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Abstract 15 

 

Ossified gastralia, clavicles, and sternal ribs are known in a variety of reptilians, including 

dinosaurs. In sauropods, however, the identification of these bones remains debated: 

supposed gastralia were recently reinterpreted as sternal ribs, based on their different 

morphology from undoubted theropod and basal sauropodomorph gastralia. Bones previously 20 

interpreted as clavicles were thought to represent sternal ribs or an Os penis. The rareness and 

lack of articulation of such finds in sauropods complicates their identification and makes 

them less likely to be reported. However, accurate reconstructions of the pectoral girdle, 

forelimb movements, as well as the respiratory musculature can only be based on more 

complete skeletons, and reporting such bones as well as their proper identification thus 25 

remains crucial. Herein we describe different bones from the chest region of diplodocids, 

found near Shell, Wyoming. Five morphotypes are well distinguishable. Elongated, relatively 

stout, curved elements with a spatulate and a bifurcate end resemble much the previously 

reported sauropod clavicles, but might actually represent interclavicles. A second type is L-

shaped, and mostly preserved as a symmetrical pair. Similar elements in Spinophorosaurus 30 

were identified as tail spikes, but new findings in diplodocids indicate that they are the true 

sauropod clavicles. Slender, rod-like bones with rugose ends are highly similar to elements 

identified as sauropod sternal ribs. Curved bones with wide, probably medial ends or 

expanded central parts constitute the fourth morphotype (herein interpreted as gastralia), and 

irregularly shaped elements, often with extended rugosities, are included into the fifth 35 

morphotype, tentatively identified as sternal ribs. 

To our knowledge, the bones previously interpreted as sauropod clavicles were always found 

as single bones, which sheds doubt on the validity of their identification. Various lines of 

evidence presented herein suggest they might actually be interclavicles - which are single 

elements. This would be the first report of interclavicles in dinosaurs. Previously supposed 40 

interclavicles in the basal sauropodomorph Massospondylus were later reinterpreted as 

clavicles. 

Independent from their identification, the existence of the reported bones bear  

both phylogenetic and functional significance. Their presence in flagellicaudatans and 

absence in rebbachisaurs implicates that the ossification of the chest bones can be considered 45 

synapomorphic of Flagellicaudata. As alternative hypothesis, the non-ossification appear only 

in Macronaria. A presence of interclavicles in sauropods gives further support to a recent 

hypothesis, which proposes the avian furcula to be homologous to the interclavicles, instead 

of being formed by the fused clavicles. 
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Functional implications are a stiffening of the chest region, which coincides with the 50 

development of elongated cervical and caudal vertebral columns or the use of the tail as 

defensive weapon. Lateral stresses due to tail swinging can then be absorbed better. The loss 

of ossified chest bones correlates with more widely spaced limbs, and the evolution of a 

wide-gauge locomotor style. 

Keywords: Diplodocidae, Pectoral girdle, Interclavicle, Furcula 55 

 

Introduction 

 

The original pectoral girdle of early reptiles consisted of various elements: scapula, 

suprascapula, anterior and posterior coracoids, cleithrum, clavicle, and the interclavicle 60 

(Romer 1956). Whereas the suprascapula remains cartilaginous in all reptiles, the other 

pectoral bones were originally ossified, and were ventroposteriorly followed by the sternal 

plates and ribs (Romer 1956; Remes 2008; see Table 1 for a summary of pectoral and sternal 

elements in Reptilia). In the process of the evolution of dinosaurs, several changes occurred: 

the cleithrum was lost and anterior and posterior coracoids fused to form a single element 65 

shortly after the rise of Reptilia. The interclavicle is generally interpreted to have been 

reduced within Archosauria, after the separation of the pterosaurs, some of which still 

preserve this bone in a juvenile state (Romer 1956; Remes 2008; Nesbitt 2011). Furthermore, 

also the absence of clavicles was often used as synapomorphy of Dinosauria or even more 

inclusive clades, and as reason against the ancestry of this clade to birds (see Sereno 1991; 70 

Novas 1996; Yates & Vasconcelos 2005). However, numerous reports of clavicles in various 

dinosaur clades imply that these elements are plesiomorphically present, and that it is mostly 

due to diagenetic or taphonomic reasons that they are not recovered (Yates & Vasconcelos 

2005; Remes 2008). Lately, also the loss of the interclavicle was doubted at least for 

Theropoda, where the furcula actually might not represent the fused clavicles as previously 75 

thought, but that it is actually homologous to the interclavicle (Vickaryous & Hall 2010). 

Vickaryous & Hall (2010) extended their hypothesis to all previously reported dinosaurian 

clavicles. As clavicles (but not interclavicles) are lost in extant pseudosuchians as well, this 

would imply that the loss of these pectoral elements happened early in the evolution of 

Archosauria, before pseudosuchians split from dinosauromorphs (Vickaryous & Hall 2010). 80 

In the Sauropodomorpha, pectoral girdles usually only preserve the scapula and the coracoid, 

which in sauropods generally fuse during ontogeny (Ikejiri et al. 2005; Schwarz et al. 2007a, 

b; Remes 2008). The orientation of the scapulacoracoid is still debated, but recent analyses 

suggest that the scapular blade was inclined at an angle of 60-65° to the horizontal, with the 
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coracoids almost touching anteriorly at the midline (Schwarz et al. 2007a; Remes 2008; 85 

Hohn-Schulte 2010). Such a reconstruction implies that the sternal plates are shifted 

backwards underneath the ribcage, with whom they are connected through usually 

cartilaginous sternal ribs (Schwarz et al. 2007pect; Remes 2008). This arrangement was 

corroborated by finite element structure synthesis analyses (Hohn-Schulte 2010). Supposed 

clavicles would connect the scapulae dorsal to the coracoids, but no articulated pair has yet 90 

been reported in sauropods (Remes 2008). Single rod-like structures interpreted as clavicles 

were found in a variety of sauropod taxa, sometimes associated with the pectoral girdle 

(Hatcher 1901, 1903; Dong & Tang 1984; He et al. 1988; Zhang 1988; Sereno et al. 1999; 

Harris 2007; Remes et al. 2009). However, most of these reports rely solely on the validity of 

previous identifications - which themselves are not beyond doubt. Sternal ribs are even less 95 

well known, the only references being from the Apatosaurus excelsus holotype YPM 1980 

(Marsh 1896), a set of ribs associated with the holotype of A. louisae (Holland 1915), and 

maybe from the holotype of Eobrontosaurus yahnahpin (Filla & Redman 1994). Filla & 

Redman (1994) initially interpreted these structures as gastralia, based on their similarity to 

gastralia in theropods, basal sauropodomorphs, and other archosaurs like crocodiles or 100 

sphenodonts. Later, also Gongxianosaurus shibeiensis and Jobaria tiguidensis were reported 

to preserve gastralia (He et al. 1998; Sereno et al. 1999). However, Claessens (2004) and 

Fechner (pers. comm., 2011), based on comparison with theropod and basal sauropodomorph 

gastralia, recently questioned this identification, and suggested them to be ossified sternal ribs 

instead. 105 

Herein we report both bones resembling the rod-like elements previously identified as 

clavicles, as well as bones resembling the gastralia or sternal ribs in E. yahnahpin. 

Furthermore, two pairs of symmetrical bones are described, yielding more information on the 

proper identification of all of these types of bones. A review of the previous reports suggests 

that their presence might be used as a valuable phylogenetic character: to date, almost only 110 

non-neosauropod eusauropods, members of the Flagellicaudata, and basal Macronaria were 

mentioned to preserve clavicles and/or ossified gastralia or sternal ribs. The single report of a 

gastral rib in the somphospondylian Diamantinasaurus matildae (Hocknull et al. 2009) 

probably represents an exception of the rule. 

