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Abstract

Optimization of water distribution is a crucial issue which has been targeted by many modelling tools. Useful models,
implemented several decades ago, need to be updated and implemented in more powerful computing environments. This
paper presents the distributed and redesigned version of a legacy hydraulic simulation software written in Fortran (IRMA)
that has been used for over 30 years by the Société du Canal de Provence in order to design and to maintain water
distribution networks. IRMA was developed aiming mainly at the treatment of irrigation networks – by using the Clément
demand model and is now used to manage more than 6.000 km of piped networks. The growing complexity and size of
networks requested to redesign the code by using modern tools and language (Java) and also to run distributed simulations
by using the ProActive Parallel Suite.
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1. Introduction

Optimization of water distribution network for irrigation is one activity where the development of hydroinformatic
tool was initiated several decades ago. With the use of 70% of freshwaters, irrigation represents a major challenge for
water management, agricultural development and sustainability. Since the 70’s, many tools have been developed and
implemented in order to manage the irrigation and distribution issues. Late 80’s, some tools like EPANET [1] based on
the “Gradient method” defined by E. Todini (1987) [2] became real standards for the engineering activities, which are
basically divided into design and operation. Several tools are duplicating this approach.

An alternative to this concept was introduced with the “Débit de Clément” by Société du Canal de Provence in 1977.
The approach used is based on a demand model – ”Débit de Clément” - that was developed to estimate on-demand
irrigation consumption behaviour [3]. Société du Canal de Provence (SCP) is French company with more than 50 years
experience in designing, building and maintaining water distribution networks (WDN) especially for agricultural purposes.
The company uses extensively since more than 35 years numerical simulation models and has produced internally IRMA,
one of the main simulation tools, since 1977.

IRMA was written first in FORTRAN 77 and was later on converted into FORTRAN 90. Nowadays, it is very di�cult
to implement new features or interactions of this legacy code with current technologies deployed at the SCP (such as GIS
databases). IRMA had also some performance limitations due to the growth of its networks and maintaining this software
became too expensive because of the lack of qualified FORTRAN developers.

The project of redesigning IRMA [4] has the goal of building a new simulation engine using up-to-date technologies,
allowing to overcome the performance issues and to deliver new features to the users. The language chosen for this new
tool is Java, mainly for its portability, its ability to integrate easily with other systems deployed at SCP and also for
enabling distributed Grid execution using the ProActive Parallel Suite [5].

This paper presents the parallel pump profiling use case, including the key aspects that enable to e�ciently perform
distributed simulations using IRMA over the Grid. First an overview of IRMA’s simulation model is presented, followed
by a description of the main simulation modes supported by IRMA. Then, some of the existing Java libraries for solving
linear systems are presented, followed by the adopted solution using a FORTRAN library. Finally, the distributed Pump
Profiling algorithm and results are presented in order to validate our approach.
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2. Related work

This section is divided in 3 parts in order to cover all the main aspects of this work, first it is presented some of the
existing tools for simulating WDN . Since the linear system solving is the most computing intensive task of the simulation,
the secont part presents the studied linear algebra libraries.

2.1. WDN simulation tools

Epanet [1] is a software for modeling WDN that was developed by the United States Environmental Protection Agency
(EPA). Epanet is an open source tool, it first appeared in early 90’s and nowadays it has become a standard reference for
designing WDN . Epanet provides an integrated environment for editing networks, running hydraulic and water quality
simulations, and viewing the results.

MIKE URBAN [6] is a commercial software solution developed by DHI for urban water modeling. Besides treating
WDN , it covers also sewer and water drainage systems. The underlying engine used by MIKE URBAN for simulating
WDN is Epanet based and being a commercial solution it o↵ers other interesting features, such as support for Geographical
Information Systems (GIS), fire flow analysis, demand allocation and distribution. It also performs water quality analysis,
for example water age, blending water from di↵erent sources, contamination propagation and growth of disinfection
products.

Porteau [7] is a freeware software for simulating WDN and it is developed by the IRSTEA, which is a public research
institute in France focusing on land management issues such as water resources and agricultural technology. The first
version of Porteau was written in FORTRAN released in 1977. In 2008 CEMAGREF released the version 3.0, it is written
in Java with graphical interfaces for editing and visualizing the networks.

