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Abstract 

Evergreen azaleas grow in acid soil and suffer from iron deficiency when cultivated in substrate with pH higher than 6.0. In 
order to select tolerant plants, 11 azalea genotypes were tested for 21 days in alkaline solution (pH 9), buffered with sodium 
hydrogen carbonate (1 g·l-1). Leaf damage, root length and mortality rate were recorded. While leaf damage and mortality rate 

allowed to discriminate genotypes, root development appeared not directly linked to iron deficiency tolerance. Rhododendron 

‘Juko’, R. scabrum, R. macrosepalum ‘Hanaguruma’, R. x pulchrum ‘Oomurasaki’, and R. x pulchrum ‘Sen-e-oomurasaki’ 

resulted iron efficient genetic resources, useful for azalea cultivation and gardening in calcareous soils. On the contrary, R. 

obtusum ‘Kirin’, R. tosaense, R. x mucronatum ‘Fujimanyo’ and R. obtusum ‘Susogo-no-ito’ resulted iron deficiency sensitive 

genotypes. R. x mucronatum ‘Ryukyushibori’ and R. indicum ‘Kinsai’ showed intermediate responses. 
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Introduction 

Evergreen azaleas (family Ericaceae, genus Rhododendron, 
subgenus Tsutsusi) originate from Southeast Asia and grow 
principally in Japan on land that is mostly covered by Brown 
forest soil (53%) and Andosols (17%) (Kanno et al., 2008). 
The lack of limestone found there is suitable for azaleas, 
whose development is optimized in soils with pH of 4.5 to 
6.0 and relatively low Ca, Mg, and K nutrient content 
(Kofranek and Lunt, 1975; Galle, 1987). Conversely, iron 
unavailability induced by alkaline soils (pH ≥ 6.0 or above) 
leads to iron deficiency symptoms: interveinal chlorosis in 
newly-formed leaves, shoot and root growth reduction, leaf 
wilting, defoliation, and finally, plant death (Rombolà and 
Tagliavini, 2007). Plant iron deficiency is a global problem, 
particularly in calcareous soils. It limits not only the 
production levels of various field crops (Marschner, 1995; 
Hansen et al., 2007), but also cultivation of the popular 
ornamental azalea plant (Kofranek and Lunt, 1975; Wallace 
and Wallace, 1986; Chaanin and Preil, 1994; Preil and 
Ebbinghaus, 1994; AIPH and Union Fleur, 2013). 

Using cultivars or rootstocks highly tolerant to iron 
deficiency stress is an approach that allows strong results 
control. This strategy has been widely adopted for herbaceous 
crops and fruit trees (Alcántara et al., 2012). Preil and 
Ebbinghaus (1994) proposed the use of the lime-tolerant 

Rhododendron ‘Cunningham’s White’ as rootstock based on 
in vitro and field screenings. In azalea, putative-tolerant 
genotypes have been observed in Japanese wild habitats with 
alkaline soil (pH up to 8.0), but few data are available (Scariot 
and Kobayashi, 2008). While iron deficiency-tolerant 
genotypes are commonly selected by growing plants in 
calcareous soils, field tests often suffer from soil heterogeneity 
and variable environmental conditions (Jessen et al., 1986). 
To control plant growth conditions, one alternative is to use a 
homogeneous substrate capable of inducing iron chlorosis 
(Alcántara et al., 2012), such as hydroponics with sodium 
hydrogen carbonate (NaHCO3) as the medium buffer. This 
process to screen for iron-efficient plants has been well 
documented (Chaney et al., 1992), and was employed in this 
study to screen 11 evergreen azaleas of wide-ranging 
morphological and ornamental characteristics to select iron 
efficient genotypes. 

Materials and methods 

Two species and nine cultivars of evergreen azaleas were 
selected based on their wide-ranging morphological and 
ornamental characteristics, and different parentages (Table 
1). Plants were clonally multiplied by cuttings in a 
commercial nursery devoted to the production of acidophilic 
ornamental plants (Tecnoverde di Cesa s.p.a., Verbania, 
Piedmont - Italy). During May 2012, eight months old plants 
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Results and discussion 

Iron deficiency symptoms are largely known to include 
interveinal chlorosis in apical leaves, reduction of shoot and root 
growth, leaf wilting and abscission, and finally, plant death (Rombolà 
and Tagliavini, 2007). In this study, defoliation was not estimated 
given the diverse plant behaviours associated with the various 
genotypes. Indeed, new leaf formation is strictly genotype-
dependent, with different timings and patterns. Moreover, some 
evergreen azalea species (R. x pulchrum) damaged leaves fall versus 
others (R. obtusum ‘Kirin’) that wilt on the shoots without falling. 
Due to the slow nature of azalea development, plant height of all 11 
genotypes did not significantly increased during the experiment 
(data not shown). Similarly, at day seven and 14 no differences were 
highlighted in leaf damage and root elongation. 