Institutional Abbreviations: AMNH, American Museum of Natural History, New York; 115 

ANS, Academy of Natural Sciences, Philadelphia, Pennsylvania; AODF, Australian Age of 

Dinosaurs Fossil; CM, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania; 

DMNS, Denver Museum of Nature and Science, Denver, Colorado; DNM, Dinosaur National 

Monument, Vernal, Utah; DQ, Dana Quarry, Tensleep, Wyoming; IVPP, Institute of 
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Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 120 

China; NMB: Naturhistorisches Museum Braunschweig, Germany; SMA, Sauriermuseum 

Aathal, Switzerland; Tate, Tate Geological Museum, Casper, Wyoming; YPM, Yale Peabody 

Museum, New Haven, Connecticut. 

 

Material 125 

 

The new material described herein comes exclusively from the Howe Quarry in the Bighorn 

Basin of Wyoming, USA (Fig. 1). Two excavation periods were conducted at this site: 

Barnum Brown recovered 3000 to 4000 bones at the Howe Quarry for the American Museum 

of Natural History (hereinafter reported as AMNH) in 1934 (Brown 1935; Michelis 2004), 130 

and Hans-Jakob Siber reopened the site with a team of the Sauriermuseum Aathal (hereinafter 

reported as SMA) in 1990 and excavated another 700 to 800 elements (Ayer 2000; Michelis 

2004; Tschopp & Mateus, in press). Only one of the specimens found during these two 

periods has since been described in detail, and was identified as subadult specimen of a new 

diplodocine species, Kaatedocus siberi (Tschopp & Mateus, in press). Concerning the 135 

remaining sauropod specimens, Brown (1935) tentatively identified the majority as 

Diplodocinae, except for some elements belonging to Apatosaurus, or Camarasaurus (see 

also Michelis 2004; Tschopp & Mateus, in press). Both the AMNH and the SMA expeditions 

yielded various sets of gastralia or sternal ribs, as well as single appearances of elements 

resembling the bones previously identified as sauropod clavicles. Furthermore, two pairs of 140 

L-shaped, symmetrical elements were recovered, the provenance of which is discussed 

below. 

Given the predominance of Diplodocidae in the Howe Quarry, and close association of some 

of the clusters of gastralia/sternal ribs and the clavicles to diplodocid cervical vertebrae, an 

attribution of these elements to this group can be considered highly probable. In the 145 

following, the elements to be described are grouped into five morphotypes. Their 

identification will be discussed in detail below, and elements belonging to these morphotypes 

are listed in Table 2. 

 

Morphotype A (seen here as interclavicles, previously identified as clavicles) 150 

Elements belonging to the morphotype A are relatively stout, rod-like elements. They are 

usually bowed, and exhibit a spatulate and a bifurcate end. To date, such bones were usually 

identified as sauropod clavicles. Five such elements were located in the collections of the 

AMNH and the SMA (AMNH 30900; SMA field numbers  I 24-4, L 22-3, L 27-7, and M 25-
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3). Whereas the provenance and association of the AMNH element within the Howe Quarry 155 

is unclear, the SMA specimens were found close to dorsal ribs and an associated but 

disarticulated series of diplodocid cervical vertebrae (I 24-4); neck and skull remains of the 

holotype of Kaatedocus siberi (SMA 0004; Tschopp & Mateus, in press), and a 

gastral/sternal rib cage (L 22-3); anterior cervical vertebrae, a dorsal rib, some skull remains 

and a metatarsal (L 27-7); as well as associated with dorsal ribs, posterior diplodocid cervical 160 

vertebrae and an articulated series of midcaudal vertebrae (M 25-3). All these elements were 

found as single elements, which is consistent with the earlier findings of similar finds in other 

sauropod taxa. 

 

Morphotype B (seen here as clavicles) 165 

Bones taken together as morphotype B have a L-shaped outline, are of similar thickness as 

morphotype A, but shorter. They are concave on one side, and convex on the opposite 

surface, and are usually found in pairs. Similar elements have previously been identified as 

tail spikes (Remes et al. 2009). Of the two pairs of morphotype B, one was found in 1934 by 

the AMNH (AMNH 30789), the other pair was recovered in the SMA excavation and bear 170 

the field numbers K 24-3 and K 24-6. Whereas it is clear that the two bones of AMNH 30789 

were found together (this collection number was given to all bones bearing the field number 

151), their placement within the Howe Quarry remains difficult to locate. AMNH 30789 also 

includes chevrons, and pedal material. The SMA specimens were found closely together, 

below several dorsal ribs, and between posterior cervical and anterior dorsal diplodocid 175 

vertebrae. 

 

Morphotype C (seen here as sternal ribs) 

This morphotype includes elongated, slender bones. They are generally slightly curved, and 

have somewhat expanded, rugose ends. Such elements were usually described as sternal or 180 

gastral ribs, and are often associated with bones of morphotypes D and E (as e.g. in 

Eobrontosaurus yahnahpin, Filla & Redman 1994). In the Howe Quarry sample, three 

clusters of gastralia/sternal ribs were found by the SMA (around field area D 28, F 27, and M 

21; Fig. 2). Within these clusters, morphotype C elements constitute the majority of the 

recovered bones. They (as well as elements belonging to morphotypes D and E) were always 185 

found in association with dorsal ribs. In the field area F 27, also two distal tail segments of 

different sizes as well as single posterior cervical vertebrae were recovered in the vicinity of 

the gastral/sternal rib cage. The M 21 cluster was associated with the holotype of Kaatedocus 

siberi (SMA 0004), as well as single (probably diplodocid) anterior chevrons. Additional 
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morphotype C elements come from various areas within the Howe Quarry, and were found 190 

more scattered. 

 

Morphotype D (seen here as gastralia) 

Elements described herein as morphotype D are curved bones with both ends expanded and 

rugose. The expansions are not equal on the two extremities, one of them being wider than 195 

the other. The gastral or sternal rib cluster D 28 in the SMA collection contains two such 

elements, which are mirrored, and can be nicely articulated at their wider end (D 28-5 and 

14). Other bones exhibiting a morphology resembling two of these elements that got fused are 

included into morphotype D as well. To our knowledge, elements of this morphotype are 

described for the first time in this paper. 200 

 

Morphotype E (seen here as sternal ribs) 

Bones belonging to morphotype E have irregular shapes that cannot be included in any of the 

above defined morphotypes. Few of these elements were recovered at the Howe Quarry, 

always in association with bones of the morphotypes C and D. Similar elements include the 205 

bones identified as sternal ribs by Marsh (1883, 1896), or some of the elements of the gastral 

basket described by Filla & Redman (1994). SMA H 21-1 and 3 form a symmetrical pair. 

 

Description & Discussion 

 210 

Usually the pectoral girdle in sauropods is only represented by the scapulacoracoid and 

sometimes the sternal plates. However, both an extant phylogenetic bracket approach as well 

as comparisons with closely related extinct groups indicate that more elements – if not 

ossified – should at least be present as cartilaginous structures (Schwarz et al. 2007a). For a 

proper reconstruction of the pectoral girdle and functional studies of the forelimb it is 215 

therefore crucial to report any preserved possible indication of osseous or cartilaginous chest 

bones. Both in the early years of sauropod discoveries as well as in recent publications, 

clavicles, gastralia, and sternal elements have been reported every now and then (e.g. Marsh 

1883, Hatcher 1901, Holland 1906, Osborn & Mook 1921, Dong et al. 1983; Dong & Tang 

1984, Filla & Redman 1994, Sereno et al. 1999, Harris 2007; Hocknull et al. 2009; Galiano & 220 

Albersdörfer 2010; see Table 2). However, the rarity of such finds as of clavicles, gastralia, or 

sternal ribs render proper identifications difficult, especially due to the fact that they are often 

recovered disarticulated from the corresponding pectoral girdle. In the following, the new 

elements of the above described morphotypes will be described in detail. The occurrences of 
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these bones will be reviewed separately, discussing the implications of the herein reported 225 

finds. 

