

2000; Gamba and Giacoma 2005; 2007; Gamba et al. 2012a; 2012b; Pflüger and 345 

Fichtel 2012). These low-pitched signals, especially grunts, are the most frequently 346 

emitted call type in Eulemur (Gamba and Giacoma 2005; Gamba et al. 2012a; Pflüger 347 

and Fichtel 2012). However, whether acoustic variation in low-pitched signals plays a 348 

role in encoding information other than emitter position is still unclear (Pflüger and 349 

Fichtel 2012).  350 

 351 

The context of call emission is a powerful indicator of their social function and may 352 

provide crucial information to the investigation of acoustic structure (Rendall et al. 353 



1999; Gros-Louis et al. 2008). Future studies are necessary to explore the contextual 354 

variation of the vocalization types, how the occurrence of vocal signals relates to their 355 

acoustic structure, and how this information can be integrated into unsupervised 356 

analyses. 357 

 358 

Although there was low agreement between cluster analysis and a priori 359 

classification, distinct types of grunts and/or grunted hoots emerge in all species. In 360 

addition, grunts emitted by E. coronatus are identified as three different types. Long 361 

grunts, which are reported to denote contexts of disturbance and potential territorial 362 

predation, or are emitted during locomotion (Gamba and Giacoma, 2005; 2007; 363 

Pflüger and Fichtel 2012), occur in Eulemur mongoz and E. fulvus. Associations 364 

between low-pitched calls and tonal calls emerged as distinct clusters (grunt-tonal 365 

calls, long grunt-tonal calls) in all species except E. rufus, and have been reported for 366 

many species (Macedonia and Stanger 1994). 367 

 368 

Our findings support the prediction that variation in particular vocal types may mask 369 

variation at a lower level, in agreement with a study of Guinea baboon calls (Maciej et 370 

al. 2013). In baboon calls, variation in screams was stronger than for other 371 

vocalization types. In five of six Eulemur species, we found that screams represented 372 

more than one (usually homogeneous) cluster (Eulemur flavifrons did not emit 373 

screams in the same situation in which other species emitted them). In Eulemur fulvus 374 

and E. rufus, we identified three clusters of territorial calls, while alarm calls formed 375 

three clusters in E. coronatus and five clusters in E. flavifrons. The fact that cluster 376 

analysis identified more than one cluster of alarm calls, screams, and territorial calls 377 



indicates variability that has not been reported in previous studies (Macedonia and 378 

Stanger 1994; Gamba and Giacoma 2007). These results represent an operationally 379 

useful indication for future studies, which may link vocal variation with factors such 380 

as level of arousal, social interactions or audience composition (Fichtel and 381 

Hammerschmidt 2002; Stoeger et al. 2011; Slocombe and Zuberbühler 2007; Clay 382 

and Zuberbühler 2012).  383 

 384 

In conclusion, dynamic time warping appears to be a promising method for deepening 385 

our knowledge of how lemurs encode information in their vocal signals, and allows 386 

the objective identification of vocalization types. We envisage the use of unsupervised 387 

classification in different circumstances, including field studies. For example, various 388 

researchers report that the classification of calls to be used in playback experiments is 389 

particularly challenging. Acoustic analysis may reveal that recorded calls may in fact 390 

be different signals (Rendall et al. 1999). Researchers can face the problem of 391 

classifying calls in different groups when in the field. In these situations, the 392 

unsupervised classification of a small number of calls can be very helpful to provide 393 

the investigator with an interpretable quantitative analysis, which may result in 394 

improved experimental design and aid in the evaluation of the results (Seiler et al. 395 

2013). 396 
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FIGURE LEGENDS  708 

 709 

Fig. 1 Polar dendrogram (center) showing how vocalizations of Eulemur fulvus cluster 710 

together (see Supporting Information 3, Appendix S4 for a detailed description of cluster 711 

topology). For each cluster, we show a spectrogram (the horizontal axis represents time; the 712 

vertical axis represents frequency) of the exemplar chosen during the affinity propagation 713 

process. All spectrograms are generated in Praat with the following parameters: window 714 

length: 0.025 sec, time range as shown (0.25-2.50 sec); frequency range: 0-10500 Hz; 715 

dynamic range: 35-45 dB.  The bar indicates 1 sec duration. Exceptions are indicated as 716 

follows: * for 1.25 sec, ** for 1.50 sec, *** for 2.50 sec. Values in parentheses indicate the 717 

percentage of the exemplar’s vocalization type in a cluster. Additional information is given in 718 