2.2. Linear algebra libraries

The networks currently simulated by IRMA generate unstructured matrices containing up to 15.000 elements and the
iterative nature of the simulation requires solving linear systems up to thousands of times for each execution. Therefore,
the performance of the linear solving library has a crucial impact on the total simulation runtime. This section presents
some background on the existing libraries for solving linear systems: first the java alternatives and then the standard
C/FORTRAN packages.

JAMA (JAva MAtrix Package) [8] is a basic linear algebra package for Java and it was developed by the National
Institute of Standards and Technology (NIST) at the University of Maryland, USA. It provides user-level classes for
constructing and manipulating real, dense matrices.

Colt [9] provides a set of Open Source Libraries for High Performance Scientific and Technical Computing in Java and
it was developed by the European organization for Nuclear Research (CERN). Colt uses JAMA as underlying library for
linear algebra and therefore o↵ers the same five decompositions available in JAMA.

MTJ [10] is a library for developing numerical applications, both for small and large scale computations. The library is
based on BLAS [11] and LAPACK [12] for its dense and structured sparse computations, and on the Templates project for
unstructured sparse operations. MTJ is based on the netlib-java project [13], which can be set up to use machine-optimized
BLAS libraries for improved performance of dense matrix operations, falling back to a pure Java implementation.

BLAS [14] stands for Basic Linear Algebra Subprograms, it was first published in 1979 and is a standard API for
libraries publishing basic linear algebra operations. The FORTRAN version is widely used but it has been also translated
into other languages (such as C and Java).

LINPACK [15] is a collection of FORTRAN subroutines that analyze and solve linear equations and linear least-squares
problems. It uses the BLAS libraries for performing basic vector and matrix operations. LINPACK o↵ers decomposing
methods such as LU, QR and Cholesky.

All of these libraries require either a pre-conditioned matrix (for using the sparse solvers) or a dense matrix storage
for implementing a robust solver (which is not e�cient for solving IRMA’s sparse systems).

Finally, the Yale Sparse Matrix Package [16] implements the LU Decomposition with sparse matrix storage and is
optimized for iterative system solver (by reusing pivots). This is a FORTRAN library, more details about its usage and
integration with Java is given in Sec. 4.

In order to evaluate these solvers, a test case simulation has been performed using some of these libraries. Figure 1
shows the execution times of Jama, Colt and Blas are pure Java solutions, FORTRAN Yale is pure FORTRAN and Java
Yale is the mixed FORTRAN/Java solution (which was adopted in this work).
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Figure 1: Execution time of a network simulation using di↵erent solvers in a Linux machine and the former IRMA FORTRAN version executed
in a HP-UX system.

2.3. Parallel/distributed computation tools

There are hundreds of environments that support parallel and distributed computation, it is worth mentioning the MPI
interface [17] that is the de facto standard for scientific applications and it is very well suited for applications that require
to perform communication with very low latency. There exist more recent frameworks that focus also on multicore, such
as OpenMP [18], which is a standard API for exploiting parallel resources on shared-memory architectures, and FastFlow
framework [19] that provides C++ patterns for parallel and distributed application.

Since the parallel tasks executed in the pump profiling are coarse grained and IRMA is written in Java, it is more
convenient to use a tool that is simple to use with Java. Finally, the chosen framework for this work is ProActive Parallel
Suite [5], which is an innovative Open Source solution (OW2 consortium) for parallel, distributed, multi-core computing.
Developed in Java, it features a concurrent and parallel programming model, o↵ers distributed and asynchronous commu-
nications, mobility and a deployment framework. The main reason for this choice is the straightforward integration with
IRMA’s code and the possibility to easily deploy parallel simulations across an environment with distributed resources.

3. IRMA Simulation model

The main IRMA engine computes pressures, flow and head losses in piped water distribution networks. In top of that,
there are other layers for modelling equipment, demands, tank state over time. Most IRMA features are very similar
to EPANET [1], which is extensively used for WDN simulation, but some features are specifically designed to fit SCP ’s
needs and methodologies, such as the Clément’s Formula that is used to estimate the demand for rural clients.

In order to describe a meshed network, it is necessary to identify its nodes, its pipes, its points with known charge,
its equipment and to specify the discharges at each point.

A node is a junction of two (or more) connected pipes in the network. A point with known charge is a node where
the head (piezometry) is known at the beginning of the simulation (such as a reservoir). An equipment is a device that
creates a specific head loss that is added to the pipes’ linear head losses (or head gains in case of pumping stations).