 

Morphotype A 

Description. The five elements recovered at the Howe Quarry are elongated and relatively 

massive, curved bones (Fig. 3; Table 3). Assuming that the concave side follows the 230 

curvature of the body, this side can be regarded as internal. One end is slightly bifid, the other 

extremity is extended in a spatulate-like manner, usually having a flattened aspect in 

perpendicular view. This end is always exhibiting more or less linear rugose striations for 

muscle attachment. The shafts are suboval in cross-section at mid-length, and achieve their 

greatest breadth at 2/3 to 3/4 of their total length, toward the spatulate end. The notch in the 235 

bifurcated end is usually only visible in internal or external view. However, in two of these 

elements (AMNH 30900 and SMA I 24-4; Figs 3A and B), the notched end is twisted by 90°. 

Furthermore, SMA I 24-4 is not curved, but straight. In SMA L 27-7 the bifurcated end is not 

only curved along the long axis of the bone, but also curves outwards (Fig. 3E). However, the 

thinner and thus more fragile nature of this element and several fractures in its shaft indicate 240 

that it has suffered stronger post mortem deformation than the other three elements, so that 

this feature might also be of taphonomical reason. 

Two SMA elements (M 25-3 and L 22-3; Figs 3C and D) exhibit a peculiar morphology of 

their spatulate end. It is oriented perpendicular to the curvature of the bone, so that its thin 

edges face internally and externally. Whereas the external face of the two bones is convex, 245 

the internal edge bears a deep slot-like concavity, giving the impression of a deeply 

bifurcated end on this side as well, when seen in this view. 

Discussion. The first reported element of morphotype A was found associated with the 

scapulacoracoid of Diplodocus carnegii CM 84 and identified as probable clavicle (Hatcher 

1901). Two years later, Hatcher (1903) described another similar bone in Diplodocus hayi 250 

HMNS 175, which reinforced his opinion that these bones were clavicles. However, partly 

based on the fact that they were not found in pairs, Nopcsa (1905) interpreted them as Os 

penis, which was shown to be very improbable shortly after by Holland (1906). Holland on 

the other hand reported several differences between the two questionable elements, and was 

thus also sceptical about Hatcher's (1901, 1903) interpretation that they are clavicles, 255 

proposing that they rather represent ossified sternal ribs (Holland 1906). In fact, personal 

observations showed that the two elements of CM 84 and HMNS 175 exhibit the two 

different orientations of the notched bifurcated ends as noted as well in the Howe Quarry 

specimens. Similar bones continued to be found as single elements, even though some of the 
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specimens were reasonably complete and articulated (Tab. 2). Of these, the element of 260 

Suuwassea emilieae ANS 21122 is notable as its spatulate end bears a very distinct, distally 

tapering ridge, which is marked by a strong striation. The ridge originates at the base of the 

spatulate expansion and terminates abruptly 85 mm before the end. It divides the spatulate 

portion into two oblique concavities (Harris 2007; pers. obs.). A similar condition can be seen 

in the element of HMNS 175, but here, the ridge is not more than a shallow convexity 265 

extending from the base of the expansion to about midlength of the spatulate end (Holland 

1906; pers. obs.).  

One of the reasons put forward to justify the identification as clavicle was a supposed 

asymmetry of the recovered elements. However, close examination of the five elements 

recovered as single bones in the Howe Quarry, and of the corresponding elements of 270 

Diplodocus carnegii (CM 84), D. hayi (HMNS 175), Spinophorosaurus nigerensis (NMB-

1698-R), and Suuwassea emilieae (ANS 21122) revealed that their asymmetry might also be 

due to deformation. A symmetry plane can be imagined when looking at them from a point of 

view perpendicular to the curvature, running through the bifid end and dividing the expanded 

spatulate end in two symmetric halves. These bones could therefore also represent elements 275 

of the chest region that lie on the body midline - and their continuous findings as single 

elements might have been no coincidence. The ridge described above, subdividing the 

concave portion of the spatulate end would then mark the body midline as well. As the two 

areas abutting to the right and left of the ridge resemble articulation surfaces, this would 

imply that the morphotype A elements covered two symmetrical elements externally, and 280 

medially. 

The only median pectoral element is the interclavicle. Whereas early tetrapods show 

diamond-shaped interclavicles, crocodylomorphs and some lepidosaurs develop rod-like 

shapes without lateral processes (Steyer et al. 2000; Vickaryous & Hall 2010), similar to the 

elements described herein. Following this interpretation, the bifurcated end could represent 285 

the reduced lateral processes, and the spatulate end would articulate with either the coracoids 

or the sternal plates - covering them externally and anteromedially as hypothesized above. A 

bone found in the pectoral girdle of the basal sauropodomorph Massospondylus carinatus 

shows a similar spatulate expansion on one end, and in fact has first been interpreted as 

interclavicle (Cooper 1981). Although Sereno (1991) and Yates & Vasconcelos (2005) 290 

mention its high similarity to the supposed clavicles in both Plateosaurus and other 

specimens of Massospondylus, Vickaryous & Hall (2010) point out that also interclavicles in 

some cases can consist of two single, but symmetrical elements. The two differing 

orientations of the spatulate end in some of the bones, as well as the deep slot-like concavity 

Page 9 of 41 Journal of Anatomy



For Peer Review
 O

nly

in two SMA elements could then be explained as individual variation or taxonomic diversity. 295 

A high variability in the shape of this bone was already recognized by Kälin (1929). 

 

Morphotype B 

Description. The bones of morphotype B are L-shaped and have a D- to crescentic shaped 

outline in cross section at midlength (Figs 4 and 5). The convex side is hereinafter interpreted 300 

as external, the flat to slightly concave surface as internal. Towards the end of the longer leg 

of the L, a striated rugosity develops on both sides, and the bone expands slightly. This end is 

broken pre-burial in one of the SMA elements (K 24-6; Fig. 4), and post-mortem in both 

AMNH elements, so that they appear shorter and stouter (Fig 5). The shorter leg of the L is 

expanded 'backwards' as well, especially so in the SMA specimen, forming a somewhat heel-305 

like, rounded flange (see Figs 4 and 5). Towards the tip of the short leg, the bone curves 

externally. In one of the AMNH elements, it develops a conspicuous ridge, and the tip is very 

rugose. In its counterpart, this end is broken off. This portion shows a similar but stronger 

striated rugosity as in the longer leg of the L. At about midlength of the shorter leg of the L 

there is a thickened portion resembling an articulation facet on the SMA specimens (the 310 

AMNH elements show broken edges in this region). 

Discussion. Recently, Galiano & Albersdörfer (2010) reported a diplodocid specimen (DQ-

SB) found near Tensleep, Wyoming, with two symmetric, paired bones articulated between 

the two scapulacoracoids, where clavicles are supposed to attach. These bones are very 

dissimilar from any of the previously described supposed clavicles (morphotype A). Infact, 315 

they are L-shaped and do not show any bifurcation on either end of the element and thus 

appear to belong to morphotype B. Also a second, probably juvenile, specimen reported by 

Galiano & Albersdörfer (2010; DQ-TY) exhibits a single bone of similar shape. Other 

morphotype B elements were recovered partly on top of the left scapula of the early juvenile 

sauropod SMA 0009 (Schwarz et al. 2007b), as well as on top of its right coracoid (Fig. 6). 320 

This was described as a “dorsally pointing tip” of the coracoid in Schwarz et al. (2007b), but 

close examination of the specimen indicates that it was taphonomically pressed onto the 

coracoid. Based on these findings, morphotype B fits an identification as clavicles better than 

morphotype A. Such an interpretation would also match previous findings in ceratopsian 

dinosaurs (Chinnery & Weishampel 1998: fig. 6, Vickaryous & Hall 2010: fig. 5). On the 325 

other hand, paired finds of basal sauropodomorph clavicles appear to be more straight (Huene 

1926; Yates & Vasconcelos 2005; Martínez 2009; B. Pabst, pers. comm., 2011), but without 

the bifurcated end - resembling the elements recovered from Jobaria tiguidensis (Sereno et 

al. 1999: fig. 3E). However, other than the report of the presence of this bone in J. 
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tiguidensis, no other information about which bones it was associated with, and no detailed 330 

description has been provided to date. 