On the other hand, leaf damage, root length variation, and 
mortality rate differed among the 11 azaleas after 21 days of 
cultivation, both in pH=6 and pH=9 solutions (Table 2). In all 
genotypes, alkaline pH negatively influenced at least one of these 
parameters compared to the control (pH=6), except for R. x 
pulchrum ‘Oomurasaki’ that showed slight leaf damage, root 
elongation, and low mortality indiscriminately. At pH=9, slight leaf 
damages – similar to the control – were observed in R. ‘Juko’, R. 
scabrum, R. x mucronatum ‘Ryukyushibori’, R. macrosepalum 
‘Hanaguruma’, as well as in the two R. x pulchrum cultivars. These 
same genotypes exhibited low mortality rates. R. scabrum had the 
lowest leaf damage (0.9) and no mortality (0%). In contrast, we 
observed severe leaf iron deficiency symptoms in R. obtusum ‘Kirin’, 
R. tosaense, and R. x mucronatum ‘Fujimanyo’ (leaf damage = 4.0). 
These azaleas also showed high mortality rates (80%, 100%, and 
100% respectively), as did R. obtusum ‘Susogo-no-ito’ (90%). 
Root elongation was affected by alkaline pH in three genotypes. 
Compared to control (pH=6), root growth was inhibited in R. 
obtusum ‘Susogo-no-ito’ and R. scabrum, while was enhanced in 
R. x mucronatum ‘Fujimanyo’. 

were hydroponically cultivated with two different nutrient 
solutions for 21 days. Single plant was placed in 100 mL plastic 
pot and 10 plants per treatment were used for each genotype. 
The control nutrient solution of moderate acid reaction (pH=6) 
was prepared with deionized water and 0.5 g·L-1 of water soluble 
fertilizer, containing 20% N, 20% P, 20% K, 0.02% B, 0.01% 
Mo, 0.7% Mg, 1.5% S, 0.015% Cu-EDTA, 0.12% Fe-DTPA, 
0.06% Mn-EDTA and 0.015% Zn-EDTA (Peters Professional®, 
Scotts Company LLC, Dublin, OH, USA). A strong alkaline 
solution (pH=9) was made by the addition of 1 g·l-1 of NaHCO3 
to the control solution. The nutrient solutions were renewed 
every week to sustain a constant pH level. Cultures were 
maintained in a growth chamber at 20°C, 60% relative humidity 
and 16 h photoperiod, with a photosynthetically active radiation 
(PAR) of 157 µmol·m-2·s-1 at the top of the canopy, provided by 
high pressure sodium lamps. On the first day of the trial and 
every seven days thereafter, plant height and root length were 
measured.  At the same time, the plants were inspected for 
chlorotic, browned, or wilted leaves. Based on the recorded data, 
leaf damage was assessed and a score was assigned based on a 
rating scale between 0 to 4, in which 0 = no damage, 1 = 1 – 25% 
leaf damage, 2 = 26 – 50% leaf damage, 3 = 51 – 75% leaf 
damage, and 4 > 75% leaf damage (Cassaniti et al., 2009; Caser et 
al., 2013). After 21 days of cultivation, the mortality rate and the 
plant height and root length variations were calculated. 

All measured and derived data were firstly subjected to the 
homogeneity of the variances and then means were evaluated by 
the analysis of variance (one-way ANOVA) using Ryan-Einot-
Gabriel-Welsch’s multiple step-down F (REGW-F) post-hoc 
test (P ≤ 0.05). All analyses were performed with SPSS 
Statistics Software 21.0 (IBM Co., Armonk, NY, USA). 
Principal Component Analysis (PCA) was performed on 
root length variation, leaf damage, and mortality rate 
recorded after 21 days under the alkaline stress condition. 
The first two axes were plotted according to the extracted 
Eigen vectors, using the software package NTSYS-pc version 
2.1 (Applied Biostatistics Inc., Port Jefferson, NY, USA). 
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Table 1. Azalea genotypes selected for the trial, with related parentage, and main flower and plant characteristics 
Genotype Parentage Flower size Note 