From this description, IRMA needs to find some specific paths before starting the computation: all the closed loops
and the path between points with known charge need to be identified. These paths are used for building the equation
system and also for calculating the probabilistic demand model.

The mathematical model used by IRMA is based on the Kirchho↵’s circuit laws that state: the algebraic sum of
currents in a network of conductors meeting at a point is zero. These laws can be also applied to water networks, they are
used in IRMA to write equations that represent the flow conservation at the nodes and also the expected head di↵erences
between two nodes.

IRMA’s system of equations is divided in 3 groups:

3



8
>>>>>>><

>>>>>>>:

X

i

Q
i

= 0, KN equations

X

i

J(Q
i

) = 0, KL equations

X

i

J(Q
i

) = �H, KE-1 equations

(1)

(2)

(3)

where
Q

i

are the incoming and outgoing flows from each node,
J(Q

i

) are the head losses associated to each pipe,
KN is the number of nodes in the network,
KL is the number of loops,
KE is the number of nodes with known charge (tanks/reservoirs) and
�H is the head di↵erence between the tanks.

• First group of equations (Eq. 1) represents the flow conservation at the nodes: sum of the flows in each node must
be zero. Each node is represented in the linear system by one equation that defines its connections with all other
nodes: 010 is used to represent a connection between two nodes and 000 otherwise. These equations represent largest
portion of the linear system and since each node is usually connected to a maximum of 3 other nodes the matrix
representing the system will be sparse.

• Second group (Eq. 2) represents the head loss equations in the meshes : sum of head losses from the first to the last
node in each loop must be zero.

• Third group (Eq. 3) represents the head losses in the paths between tanks : head loss in each path between two tanks
must be equal to head di↵erence between first and last tank.

The unknown variables in the equation system are the flows in each node (Q
i

). The heads (pressures) in each node
are obtained from the flows, by calculating the pipes head losses. The number of equations must respect the following
equation:

KK = KN +KL+KE � 1

where KK is number of unknown flows.
The first group is filled with linear coe�cients but second and third groups contain non linear elements and must be

linearized in order to be solved using traditional equations solving algorithms.
Iterative mechanism: IRMA determines initial flow values for each pipe and then calculates the head in each node.

The resolution is then performed iteratively by applying the Kirchho↵’s laws to calculate the resulting flows and then
updating the heads based on these new flows. This process is repeated until the sum of all di↵erences between input
and result flows are smaller than a determined convergence value or until a maximum number of iterations is performed
(without reaching a stable state).

3.1. Head loss equations

The head loss (J) in each pipe is calculated in function of the flow (Q) and is given by the formula:

J(Q) = �(a+ b.Q+ c.Q2) + ↵.Q� +D.Q2 (positive flowrate values)

where a, b, c represent pump coe�cients (if it exists),
↵ represents friction head loss coe�cients,
� is given by the head loss calculation method and
D represents singular head loss coe�cient.

The equation needs to be adapted when the flowrates are negatives:

J(Q) = �(a+ b.Q+ c.Q.|Q|) + ↵.Q.|Q|��1 +D.Q.|Q|

with positive pump coe�cients a, b and c.

This head loss expression is continuous and derivable. Therefore we can write, with Q = Q0 +�Q and J 0(Q0) = ( dJ

dQ

)
Q0 :
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J(Q) = J(Q0) + J 0(Q0).�Q = (J(Q0)�Q0.J 0(Q0)) + J 0(Q0).Q

Head loss in a loop: the sum of all head losses in a loop is null. In a loop we have J(Q) = 0, therefore:
P

J 0(Q0).Q = �
P

(J(Q0)�Q0.J 0(Q0))
First member . X = Second member

This formula will be used to write one equation for each loop in the network.

Head loss in a path between tanks: in these path equations the sum of all head losses in each path is equal to
the head di↵erence between the two tanks. In each path we have J(Q) = �H, therefore:

P
J 0(Q0).Q = �

P
(J(Q0)�Q0.J 0(Q0)) +�H

This formula will be used to write one equation for each 2 tanks in the network. If a network contains KE tanks,
there will be KE � 1 tank equations in the system.