Another explanation would be that morphotype B comprises sternal ribs. The presence of 

bones resembling both of these morphotypes in the holotype of Spinophorosaurus nigerensis 

provides more information on the validity of this assignment. The somewhat L-shaped 

elements appear to be of considerably different sizes, and were interpreted to represent tail 335 

spikes, due to some superficial alikeness to supposed Shunosaurus spikes found associated 

with the tail club (Remes et al. 2009; R. Kosma and A. Ritter, pers. comm., 2011). However, 

based on the pictures of the Shunosaurus tail spikes provided by Zhang (1988), the 

Spinophorosaurus elements resemble much more the L-shaped bones found at the Howe 

Quarry. Their base (which would correspond to the shorter leg of the L) is slightly broader, 340 

and the two legs curve gently into each other, giving the entire bone a rather triangular 

outline. The only adaptations seen in the tail to support the bearing of such spikes are 

specialized posterior chevrons that interconnect among themselves to build a ventral rod 

supporting the caudal column from below (Remes et al. 2009; pers. obs.). Given that these 

elements were found below the dislocated scapula, close to the pelvic region of the skeleton 345 

(Remes et al. 2009), an interpretation as sternal ribs (but also as clavicles) seems more 

probable. 

Whereas an identification of the morphotype B elements as sternal ribs would not challenge 

Hatcher’s (1901, 1903) interpretation of the morphotype A bones as clavicles, the herein 

purported case of morphotype B being the true clavicles does. As the gross morphology of 350 

the shoulder girdle remains similar in the majority of Sauropoda, a high diversity in the shape 

of clavicles seems improbable. The question thus arises what the morphotype A elements are. 

Two possibilities seem reasonable: either these rod-like, curved bones are sternal ribs, as 

proposed by Holland (1906), or they represent interclavicles, as already stated above. For 

unknown reasons, Holland’s (1906) interpretation that they might be sternal ribs has never 355 

been mentioned afterwards. In favor of this designation are the irregular shape of some of the 

morphotype A elements, and the fact that also the symmetrical bones exhibit some 

morphological differences (although these can probably in parts be explained by pre- or 

postburial taphonomic reasons). However, even though one of the proposed sternal ribs of 

Apatosaurus excelsus YPM 1980 is elongated and relatively stout, it is also straight, and 360 

bears various knob-like tuberosities along its entire length (Marsh 1896) - rather resembling 

morphotype E than the usually strongly curved, and smooth bones belonging to morphotype 

A. Furthermore, compared to articulated sternal ribs of pterosaurs or crocodiles, they seem 

too massive (Claessens et al. 2009; pers. obs.). Their association with the scapulacoracoid in 
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many of the specimens where they were found, would imply an anterior position within the 365 

sternal apparatus, but the elongated shape would rather fit to a more posterior assignment. An 

interpretation of the morphotype A elements as interclavicles seems thus the most probable. 

 

Morphotypes C, D, and E 

Description. The morphotype C elements are elongated, rod-like bones with a suboval cross 370 

section (Fig. 7). The smooth shafts are generally slightly curved, in some elements (e.g. D 28-

6, D 28-7) in two directions forming a weak S-shape. Few bones remain straight during their 

entire length. Both ends are rugose and irregular. One end is flattened and in certain cases 

shows a differing degree of rugosity on the two sides of the flattened portion. Toward the 

opposite ends some of the elements remain straight, whereas others curve in a way that this 375 

end points more straightly outwards, rather than outwards and upwards. 

Morphotype D elements are less frequent. They are more irregularly formed, shorter and 

thicker (Fig. 8). One end is similarly flattened as in the rod-like gastralia, but more irregularly 

expanded and shows better developed rugosities. On one side, this end is slightly convex, 

indicating that this side was not articulating with any other element. These bones all show 380 

some curvature at the opposite end, resulting in an outward pointing extremity. Certain 

elements in the M 21-basket (e.g. M 21-8; Fig. 8C) appear to be fused symmetric elements. 

They reproduce the slight upward curvature of two articulated opposing elements similar to 

the pair D 28-5 and 14, and exhibit an outgrowth in the middle of the bone, which would 

come to lie on the body midline. This outgrowth resembles somewhat pathological bony 385 

overgrowth but also the shape of two unfused anterior or posterior gastralia with their 

enlarged medial ends. Towards the extremities the curvature of the bone becomes inverted in 

a way that the expanded ends are pointing somewhat downwards again (or probably straightly 

outwards when articulated). This results in a slightly sinuous curve, similar to tyrannosaur 

furculae described by Makovicky & Currie (1998). 390 

Four elements in the SMA collection (field numbers H 21-1, H 21-3, M 21-15, N 22-12) do 

exhibit peculiar shapes and are included in morphotype E. H 21-1 and H 21-3 develop a 

projection approximately at one third to two fifth of their entire length, which appears to 

proceed at an acute angle to the longer portion of the bone (Fig. 9A). How long this 

projection is, remains unclear, as their ends are broken in both elements. M 21-15 is a rather 395 

thick bone of medium length, compared to the usual gastralia/sternal ribs. Both ends are 

flattened, one of them is markedly and slightly asymmetrically bifurcated (Fig. 9C). On the 

edge running from the longer portion of the bifurcation, somewhat inwards, a tubercle can be 

seen with fractured bone surface so that the original expansion of this feature can not be 
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determined. The opposing end is irregular as well, exhibiting a very slight notch. N 22-12 is a 400 

short and very thin bone, with one end greatly expanded in two dimensions, forming a 

spatulate shape with irregular margins, and a weak, radiating striation extending from the 

center of the bone towards the outer margins on both sides (Fig. 10B). At the base of this 

expansion, both sides are marked by a well visible foramen that lie on the same level in 

regard to the long axis of the bone, and only very slightly displaced perpendicular to the long 405 

axis. Towards the other end, at about two thirds of the entire length, there is a rugose tubercle. 

Further towards this end, the bone curves and becomes more rugose again. 

Discussion. Probable sauropod gastralia and/or sternal ribs have been reported more often 

than clavicles, and in a wider range of taxa (Tab. 2). As mentioned above, their interpretation 

as gastralia has been challenged by Claessens (2004) pointing out their anatomical 410 

differences compared to basal sauropodomorph or theropod gastralia. Claessens (2004) 

proposes that Marsh (1896) was right in identifying such elements as sternal ribs. These 

structures are present in both extant birds and crocodiles, but remain often cartilaginous 

(Claessens 2004; Claessens et al. 2009; R. Fechner, pers. comm., 2011). They connect the 

distal tips of the anterior dorsal ribs with the sternum, either directly as in birds, or 415 

articulating with the dorsal ribs through generally cartilaginous intercostal elements 

(Claessens et al. 2009; R. Fechner, pers. comm., 2011; pers. obs.). Within dinosaurs, only 

very few reports of sternal ribs exist besides the ones from Marsh (1883, 1896): they are 

described in hypsilophodont Ornithischia (e.g. Parks 1926; Galton & Jensen 1973; 

Weishampel & Heinrich 1992), and Theropoda (e.g. Clark et al. 1999; Ruben et al. 2003). 420 

The herein described elements provide more information for the proper identification of the 

morphotypes C to E. The relatively well-articulated clusters SMA D28 and M21 contain 

approximately 15 bones. For a bird-like sternal rib configuration, 15 elements appear too 

many. In birds, distally expanded dorsal ribs usually connect to sternal segments through 

cartilage (Parks 1926; Clark et al. 1999; Schwarz et al. 2007a), and straight or converging 425 

distal rib ends represent free ribs. Fully articulated ribcages of Apatosaurus and Diplodocus 

show transversely expanded ends only in the first 5 to 7 dorsal ribs (Gilmore 1936; Schwarz 

et al. 2007a) - which would allow a maximum number of 14 sternal ribs. Considering a 

crocodilian arrangement, morphotype E elements (like the particularly shaped SMA N 22-12, 

and maybe also the short elements described by Filla & Redman 1994: fig. 11 H, I, Q, R) 430 

might represent intercostal elements. Furthermore, the two SMA elements with the projection 

(H 21-1 and H 21-3), as well as the very irregularly shaped bone figured by Marsh (1896: fig. 