Supporting Information 3 (Appendix S4 and S5) and 4 (Appendix S6). 719 

Fig. 2 Polar dendrogram (center) showing how vocalizations of Eulemur rufus cluster 720 

together (see Supporting Information 3, Appendix S4). For each cluster, we show a 721 

spectrogram of the exemplar chosen during the affinity propagation process. All spectrograms 722 

are generated in Praat with the following parameters: window length: 0.025 sec, time range as 723 

shown (0.25-2.00 sec); frequency range: 0-10500 Hz; dynamic range: 35-45 dB. The bar 724 

indicates 1 sec duration. Exceptions are indicated as follows: * for 1.25 sec, ** for 1.75 sec, 725 

*** for 2.00 sec. Values in parentheses indicate the percentage of the exemplar’s vocalization 726 

type in a cluster. Additional information is given in Supporting Information 3 (Appendix S4 727 

and S5) and 4 (Appendix S6). 728 

Fig. 3 Polar dendrogram (center) showing how vocalizations of Eulemur rubriventer cluster 729 

together (see Supporting Information 3, Appendix S4). For each cluster, we show a 730 

spectrogram of the exemplar chosen during the affinity propagation process. All spectrograms 731 

are generated in Praat with the following parameters: window length: 0.025 sec, time range as 732 

shown (0.25-0.75 sec); frequency range: 0-10500 Hz; dynamic range: 35-45 dB. The bar 733 

indicates 1 sec duration. Values in parentheses indicate the percentage of the exemplar’s 734 

vocalization type in a cluster. Additional information is given in Supporting Information 3 735 

(Appendix S4 and S5) and 4 (Appendix S6). 736 

 737 

Fig. 4 Polar dendrogram (center) showing how vocalizations of Eulemur mongoz cluster 738 

together (see Supporting Information 3, Appendix S4). For each cluster, we show a 739 

spectrogram of the exemplar chosen during the affinity propagation process. All spectrograms 740 

are generated in Praat with the following parameters: window length: 0.025 sec, time range as 741 

shown (0.25-1.25 sec); frequency range: 0-10500 Hz; dynamic range: 35-45 dB. The bar 742 



indicates 1 sec duration. Exceptions are indicated as * for 1.25 sec. Values in parentheses 743 

indicate the percentage of the exemplar’s vocalization type in a cluster. Additional 744 

information is given in Supporting Information 3 (Appendix S4 and S5) and 4 (Appendix S6). 745 

 746 

Fig. 5 Polar dendrogram (center) showing how vocalizations of Eulemur coronatus cluster 747 

together (see Supporting Information 3, Appendix S4). For each cluster, we show a 748 

spectrogram of the exemplar chosen during the affinity propagation process. All spectrograms 749 

are generated in Praat with the following parameters: window length: 0.025 sec, time range as 750 

shown (0.25-1.00 sec); frequency range: 0-10500 Hz; dynamic range: 35-45 dB. The bar 751 

indicates 1 sec duration. Values in parentheses indicate the percentage of the exemplar’s 752 

vocalization type in a cluster. Additional information is given in Supporting Information 3 753 

(Appendix S4 and S5) and 4 (Appendix S6). 754 

 755 

Fig. 6 Polar dendrogram (center) showing how vocalizations of Eulemur flavifrons cluster 756 

together (see Supporting Information 3, Appendix S4). For each cluster, we show a 757 

spectrogram of the exemplar chosen during the affinity propagation process. All spectrograms 758 

are generated in Praat with the following parameters: window length: 0.025 sec, time range as 759 

shown (0.25-2.50 sec); frequency range: 0-10500 Hz; dynamic range: 35-45 dB. The bar 760 

indicates 1 sec duration. Exceptions are indicated as follows: * for 1.25 sec, ** for 1.75 sec, 761 