3.2. Linearizing head losses

Head loss values (J1 and J2) are calculated with one of these formulas using two reference flowrate values (1m3/s and
0.5m3/s). Then, a linear head loss coe�cient ↵ is determined by the equation:

↵ = (2.
p
J1 �

p
J2)2.(1�

p
J1�

p
J2

2.
p
J1

)2

After obtaining the linear coe�cient ↵, the following equation is used for calculating the head loss:

J(Q) = ↵.Q.|Q|

Finally, matrix’s head loss equations (loops and path between tanks) will be filled using this formula:

J 0(Q0) =
J(Q0+h)�J(Q0)

Q0.h

where h is a constant small value.

3.3. Convergence analysis

IRMA uses several mechanisms for evaluating the convergence of a simulation [20] and for sake of simplicity this section
presents the main convergence test, that regards the variation of flow values in each pipe. For each pipe with a significant
flow value (> 0.005 l/s), the following sum is calculated:

�Q =

NpipesX

j=0

|Q
i

�Q
i�1|

|Q
i�1|

Npipes

where
�Q is the average flow variation between current and previous iteration,
Npipes is the total number of pipes in the network,
Q

i

is the current flow value in the pipe and
Q

i�1 is the previous flow value in the pipe.

If a peak consumption simulation is performed, a similar test is performed but instead of summing the flow values,
the sum of the number of o↵takes is taken:

�n =

NpipesX

j=0

|n
i

� n
i�1|

|n
i�1|

Npipes

where
�n is the average variation of number of o↵takes between current and previous iteration,
Npipes is the total number of pipes in the network,
n
i

is the current number of o↵takes in the pipe and
n
i�1 is the previous number of o↵takes in the pipe.
Then the following test is executed:
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�Q or �n < TOL

where TOL is a constant tolerance value.
IRMA can model di↵erent kinds of equipment: Pressure regulators, Singular head loss / Valve, Di↵erential head loss

/ One-way valve, Flow regulators and Pumps. As an example for the Pump Profiling use case, the following section
describes how Pumps are modelled with IRMA.

3.4. Equipments
This section presents the equipments that can be described using IRMA and how they are modeled.

3.4.1. Pumps
Pumps are mechanical devices used for moving the water, they can be used to feed tanks or as a booster to increase

the network’s pressure. Figure 2 shows a network scheme to illustrate the piezometric line behavior of a pump in a sample
network. The piezometric head represents the elevation summed with the pressure head at each point of the network. In
this case the pump is used to feed tank 2, located in the higher end of the network.

Tank 1

Tank 2

Pump

           Piezometric line

Figure 2: Scheme representing the piezometric level of a network with a pumping station.

IRMA supports several types of pumps, they can have variable or fixed behavior and therefore they are divided in two
groups: fixed or variable speed pumps.

Fixed speed pumps have a constant behavior during the iterative simulation and are described by the curves that
represent their Total Dynamic Head (TDH). The TDH of a pump is given by the following equation:

TDH(Q) = a+ b.Q+ c.Q2

where a, b, c are the curve coe�cients (usually given by the pump manufacturer) and Q is the flowrate. The TDH is
obtained in function of the observed flowrate and then it will be applied as head gain to the pipe containing a pump.

Variable speed pumps adapt their behavior depending on an observed parameter. They can have 3 regulation
modes:

• Imposed regulation curve: in this mode there are di↵erent curves associated with a flowrate interval. Whenever the
observed flowrate is within an interval, the corresponding curve will be adopted.

• Imposed head in a determined node: this mode is used to find out the coe�cient k so that TDH(Q) = k2.a+k.b.Q+
c.Q2 can be used to obtain the desired head in a specified node.

• Imposed flowrate value: pumps in this mode are used to fill a tank using a chosen flowrate value (Q
i

= cst). In this
case, TDH is calculated automatically at each iteration in order to respect the hydraulic equilibrium.

3.4.2. Pressure regulating devices
Pressure regulating devices are used to control the pressure in a specific part of the network. There are 2 types of

regulators: pressure reducing and pressure sustaining valves. The head loss for these equipments is automatically adjusted
by IRMA at each iteration in order to achieve the desired head.

Pressure Reducing Valves are used to maintain the downstream pressure below a chosen head value (Z
reg

). After
each iteration i, the coe�cient DH is adjusted for the iteration i + 1 taking into account the di↵erence between the
obtained head and the objective head :
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DH
i+1 = DH

i

+ Zi�Zreg

Q

2

where
DH

i+1 is the adjusted head loss coe�cient for the next iteration,
DH

i

is the current head loss coe�cient,
Z
i

is the obtained head,
Z
reg

is the desired downstream head and
Q is the flowrate.