12 and 13) resemble somewhat the posterior sternal ribs in the pterosaur Rhamphorhynchus 

(Claessens et al. 2009: fig. 2d). 
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None of the bones of any morphotype exhibit the typical longitudinal articulation facets that 435 

occur between the medial and lateral elements of theropod or sauropodomorph gastralia. 

Furthermore, given that a complete gastral basket consists of four elements per row, the 

recovered 15 elements seem too few (Claessens 2004 reports 8 to 21 rows, which would add 

up to 32 to 84 single gastralia). However, in particular the morphotype D elements fit an 

identification as gastralia more than as sternal ribs. Bones like M 21-8 (Fig. 8C), which seem 440 

to be composed of two fused elements like D 28-5 or M 21-2 (Figs 8A or B, respectively), 

have no equivalent in previously described sternal ribs known to us. Sternal ribs sometimes 

connect to other, more anteriorly placed bones (Galton & Jensen 1973; Clark et al. 1999; 

Claessens et al. 2009), but no specimen has been reported to date exhibiting fused left and 

right elements. Moreover, manual manipulation of the two corresponding elements SMA D 445 

28-5 and 14 shows that the expanded ends would articulate relatively nicely in a way similar 

to the midline joint of two gastralia in basal sauropomorphs and theropods (Fig. 10). Median 

gastralia of the anteriormost row were previously shown to fuse in certain cases, thereby 

forming irregularly shaped and asymmetric sutures (e.g. Makovicky & Currie 1998; 

Claessens 2004). Such a development resembles much the herein described elements. 450 

Given this, a definitive assignment of morphotypes C to E remains difficult at the moment. 

The herein described bones indicate that both gastral and sternal ribs might be present in 

diplodocids, with morphotypes C and E rather representing sternal ribs (and/or intercostal 

elements), and morphotype D being gastralia. This would explain the number of elements, 

which is too high for being solely sternal ribs, as proposed by Claessens (2004). Morphotype 455 

D could then represent the anteriormost gastralia, which are close to the sternal apparatus, 

and more posterior bones, as well as the lateral gastral elements could have been retained 

cartilaginous. A novel reconstruction taking these interpretations into account is shown in 

figure 11. 

As gastral and sternal ribs have differing developmental origins (see Table 1), a histological 460 

analysis might yield some more results, but should include elements of all the herein defined 

morphotypes. However, histologic sections of dermal and endochondral bones are difficult to 

distinguish (T. Scheyer, pers. comm., 2009). Such a study has thus to await further analyzes 

and comparisons of known gastralia and sternal ribs in extant animals, and lies outside the 

scope of this paper. 465 

Phylogenetical and Functional Implications 

Although the identification of these elements remains unclear, their presence has both 

phylogenetical and functional implications. Their almost exclusive presence in non-

neosauropod Eusauropoda, and in Flagellicaudata indicates that these sauropod taxa might 
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retain a higher potential to ossify these structures. The single findings of a gastral or sternal 470 

rib in Camarasaurus and the lithostrotian Diamantinasaurus (Osborn & Mook 1921; 

Hocknull et al. 2009) remain doubtful, or might represent an exception to the rule. The DNM 

specimens mentioned by Claessens (2004; see Table 2) were never described nor figured 

properly, and it remains thus unclear if they really belong to Camarasaurus, especially since 

the DNM is a multi-taxon assemblage including various diplodocids as well. Therefore, the 475 

loss of ossified clavicles, interclavicles, sternal and/or gastral ribs might result a 

synapomorphy for Macronaria, and maybe Rebbachisauridae as well. The fact that Hocknull 

et al. (2009) only mention gastral rib fragments of Diamantinasaurus, but neither figure nor 

describe them, makes it difficult to interpret their presence in this taxon. Taking for granted 

that their interpretation is right, it might be a diagnostic character of the genus, distinguishing 480 

it from other titanosaurs. On the other hand, due to the fact that only one specimen of this 

taxon is known to science to date, intraspecific variation can not yet be excluded in this case. 

The presence of the rod-like, curved elements here identified as interclavicles in various taxa 

on the evolutionary lineage from basal archosaurs to the neosauropod taxon Diplodocidae, 

implies that neither interclavicle nor clavicles were lost during the evolution of dinosaurs 485 

(contra Sereno 1991; Novas 1996; Remes 2008). Instead, they might have been retained 

cartilaginous in some taxa (see Vickaryous & Hall 2010 as well). 

 

The herein purported identification of the morphotype A elements as interclavicles would be 

the first report of this bone in dinosaurs. It thus gives further support to Vickaryous and 490 

Hall’s (2010) hypothesis that the theropod and avian furcula might actually be homologous to 

the interclavicle, and not represent fused clavicles as generally suggested (Yates & 

Vasconcelos 2005; Nesbitt et al. 2009). As stated by Vickaryous and Hall (2010), both the 

furcula and the interclavicle are dermal elements developing from two ossification centers, lie 

on the body midline, do not coexist in any organism, and share common ancestry (see also 495 

Kälin 1929; Rieppel 1993). Furthermore, both the reptilian interclavicula, as well as the avian 

furcula usually have a triradiate shape: the interclavicula has an elongate, central main body, 

and on the anterior end laterally expanding transverse processes (reduced in the sauropod 

interclavicles described herein), the furcula shows two transversely expanding epicleidia, and 

a ventroposteriorly projecting hypocleidium of varying lengths at its center, on the body 500 

midline. However, the interclavicle of crocodyles appears to initiate its ossification medially 

and fuse rapidly (Kälin 1929), while the furcula, as well as clavicles in marsupial mammals, 

begin to ossify at their lateral ends, proceeding medially (Hall 1986; Klima 1987). Even 

though this might indicate a clavicular rather than an interclavicular origin for the furcula, no 
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embryological studies have been published to date showing a definitive correlation between 505 

the spacing of the ossification centers and their embryological origin (M. Vickaryous, pers. 

comm., 2012). On the contrary, the homology of mammalian clavicles and the avian furcula 

has recently been questioned: unlike the furcula, mammalian clavicles develop from two 

ossification centers per element, and show a combination of endochondral and 

intramembraneous bone formation (Hall 2001). The interclavicle of monotreme mammals, on 510 

the other hand, develops from two dermal ossification centers close to the body midline, 

which finally unites with a third, singular, chondral element (Klima 1987). Furthermore, 

some researchers reported a membranous structure in both birds and crocodiles, at the 

position where mammals or more basal reptiles ossify their clavicles (Götte 1877; Hoffmann 

1879; Kälin 1929). Kälin (1929) rejected an interpretation of these structures as reduced 515 

clavicles based on the assumption that the furcula represents the fused clavicles, and because 

therefore, the same element can not be present two times in the same individual. However, 

the presence of this membrane can also be taken as additional evidence that the furcula 

actually derives from the reptilian interclavicle. 