*** for 2.00 sec. Values in parentheses indicate the percentage of the exemplar’s vocalization 762 

type in a cluster. Additional information is given in Supporting Information 3 (Appendix S4 763 

and S5) and 4 (Appendix S6). 764 

 765 

Fig. 7 Polar dendrogram (center) showing how vocalizations of Eulemur macaco cluster 766 

together (see Supporting Information 3, Appendix S4). For each cluster, we show a 767 

spectrogram of the exemplar chosen during the affinity propagation process. All spectrograms 768 

are generated in Praat with the following parameters: window length: 0.025 sec, time range as 769 

shown (0.25-1.00 sec); frequency range: 0-10500 Hz; dynamic range: 35-45 dB. The bar 770 

indicates 1 sec duration. Values in parentheses indicate the percentage of the exemplar’s 771 

vocalization type in a cluster. Additional information is given in Supporting Information 3 772 

(Appendix S4 and S5) and 4 (Appendix S6). 773 

 774 



Table 1. Distribution of the vocalizations indicated a priori and as they emerged from 

the cluster analysis.  
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Alarm Call 0 1   0 4 5 1 

Alarm Long Grunt    0   1       

Chatter 1   0 0   0 0 

Click 0 0 0 1     0 

Group Cohesion Call 1 1   1       

Grunted Hoot 0 1 0 1 0 2 0 

Grunt 2 1 1 1 3 0 1 

Grunt-Tonal Call 1 0 0 1 1 1   

Gurgle     1         

Hoot 0 0 1 0 0 0 0 

Hoot-Tonal Call     2         

Long Grunt     1 1   0 1 

Long Grunt-Tonal Call 1         2 1 

Scream 2 3 2 1 4   5 

Snort-Grunt     0         

Snort-Grunt-Tonal Call     3         

Snort 0 0 0 0     0 

Territorial Advertisement Call 3 3   1       

Tonal Call-Grunt 0             

Tonal Call 0 0 3 0 1 0 1 

Number of clusters 11 10 14 9 13 10 10 

Adjusted Rand Index 0.27 0.32 0.18 0.24 0.32 0.32 0.25 

 

Table 1. Distribution of the vocalizations indicated a priori and as they emerged from 

the cluster analysis. The numbers indicate the number of exemplars chosen during the 

clustering analysis for that particular vocalization. Grey-shaded cells show where a 

particular vocalization has not been assessed during the a priori classification. The 

number of clusters indicates the total number of clusters emerged during the Affinity 

Propagation process and the Adjusted Rand Index quantify the agreement between the 

a priori classification and the clustering analysis. 
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Table 2. Stepwise discriminant analysis results for the seven Eulemur species. 

 

Species Wilks' L. P CCR (%) 1st D. f. 2nd D. f. 

E. fulvus 0.003 <0.001 84.2 88.9% (Duration)    11.1% (F1) 

E. rufus 0.006 <0.001 94.7 98.2% (Duration)      1.0% (MinF0) 

E. rubriventer 0.006 <0.001 73.5 91.7% (Duration)      7.2% (F2) 

E. mongoz 0.037 <0.001 69.2 81.4% (Duration)    13.9% (F3) 

E. coronatus 0.007 <0.001 83.4 96.6% (Duration)      2.8% (F1) 

E. flavifrons 0.011 <0.001 71.4 84.6% (Duration)    14.1% (F1) 

E. macaco 0.006 <0.001 82.0 78.2% (Duration)    16.1% (F1) 

 

 

Table 2. The table shows the statistical results of the seven stepwise Discriminant 

Function Analyses (sDFA) using temporal parameters (Duration, Ptmin, Ptmax), 

fundamental frequency parameters (MeanF0, MinF0, MaxF0, RangeF0, StartF0, 

EndF0), and formants (F1, F2, F3). The grouping variable for each sDFA was the 

cluster membership resulted from the Affinity Propagation clustering analysis. We 

reported the Wilks’ Lambda values (Wilks' L.), the p-values (P), the cross-validated 

correct classification rate (CCR) and the variance explained by the first (1st D. f.) and 

the second (2nd D. f.) discriminant functions. In brackets, we also reported the 

parameters showing the highest load on the discriminant functions. 
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