Figure 3 displays a scheme representing the piezometric line when the pressure reducing valve is active (left) and the
case where it is inactive because the downstream head is below the desired head (right).

           Desired head
           Piezometric line

Pressure regulator
(active)

Pressure regulator
(inactive)

Figure 3: Piezometric schemes for a pressure reducing valve.

Pressure Sustaining Valves are used to maintain the upstream pressure above a chosen head value (Z
reg

). After
each iteration i, the coe�cient DH is adjusted for the next iteration using the following formula:

DH
i+1 = DH

i

+ Zreg�Zi

Q

2

where
DH

i+1 is the adjusted head loss coe�cient for the next iteration,
DH

i

is the current head loss coe�cient,
Z
i

is the obtained head,
Z
reg

is the desired upstream head and
Q is the flowrate.

Figure 4 displays a scheme representing the piezometric line when the pressure sustaining valve is active (left) and the
case where it is inactive because the upstream head is above the desired head (right).

Pressure
regulator
(active)

Pressure
regulator
(inactive)

           Desired head
           Piezometric line

Figure 4: Piezometric schemes for a pressure sustaining valve.

If the water flows towards the direction that is not concerned by the valve (open position), a second head loss coe�cient
k
open

can be applied using the following formula:

DH = k
open

.Q2
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3.4.3. Singular head loss / Valve
A valve is treated as a singular head loss k that is constantly applied regardless of the flowrate direction.

DH = �k.|Q|.Q

where Q is the flowrate. If k has a high value, this equipment will be treated as a closed valve and this will represent a
discontinuity in the network.

3.4.4. Di↵erential head loss / One-way valve
A di↵erential head loss is used to model valves that have di↵erent behaviors depending on the flow direction. In this

case, two coe�cients k
pos

and k
neg

are informed for calculating respectively the head loss in positive (Eq 4) and negative
(Eq 5) position.

(
DH

pos

= �k
pos

.|Q|.Q
DH

neg

= �k
neg

.|Q|.Q
(4)

(5)

where Q is the flowrate. If k
pos

or k
neg

has a high value, this equipment will be treated as a one-way (security) valve
that only allows the water to flow in one direction. This valve is often used, for example, associated to a tank in order to
avoid emptying it.

3.4.5. Flow control valves
Flow control valves are used in order to keep flow under a chosen value. In order to achieve the desired flow value

(Q
reg

), the head loss coe↵cient DH are automatically adjusted at each iteration using this formula:

DH
i+1 = DH

i

+ Ki

Q

2
i

where
DH

i+1 is the adjusted head loss coe�cient for the next iteration,
DH

i

is the current head loss coe�cient,
Q

i

is the flow and
k
i

is an adjustment coe�cient.

If DH
i+1 becomes negative (causing a head gain), the value zero is imposed to the coe�cient.

4. Linear system solving using the Yale Sparse Matrix Package

This FORTRAN library [16] was written at the Yale University and it implements the LU Decomposition with sparse
matrix storage. The resolution is divided in two phases:

1. Pivoting: consists in organizing the equation matrix assuring that it contains a non-zero element in the diagonal.
The row permutations that need to be performed are stored in a permutation matrix which is given as input for the
second phase.

2. Resolution: solves the system by performing the LU Decomposition using the permutation matrix.

The pivoting phase has the highest computational cost and this package also allows the reuse of the permutation
matrix. Since we need to solve several times our systems and the pivots rarely change among the iterations, this feature
can dramatically speed up our simulation.

In order to use this FORTRAN library from a Java application it is necessary to perform native calls using JNI (Java
Native Interface). Since JNI does not allow direct access to FORTRAN code from Java, a C++ interface was written
to wrap the FORTRAN library. The main drawbacks of this approach are reducing the portability of the Java code and
complicating the compilation process, but this solution has been already successfully deployed in Windows, HP-UX Unix
and Linux.

This library takes as arguments the list of system’s pivots and the matrix stored using the Yale sparse matrix format.
Therefore the last requirements for using this library are to search the pivots before first iteration (also after a few
particular cases, e.g. when a pipe is closed between two iterations) and write the matrix respecting Yale’s compressed
format for matrix storage.

Yale’s compressed matrix format:
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The sparse format stores only the nonzero entries of the matrix A, row-by-row in the array Y A. To identify the
individual nonzeros entries in each row, it is needed to know which column each entry lies. The column indexes which
correspond to the nonzero entries of the original matrix are stored in the array JA; i.e, if Y A(K) = A(I, J) then
JA(K) = J .