The strongest evidence against this hypothesis is the pair of chest elements found in 520 

Massospondylus (Yates & Vasconcelos 2005). In this taxon, Yates & Vasconcelos (2005) 

report two symmetrical bones that articulate with the scapular acromion laterally, and with 

themselves medially. In articulation they resemble much the theropod furcula, and therefore 

Nesbitt et al. (2009) interpreted them as an intermediate evolutionary state between unfused 

reptilian clavicles and the theropod furcula. However, as Vickaryous & Hall (2010) state, 525 

unfused furculae are also present in some extant birds, whereas no case of fused clavicles is 

reported by any embryological study on mammalian or reptilian pectoral girdles. In order to 

satisfactorily confirm a clavicular derivation of the furcula, detailed embryological studies on 

reptilian claviculae are needed, which should show a differential development compared to 

mammalian clavicles (one ossification center per bone, no inclusion of chondral portions). If, 530 

on the contrary, the results would concur with the mammalian clavicular development, the 

herein supported hypothesis of Vickaryous & Hall (2010) that the furcula derives from the 

reptilian interclavicle would be definitely confirmed. The evolutionary pathway in the 

formation of the furcula would then go from the diamond-shaped interclavicles of early 

tetrapods, to elongated forms with transverse processes, which would get better developed in 535 

theropods, while the stem-like central body becomes reduced to the hypocleidium. In 

sauropods and crocodilians, on the other hand, the transverse processes got reduced to small 

bifid ends, or were even lost (Fig. 12). A more detailed assessment of morphological changes 

from the archosaur interclavicle to the theropod furcula is hampered due to the rare and 
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incomplete finds of basal dinosaurs, and especially saurischians (Nesbitt et al. 2009; 540 

Vickaryous & Hall 2010). 

In any case, contrary to recent phylogenetic analyses that recovered the absence of 

interclavicles as synapomorphy for Dinosauria (e.g. Sereno 1991; Nesbitt 2011), both 

interclavicles and clavicles appear to be present plesiomorphically in the Dinosauria. 

Interclavicles would then have gotten lost in Ornithischia, and clavicles in Theropoda. 545 

However, the fact that sauropodomorphs preserve both clavicles and interclavicles, delimits 

conclusive implications on the homology of the furcula. In any respect, if the interclavicular 

origin of the furcula is confirmed in opposition to a fused clavicle origin, this will change the 

anatomy textbooks of theropod evolution and the origin of birds in which furculae (fused 

clavicles) have been seen as one of the keystones of the theropodian origin of birds. 550 

An ossification of such a variety of chest elements does obviously also have functional 

implications. It stabilizes the entire pectoral girdle, the sternal apparatus, and in case of 

ossified gastralia also the rest of the trunk. Movements become thus more restricted. So has 

the presence of furculae in theropods already been interpreted as inhibiting quadrupedal 

locomotion (Hohn-Schulte 2010). The taxa exhibiting such an extended ossification usually 555 

have either an elongated cervical (e.g. mamenchisaurs) or caudal vertebral series (e.g. 

dicraeosaurs), or even both (diplodocids). Lateral movements of such long appendages might 

request a firm trunk in order to not disequilibrate the entire animal. Since the pelvic girdle - in 

contrast to the shoulder girdle - is co-ossified with the vertebral column, reinforcements 

would be particularly essential in the pectoral girdle. As the ossification of otherwise 560 

cartilaginous elements and the development of dermal bones often follows such areas of 

higher stress (Haines 1969; Schwarz et al. 2007a), the presence of osseous interclavicles, 

clavicles, and gastralia and/or sternal ribs might be explained like this. Furthermore, a 

posteriorly located center of mass, as present especially in diplodocids, appears to induce 

important lateral stresses to the pectoral girdle during locomotion (Sander et al. 2011). A 565 

greater degree of ossification would thus also help to cope with these loads. However, some 

taxa do not entirely fit this interpretation: Shunosaurus, Jobaria, Spinophorosaurus, as well 

as Gongxianosaurus probably do not exhibit considerably elongated necks or tails (Zhang 

1988; He et al. 1998; Sereno et al. 1999; Remes et al. 2009). Whereas Gongxianosaurus as 

very basal sauropod might simply have retained the basal sauropodomorph gastralia (neither 570 

clavicles nor interclavicles were reported from this taxon, and the description and figures in 

He et al. 1998 do not suffice to attribute them to the either basal sauropodomorph or 

advanced sauropod morphotypes), Shunosaurus bore a distal tail club, which probably served 

as weapon (Zhang 1988). This implies that this taxon used its tail often for lateral swinging, 
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and Shunosaurus might therefore have experienced the same evolutionary pressure as the 575 

long-tailed Flagellicaudata. If the identification by Remes et al. (2009) of the L-shaped bones 

as tail spikes in Spinophorosaurus holds, the same reasoning for ossified chest bones might 

apply in this taxon (although in this case, only an interclavicle would appear to have been 

present). However, the alleged tail-spikes in Spinophorosaurus are slender and do not bear 

the typical osteoderm surface rugosity as seen in thyreophorans and sauropods, neither the 580 

spike-shape or club expected to be found as a defensive tail structure. Furthermore, obviously 

broken edges of the preserved elements shed some doubt on them being of considerably 

different size as described by Remes et al. (2009). Therefore, these bones are also seen here 

as clavicles. As a detailed description of the remains of Jobaria is still missing, an evaluation 

of the functional implications of an ossification of the herein reviewed elements remains 585 

difficult. 

The occurrence of ossified chest bones also coincides with the evolution of the particular 

wide-gauge locomotor style of macronarian sauropods, which probably initiates with 

Camarasaurus (Wilson & Carrano 1999; Carrano 2005; Tschopp & Brinkmann, in review). 

The loss of these elements might thus have allowed a wider spacing of the pectoral girdle, 590 

thereby allowing the development of this particular locomotion pattern. 

Conclusions 

 

Several elements recovered at the Howe Quarry (Bighorn County, Wyoming) resemble bones 

previously identified as sauropod clavicles, as well as gastralia and/or sternal ribs. The 595 

finding of pairs of symmetric bones associated with pectoral girdle elements sheds new light 

on these old interpretations. In fact, detailed investigations lead to the conclusion that the 

bones previously supposed to represent clavicles, might actually be interclavicles, with the 

new, L-shaped pairs being the true claviculae. This supports the result of developmental 

studies of Vickaryous & Hall (2010), which questions the loss of the interclavicle in 600 

Dinosauria - and proposes a homology between the avian furcula and the reptilian 

interclavicle. This would change the usual interpretation that the furcula represents the fused 

clavicles. 

A review of the occurrence of such bones within Sauropoda implies that the tendency to 

ossify interclavicles, clavicles, and sternal and/or gastral ribs has a distinct taxonomic 605 

distribution, with non-neosauropod Eusauropoda and Flagellicaudata representing the 

plesiomorphic state, and Macronaria as well as Rebbachisauridae exhibiting the derived 

condition. Functional implications of retaining the ossified chest bones include the 

stabilization of the trunk in order to have a firm base for lateral movements of elongated 
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necks and tails. On the other hand, the loss of these osseous elements could have allowed the 610 

evolution of the wide-gauge locomotion in Macronaria. 
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Tables 

 

 

Table 1: Bones present in the chest regions of tetrapods.

Phylogenetic bracket Bone connection General shape and distinction Paired/single. Number

Clavicles Dermal bone Yes Curved element

Interclavicles Dermal bone No

Sternal Ribs Endochondral Yes Irregularly shaped, often rugose

Endochondral No Irregularly shaped, often rugose

Gastralium Dermal bone Yes

Cleithrum Dermal bone No Spoon-shaped

Sternal plates Endochondral Yes Shield-like: flat oval or reniform

Scapulacoracoid Endochondral Yes Paired. One pair present

Embryological origin 
(dermal / endochondral)

Previously identified 
in Sauropoda

Basal Sauropodomorpha: present
Birds/Theropoda: fused to form furcula (?)
Crocodylia: absent
Basal Archosauria: present

Dorsal to coracoids (covering it 
sometimes), between cleithrum, 
scapula, and interclavicle in 
basal reptiles

Paired, can fuse into one 
(furcula, questioned 
herein). One pair present

Basal Sauropodomorpha: ? Birds/Theropoda: 
= furcula?
Crocodylia: present
Basal Archosauria: present

Between the clavicles. Connects 
to the coracoid and/or sternal 
plates posteriorly

Variable. Diamond shaped in early 
tetrapods, rod-like with or without 
transverse processes in crocodylians and 
lacertilians

Single (very rarely paired). 
Only one present

Basal Sauropodomorpha: absent?
Birds/Theropoda: present
Crocodylia: present
Basal Archosauria: present

Connects the sternal plates with 
the dorsal ribs or intercostal 
elements

Paired. Maximum one per 
dorsal rib, often less

Intercostal 
elements

Basal Sauropodomorpha: absent
Birds/Theropoda: absent
Crocodylia: present:
Basal Archosauria: present

Connects sternal ribs with dorsal 
ribs

Paired. Maximum one per 
dorsal rib, often less

Basal Sauropodomorphs: present
Birds/Theropoda: present
Crocodylia: present
Basal Archosauria: present

Articulate among themselves 
and through cartilage to dorsal 
ribs, as well as maybe the sternal 
apparatus

Slender, slightly curved bones. Medial 
elements with expanded medial end for 
articulation with corresponding gastralia. 
Anteriormost sometimes fused

Four elements per row (2 
lateral, 2 medial). Up to 21 
rows in large theropods

Basal Sauropodomorphs: absent
Birds/Theropoda: absent
Crocodylia: absent
Basal Archosauria: absent

Capping scapulacoracoid, 
attaches to clavicles

Paired. Only one pair 
present

Basal Sauropodomorphs: present
Birds/Theropoda: present
Crocodylia: present
Basal Archosauria: present

Articulate among themselves, 
sternal ribs attached to them, 
sometimes touching the 
interclavicle anteriorly

Paired or single. One 
single or two mirrored 
elements

Basal Sauropodomorphs: present
Birds/Theropoda: present
Crocodylia: present
Basal Archosauria: present

Dorsal and external to sternal 
apparatus, connected medially 
by cleithrum, clavicles, and 
interclavicle

Large, flat, subcircular acromion with a 
elongate, more narrow posterodorsal 
projection
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 790 

Table 2: New and already reported chest bones of sauropods, ordered by morphotype and first mention. Reported chest bones of unknown morphotype are listed in the end.

Specimen Number Taxonomy References first identified as Comments

Morphotype A

CM 84 Diplodocus carnegii clavicle

HMNS 175 (= CM 662) Diplodocus hayi Hatcher 1903; Nopsca 1905; Holland 1906 clavicle stored at CM

? Mamenchisaurus sp. Dong et al. 1983 clavicle

? Omeisaurus junghsiensis Dong et al. 1983 clavicle three elements mentioned

IVPP V7262 Datousaurus bashanensis Dong & Tang 1984 clavicle

IVPP V7263 Datousaurus bashanensis Dong & Tang 1984 clavicle

T5704 Omeisaurus tianfuensis He et al. 1988 clavicle

T5401 Shunosaurus lii Zhang 1988 clavicle

ANS 21122 Suuwassea emilieae Harris 2007 clavicle

NMB-1698-R Spinophorosaurus nigerensis Remes et al. 2009 clavicle

AMNH 30900 ?diplodocid this study interclavicle

SMA I 24-4 ?diplodocid this study interclavicle

SMA L 22-3 ?diplodocid this study interclavicle

SMA L 27-7 ?diplodocid this study interclavicle

SMA M 25-3 ?diplodocid this study interclavicle

Morphotype B

SMA 0009 ?brachiosaurid Schwarz et al. 2007b, this study possible furcula pair recovered

GCP-CV 4229 Spinophorosaurus nigerensis Remes et al. 2009 tail spikes two elements, possibly not symmetrical

DQ-SB Diplodocidae indet. Galiano & Albersdörfer 2010 clavicle pair recovered

DQ-TY Diplodocidae indet. Galiano & Albersdörfer 2010 clavicle

SMA K 24-3 & 6 ?diplodocid this study clavicle pair recovered

AMNH 30789 ?diplodocid this study clavicle pair recovered

Morphotype C

AMNH 5760/5761 Camarasaurus supremus Osborn & Mook 1921 sternal/ventral rib single element

Tate 001 Eobrontosaurus yahnahpin Filla & Redman 1994 gastralia

AMNH 30901 ?diplodocid this study ?sternal rib

SMA ? ?diplodocid this study ?sternal rib various unnumbered elements

SMA C 17-5 ?diplodocid this study ?sternal rib

SMA D 28-6 to 11 ?diplodocid this study ?sternal rib part of D 28-cluster

SMA D 28-18 to 19 ?diplodocid this study ?sternal rib part of D 28-cluster

SMA E 19-9 ?diplodocid this study ?sternal rib

SMA E 21-2 to 3 ?diplodocid this study ?sternal rib

SMA F 19-10 ?diplodocid this study ?sternal rib

SMA F 19-21 ?diplodocid this study ?sternal rib

SMA F 20-9 ?diplodocid this study ?sternal rib

SMA F 27-16 to 17 ?diplodocid this study ?sternal rib part of F 27-cluster

SMA F 27-33 to 35 ?diplodocid this study ?sternal rib part of F 27-cluster

SMA G 21-2 ?diplodocid this study ?sternal rib

SMA G 27-3 to 4 ?diplodocid this study ?sternal rib probably part of F 27-cluster

SMA G 27-22 to 23 ?diplodocid this study ?sternal rib probably part of F 27-cluster

SMA H 20-7 ?diplodocid this study ?sternal rib

SMA H 21-2 ?diplodocid this study ?sternal rib

SMA H 21-5 ?diplodocid this study ?sternal rib bears a foramen

SMA H 21-9 to 10 ?diplodocid this study ?sternal rib

SMA H 21-12 ?diplodocid this study ?sternal rib

SMA L 21-3 to 5 ?diplodocid this study ?sternal rib probably part of M 21-cluster

SMA M 21-4 ?diplodocid this study ?sternal rib part of M 21-cluster

SMA M 21-6 to 7 ?diplodocid this study ?sternal rib part of M 21-cluster

SMA M 21-11 ?diplodocid this study ?sternal rib part of M 21-cluster

SMA M 21-13 ?diplodocid this study ?sternal rib part of M 21-cluster

SMA N 22-2 ?diplodocid this study ?sternal rib probably part of M 21-cluster

SMA P 19-1 ?diplodocid this study ?sternal rib

SMA P 21-1 ?diplodocid this study ?sternal rib

SMA S 22-3 ?diplodocid this study ?sternal rib

SMA V 21-1 ?diplodocid this study ?sternal rib

Morphotype D

SMA D 28-5 ?diplodocid this study gastralia part of D 28-cluster

SMA D 28-14 to 15 ?diplodocid this study gastralia part of D 28-cluster

SMA F 19-11 to 12 ?diplodocid this study gastralia

SMA G 21-3 ?diplodocid this study gastralia

SMA M 21-2 ?diplodocid this study gastralia part of M 21-cluster

SMA M 21-8 ?diplodocid this study gastralia part of M 21-cluster, fused element

SMA M 21-16 ?diplodocid this study gastralia part of M 21-cluster, fused element

SMA N 21-3 ?diplodocid this study gastralia probably part of M 21-cluster

Morphotype E

YPM 1980 Apatosaurus excelsus Marsh 1883, 1896 sternal ribs several elements

Tate 001 Eobrontosaurus yahnahpin Filla & Redman 1994 gastralia

SMA H 21-1 ?diplodocid this study sternal rib

SMA H 21-3 ?diplodocid this study sternal rib

SMA M 21-15 ?diplodocid this study sternal rib part of M 21-cluster

SMA N 22-12 ?diplodocid this study sternal rib probably part of M 21-cluster

unknown

?CM 3018 ?Apatosaurus louisae Holland 1915 sternal ribs several elements, not described/figured