In addition, it is needed to know where each row starts and how long it is. The index positions in JA and Y A where
the rows of A begin are stored in the array IA; i.e., if A(I, J) is the first nonzero stored entry in the I � th row and
Y A(K) = A(I, J), then IA(I) = K.

Moreover, the index in JA and Y A of the first location following the last element in the last row is stored in IA(N+1).
Thus, the number of entries in the I � th row is given by IA(I + 1) � IA(I), the nonzero entries of the I � th row are
stored consecutively in:

Y A(IA(I)), Y A(IA(I) + 1), ..., Y A(IA(I + 1)� 1)

and the corresponding column indexes are stored consecutively in:

JA(IA(I)), JA(IA(I) + 1), ..., JA(IA(I + 1)� 1)

For example, the 5x5 matrix: 0

BBBB@

1 0 2 0 0
0 3 0 0 0
0 4 5 6 0
0 0 0 7 0
0 0 0 8 9

1

CCCCA

is stored as:

1 2 3 4 5 6 7 8 9
IA 1 3 4 7 8 10
JA 1 3 2 2 3 4 4 4 5
YA 1 2 3 4 5 6 7 8 9

5. Simulation modes

This section presents the di↵erent simulation modes proposed by IRMA, including the peak demand computation using
the Clément’s Formula that is used to estimate the peak demand in irrigation networks.

5.1. Continuous flows

Continuous flow is the basic simulation mode where all the demands are known and it is also used for performing the
other types of simulation that are detailed later in this chapter. IRMA’s system of equations is modified in order to take
the demand into account and perform this simulation:
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where
Q

i

are the incoming and outgoing flows from each node,
D

n

is the node’s demand,
J(Q

i

) are the head losses associated to each pipe,
KN is the number of nodes in the network,
KL is the number of loops,
KE is the number of nodes with known charge (tanks/reservoirs) and
�H is the head di↵erence between the tanks.

Second member of equation 6 represents the demand at each node. These equations are then used to iteratively
calculate the hydraulic equilibrium for scenarios with known demand values.
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5.2. Peak consumption using the Clément demand model

The goal of this simulation mode is to compute the dynamic heads at the moment of peak consumption. Since this
consumption is unknown, the flows are estimated at each pipe by using the Clément’s formula [3]. Basically, this formula
takes as input the number of o↵takes (among other parameters) at each point and calculates the flow in a given pipe based
on the sum of all the estimated downstream discharges. The o↵takes are separated in classes according to the nominal
flow (established on the contracts) and they are also associated to a probability according to the usage (for example, type
of crop).

5.2.1. The general expression
The flow Q generated for a given class of o↵take in a pipe is given by the general expression of Clément’s formula:

Q
continuous

+
X

n
k

.p
k

.d
k

+ ✏.U
q
|
X

n
k

.p
k

.(1� p
k

).d2
k

|

where
d
k

is the nominal discharge of class k,
n
k

is the number of served o↵takes from class k,
p
k

is the usage probability of the o↵takes from class k,
U determines the desired quality of service,
✏ is the sense of the flow (represented by the sign of the term

P
n
k

.p
k

.(1� p
k

).d2
k

) and
Q

continuous

is the pipe’s continuous flow (which is known in advance).
An association of nominal discharge and opening probability defines a class of o↵take. Therefore, a new class should

be created for each o↵take with di↵erent flow value or probability.
When the distribution of a given class of o↵take k is calculated, the distribution of the classes 1 to k � 1 and the

distribution of continuous flows are also known. The total flow in a pipe (in function of the number of o↵takes) is given
by the following formula:

Q = Q
continuous

+ n
k

.p
k

.d
k

+
k�1X

j=1

n
j

.p
j

.d
j

+ ✏.U

vuut|n
k

.p
k

.(1� p
k

).d2
k

+
k�1X

j=1

n
j

.p
j
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5.2.2. Adapting conservation equations to Clément formula
When applying Clement’s formula, the equations need to be adapted in order to treat the conservation of number of

o↵takes instead of flow. For a given class of o↵take, the flow conservation equations are modified to:

8
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>>>>>>>:
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i

= 0, KN equations

X

i

J(n
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) = 0, KL equations

X

i

J(n
i

) = �H, KE-1 equations

(9)

(10)

(11)

where n
i

is the number of o↵takes of this class served by the pipe.