? Gongxianosaurus shibeiensis He et al. 1998 gastralia

? Jobaria tiguidensis Sereno et al. 1999 clavicle not described, inadequately figured

? Jobaria tiguidensis Sereno et al. 1999 gastralia several elements, not described/figured

DNM ? ?Camarasaurus Claessens 2004 sternal ribs

AODF 603 Diamantinasaurus matildae Hocknull et al. 2009 gastralia fragmentary, not described/figured

DQ-TY Diplodocidae indet. Galiano & Albersdörfer 2010 sternal ribs several elements, not described/figured

DQ-SB Diplodocidae indet. Galiano & Albersdörfer 2010 several elements, not described/figured

DQ-EN Diplodocidae indet. Galiano & Albersdörfer 2010 sternal ribs several elements, not described/figured

DMNS 59329 Diplodocus carnegii Denver Museum Database clavicle

Hatcher 1901, 1903; Nopsca 1905; Holland 

1906; McIntosh 1981

almost complete set including 

morphotype E as well

almost complete set including 
morphotype C as well

associated with SMA H 21-3 and 

morphotype C elements

associated with SMA H 21-1 and 

morphotype C elements

several elements, not described, 

inadequately figured

several elements in the wall, not 

described/figured, possibly the same as 

the ones mentioned by Holland 1915?

gastralia or sternal 

ribs

not described/figured; probably 

morphotype A
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Table 3: Measurements of new and the two first reported finds of morphotype A elements (interclavicles; in mm)

Specimen AMNH fd226 SMA M 25-3 SMA L 27-7 SMA I 24-4 SMA L 22-3 CM 84 HMNS 175

length along curvature 455* 650 545 550 554 660

437* 585 484 540 510 613

185 173 200 206 225

21* 25 6 31 24 77

width bifurcated end 29 30 27 35 21 75

depth of bifurcation 17 30 17 19 41 50 40

Asterices indicate incomplete measurements due to fractures, empty cells were measurements impossible to obtain.

length measured 

straight

length spatulate 

portion

width compressed 

end
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Figure captions 

Fig. 1: Compiled quarry map of the two excavation periods at the Howe Quarry (AMNH map 795 

below, SMA map above). Arrows indicate supposed clavicles at SMA, arrowheads possible 

locations of the supposed clavicle at AMNH. Circles indicate gastral or sternal baskets (full 

circles: SMA; dashed circles: AMNH), rectangle marks the SMA pair of symmetrical bones. 

AMNH map modified from Bird (1985), SMA map drawn by Esther Premru. 

Fig. 2: Detail of the 1991 quarry map, with sections producing associated morphotype C to E 800 

elements enlarged (from left to right: clusters M 21, F 27, and D 28). The morphotype C to E 

elements are highlighted in grey in the enlarged sections. 

Fig. 3: Morphotype A elements, to scale. A, AMNH 30900; B, SMA I 24-4; C, SMA M 25-3; 

D, SMA L 22-3; E, SMA L 27-7. Scale bar = 10 cm. Gray areas in A indicate broken 

surfaces. Note the bifurcate end on top, and the spatulate end at the bottom. 805 

Fig. 4: Morphotype B elements SMA K 24-3 (outer bone) and SMA K 24-6 (inner bone) in 

internal (A) and external (B) view. Short leg of L-shaped bones shown in perpendicular view 

below. Note the considerable bend of this portion in respect to the main axis of the bone. 

Scale bar = 10 cm. 

Fig. 5: Morphotype B elements AMNH 30789 in internal (A) and external (B) view. Scale 810 

bar = 10 cm. 

Fig. 6: Coracoid with taphonomically attached morphotype B element (MB) of the possible 

diplodocid SMA 0009 in posteroventral (A) and lateral (B) view. Arrows indicate brightly 

colored matrix present between the MB and the coracoid. GL, glenoid surface; CF, coracoid 

foramen. Scale bar = 2 cm. 815 

Fig. 7: Morphotype C elements SMA H 20-7 (A) and L 21-5 (B). Both elements are 

incomplete, fracture surface at the top is indicated by the grey area. Scale bar = 10 cm. 

Fig. 8: Morphotype D elements SMA D 28-5 (A), M 21-2 (B), and M 21-8 (C). The bottom 

end of M 21-8 is broken. Scale bar = 10 cm. 

Fig. 9: Morphotype E elements SMA H 21-3 (A), N 22-12 (B), and M 21-15 (C). Note the 820 

irregular shapes that do not allow an assignation to any other morphotype. Dotted lines in A 

indicate direction of the broken hook-like projection. Scale bar = 10 cm. 

Fig. 10: Proposed articulation between two morphotype D elements (left, SMA D 28-5; right, 

SMA D 28-14) in three views (internal/dorsal view in the center, grey lines indicate the same 

morphological landmarks on the respective elements). Note the similarity to the central 825 

portion of the fused morphotype D element (Fig. 9C). Scale bar = 5 cm. 

Fig. 11: Reconstruction of the pectoral girdle and the chest region of an indeterminate 

diplodocid sauropod, based on the finds reported.  Light grey elements represent pectoral 
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girdle elements not discussed in the paper, dark grey elements mark the bones identified 

as chest bone morphotypes in this paper. Anterior (A), and ventral (B) view. 830 

Abbreviations: aDR, anterior dorsal ribs; Cl, clavicle (morphotype B); Co, coracoid; 

DR, dorsal rib; Ga, gastralia (morphotype D); In, interclavicle (morphotype A); pDR, 

posterior dorsal ribs; Sc, scapula; SP, sternal plates; SR, sternal ribs (morphotypes C 

and E); VC, vertebral column. Modified from Schwarz et al. (2007a; A), and Filla & 

Redman (1994; B). 835 

Fig. 12: Evolution of the furcular shape, based on an interclavicular origin. Note the basically 

triradiate shape of the elements within Amniota. Line drawings scaled to same size. Sources: 

Temnospondylia, Aphanerama (Steyer et al. 2000); Monotremata, Ornithorhynchus (Klima 

1987); Lepidosauria, Basiliscus (Vickaryous & Hall 2010); Crocodylomorpha, Alligator 

(Vickaryous & Hall 2010); Sauropoda, Diplodocinae indet. (this study); Aves, Gallus 840 

(Vickaryous & Hall 2010). 
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Fig. 6: Coracoid with taphonomically attached morphotype B element (MB) of the possible diplodocid SMA 
0009 in posteroventral (A) and lateral (B) view. Arrows indicate brightly colored matrix present between the 

MB and the coracoid. GL, glenoid surface; CF, coracoid foramen. Scale bar = 2 cm.  
99x85mm (300 x 300 DPI)  
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Fig. 10: Proposed articulation between two morphotype D elements (left, SMA D 28-5; right, SMA D 28-14) 
in three views (internal/dorsal view in the center, grey lines indicate the same morphological landmarks on 
the respective elements). Note the similarity to the central portion of the fused morphotype D element (Fig. 

9C). Scale bar = 5 cm.  
99x103mm (300 x 300 DPI)  
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