Most networks have several classes of o↵take and therefore this system needs to be solved successively for each class
of o↵take:
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X

i

J(n
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) = �H, KE-1 equations

(12)

(13)

(14)

where n
ik

is the number of o↵takes of class k served by the pipe.

This means that the hydraulic equilibrium needs to be iteratively calculated for each class of o↵take and the obtained
results are used for calculating Clément’s values for the next class.
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5.2.3. Calculating usage probability for irrigation networks
One crucial aspect when performing simulations is to check if the model corresponds to what is actually observed in

the network. IRMA allows fitting the probabilistic parameters based on the observed consumptions in the network.
Given a subset of network nodes, the usage probability of the o↵takes of the class i is calculated by using this formula

[3]:

p =
Si.v

r.
P

i

(n
i

.d
i

)

where
Si is the irrigated surface,
v fictive continuous flow,
r is the crop yield (e�ciency)
n
i

is the number of o↵takes of the class i present in the subset of the network and
d
i

is the nominal flow of the class i.

6. Pump Profiling Use Case

This section presents how IRMA can help the design of new pumps in a network without tanks. Pump profiling is
performed first by defining a fixed amount of flow (demand) objective values, varying from the minimum demand that can
be observed (only continuous flows) up to a demand that is equivalent to 25% more than the estimated peak consumption.

Second step is to generate the possible discharge scenarios that will reach each objective flow value. These scenarios
could be generated exhaustively in networks containing only a few nodes, however in most networks this is not possible
and for that reason they will be randomly generated. The number of scenarios will be calculated in function of the number
of o↵takes, with a minimum of 250 scenarios in order to guarantee a minimum sample size in case of networks with a
small number of o↵takes.

Finally, all these scenarios will be simulated and the resulting value for each scenario will be the required head in the
node where the pump will be placed in order to provide the guaranteed pressure to all clients. All this data will then be
gathered to plot one graph where each line represents the required head to satisfy a percentage of scenarios.

Figure 5: Pump profiling in the ”Boutre” network.

Figure 5 displays a sample result of this simulation in an existing network, objective flows are represented in the x
axis, required head in the y axis and each line represent a % of scenarios that are satisfied. This simulation mode has two
main steps, first the initialization of the network and of the di↵erent parameters that will be used for generating all the
scenarios (Sec. 6.1) and the simulation of these scenarios (Sec. 6.2).

6.1. Initialization

The initialization phase consists in the execution of the following steps:

1. Definition of the number of configurations (scenarios) to simulate for each objective flow. This value is calculated
as follows:

N
conf

= k.N
hydrants
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where
k is a multiplicative coe�cient that can be defined by the user and
N

hydrants

is the total number of hydrants installed in the network.

A minimum of 250 scenarios is imposed, in order to have a significant sample size for networks containing a small
number of hydrants.

2. Definition of the objective flow intervals : a �Q is calculated in order to divide the flow interval [0, Qmax] in
equal parts respecting the limit of 20 objective flows.
Q

max

is defined as 25% more than the estimated peak discharges and it is obtained as follows:

Q
max

= 1, 25.(Q
peak

+Q
cont

)

where
Q

peak

is the peak demanded flow (using the Débit de Clément) and
Q

cont

is the sum of all known continuous discharges.
3. Pumping station neutralization: this step consists in removing the pumping station from the network description

and updating the upstream tank head level:

Z
tank

= Z
ref

+ a
pump

where
Z
ref

is reference value for the desired head in the upstream tank and
a
pump

is the TDH coe�cient taken from the neutralized pump.
4. Hydrants initialization: transformation of the discharges represented by number of o↵takes of each class into

individual objects representing each hydrant (client) and the associated nominal flow.
5. Computation of the piezometric line: calculation of the static piezometric line by performing a hydraulic

equilibrium computation considering the network without discharges and after the pump neutralization.

6.2. Simulation steps

The second step is to iterate through all the objective flows and simulate N
conf

configurations (scenarios) where the
demand is equal (or close to) the objective value. This process is described in the Figure 6.

Start Create scenario 
for objective flow

Simulated all 
scenarios?

End

Set next 
objective flow 

Y

Simulated all
obj flows?

N

N Y

Simulate scenario

Figure 6: Flow diagram for the pump profiling simulation.

The result of each simulation is the required head where the pump will be placed, in order to obtain a satisfying
pressure in all points of the network. This required pressure is obtained based on the observed pressure at the point with
minimum exceeding pressure.

At the end of all simulations, a curve representing the required head in order to satisfy a certain percentage of scenarios
will be plotted for each objective flow.

6.3. Parallel pump profiling on the Grid

In order to perform the pump profiling several di↵erent scenarios need to be simulated. The total number of simulated
scenarios is proportional to the number of hydrants present in the network and therefore the execution time can be
prohibitive in case of large networks.

This section presents a solution for reducing the execution time by performing a distributed simulation of these scenarios
on a Grid, using the ProActive Parallel Suite.
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6.4. Parallelization algorithm

The initialization phase is executed sequentially (as described in Sec. 6.1), since it is not computing intensive. The
simulation phase is executed as described in Fig 7: parallel tasks containing X scenarios to be simulated are created. This
parameter X defines the granularity of each task and should be adjusted according to the network size and number of
available resources where the tasks can be deployed.

Start Set next objective 
flow

Create parallel task 
with X scenarios

Created all 
scenarios?

Y

N

Iterated over all 
objective flows?N Y Create ProActive 

Job with all tasks
Submit job to 

ProActive Scheduler

Gather and process 
results as they 

become available

End

Figure 7: Flow diagram representing the parallelization algorithm for performing the pump profiling.

The implementation with the ProActive Scheduler is straightforward: all the parallel tasks are aggregated into a job
and then submitted to the ProActive Scheduler. The Scheduler is responsible for deploying the tasks on the Grid machines,
for retrieving the results from each task and returning them back to the user machine where the simulation was launched.

Figure 8: Overview of the downstream networks from Bouteillère.
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6.5. Parallel results

This section presents the benchmarks performed on PACA Grid for validating the parallel pump profiling. PACA
Grid is a set of machines (1 368 cores, 30 TB, 480 CUDA cores) accessible via ProActive Parallel Suite tools. The Cloud
aggregates dedicated machines, running both Linux and Windows.

The network file used for this profiling models the downstream networks from Bouteillère (Fig. 8) and it contains:

• a total pipe length of 190 km.

• 2832 nodes.

• 5 tanks.

• 4 distinct probability zones (total of 28 classes of probability)

• 6 downstream pressure regulators.

• 4 pumping stations.

• 2 security valves.

• 2 di↵erential head losses.

Figure 9: Pump profiling execution time of the downstream networks from Bouteillère in function of the number of parallel tasks.

The total sequential execution time of this pump profiling using one machine from the Grid is: 25 hours and 23
minutes. Figure 9 displays the obtained times by splitting the scenarios into di↵erent number of parallel tasks: from 18
up to 360 tasks (the initial number 18 comes from the 18 di↵erent objective flows values that are taken for this network
and the remaining values are taken as multiples of 18).

The improvement in the performance drastically reduces the execution time: from 25 hours sequentially to 13
minutes using the Grid (360 parallel tasks). These test were repeated at least 5 times, the values represent typical
execution times obtained when there are enough resources available to simultaneously run all the parallel tasks.

Figure 10 presents the obtained parallel speedup compared to the corresponding sequential version.

7. Final considerations

Modern technologies often lack e�cient numerical libraries for scientific computing and can also add some overhead
(such as garbage collection and dynamic bound checking) that can be crucial to the performance of numerical applications.
However some applications are only partially computing intensive and a mixed approach might be the most appropriate:
with the use of a high level language for implementing the application and performing calls to low level language for the
numerical code.

This paper presents a use case of a high performance scientific application using the Java language and the successful
exploitation of a Grid environment in order to reduce the execution runtime. The Java version of IRMA is being currently
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Figure 10: Obtained speedup by number of parallel pump profiling tasks executed in parallel on PACA Grid.

used to design and maintain 6.000 km of WDN by the Société du Canal de Provence and, besides outperforming the
legacy FORTRAN version for sequential simulations [citation removed], it enables to perform distributed simulations such
as the pump profiling described in this paper.

The use of Java enables to easily integrate the application with modern infrastructures (such as graphical/web inter-
faces, GIS, data bases, . . . ) while the FORTRAN backend allows achieving good performance for the numerical resolution.
Java also enables a straightforward integration with ProActive, that allows easily deploying distributed simulations over
the Grid.
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