R. indicum ‘Kinsai’ R. indicum (L.) Sweet Small 
Low to medium shrub, densely branched; separate 

narrow petals; reddish orange flowers 

R. ‘Juko’ R. indicum (L.) Sweet, R. eriocarpum (Hayata) Nakai Large 
Low to medium shrub, spreading, densely branched; 
light purplish pink to dark pink flowers with white 

centre (many variations); late blooming 

R. obtusum ‘Kirin’ R. kaempferi Planch., R. kiusianum Makino Small 
Medium to tall dense shrub; strong pink, hose in hose 

flowers 

R. obtusum ‘Susogo-no-ito’ R. kaempferi Planch., R. kiusianum Makino Small 
Medium to tall dense shrub; reddish purple flowers 

with darker blotch 

R. macrosepalum ‘Hanaguruma’ R. macrosepalum Maxim. Large 
Low to medium shrub; purplish pink flowers; spider 

type 

R. x mucronatum ‘Fujimanyo’ R. ripense Makino, R. macrosepalum Maxim. Large 
Broad, medium to large shrub; double form, reddish 

purple flowers 

R. x mucronatum ‘Ryukyushibori’ R. ripense Makino, R. macrosepalum Maxim. Large 
Broad, medium to large shrub; vivid purplish red 

flowers 

R. x pulchrum ‘Oomurasaki’ 
R. ripense Makino, R. macrosepalum Maxim., R. scabrum 

G. Don 
Large 

Vigorous and hardy shrub; deep purplish red flowers 
with darker blotch 

R. x pulchrum ‘Sen-e-oomurasaki’ 
R. ripense Makino, R. macrosepalum Maxim., R. scabrum 

G. Don 
Large Double flower sports of R. x pulchrum ‘Oomurasaki’ 

R. scabrum G. Don  Large 
Large vigorous shrub; reddish orange to rosy purple 

flowers with darker blotch 

R. tosaense Makino  Small Low shrub; purplish red flowers 
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Principal Component Analysis (PCA) allowed better 
classification of the 11 azalea genotypes according to their iron 
deficiency tolerance (Fig. 1), as the first two components 
accounted for 99.96% and 0.03% of variation. The attributes 
responsible for separation were (with values in parentheses) leaf 
damage (4.4 e-04) and mortality (4.0 e-04) along the first 
component (PC1), and root length (0.759) and mortality (-
0.654) along the second (PC2). This result allowed the 
genotypes to be sorted into three distinct groups: R. ‘Juko’, R. 
macrosepalum ‘Hanaguruma’, R. scabrum, and the two R. x 
pulchrum cultivars resulted as tolerant to iron deficiency; R. x 
mucronatum ‘Fujimanyo’, R. obtusum ‘Susogo-no-ito’, R. 
tosaense, and R. obtusum ‘Kirin’ resulted as sensitive; R. x 
mucronatum ‘Ryukyushibori’ and R. indicum ‘Kinsai’ showed 
intermediate responses to alkaline pH condition. A similar 

gradation in iron shortage responses among plants is usually 
observed when a large number of genotypes is tested (Preil and 
Ebbinghaus, 1994; Alcántara et al., 2012). Iron deficiency 
responses appeared to relate closely to parentages and natural 
environment adaptation differences (Scariot et al., 2007). Most 
likely, the wild species R. macrosepalum, R. scabrum, and R. 
ripense (series Scabra) and R. eriocarpum (series Tsutsusi) are iron 
deficiency-tolerant. These species normally grow along forest 
edges, at the seaside, or on stony river areas where they could have 
developed tolerance to different abiotic stresses (Scariot and 
Kobayashi, 2008), whereas R. kaempferi and R. kiusianum (series 
Kaempferia), and R. tosaense (series Tsutsusi) that grow on acidic 
volcanic soil (Scariot and Kobayashi, 2008) are iron deficiency-
sensitive. 

Table 2. Effects of acid and alkaline nutrient solutions on leaf damage, root elongation (�=root length at day 21 – root length at day 0) and mortality rate after 21 days of 

cultivation on the 11 studied azalea genotypes 

 Leaf damage  
(classes)z 

∆ Root length  
(cm) 

Mortality  
(%) Genotype 

pH 6 pH 9 P pH 6 pH 9 P pH 6 pH 9 

R. indicum ‘Kinsai’ 0.00 cy 3.3 abcd *** -0.20 c 0.2 ab NS 0 50 

R. ‘Juko’ 0.70 bc 2.0 def NS 0.35 abc 0.3 ab NS 0 30 

R. obtusum ‘Kirin’ 1.20 bc 4.0 ab *** -1.80 d -1.2 c NS 0 80 

R. macrosepalum ‘Hanaguruma’ 1.50 bc 2.8 abcde * 0.55 abc 0.5 ab NS 20 30 

R. x mucronatum ‘Fujimanyo’ 2.30 abc 4.0 ab * 0.15 bc 1.0 a * 50 100 

R. x mucronatum ‘Ryukyushibori’ 1.30 bc 2.5 bcdef NS 0.30 abc 0.2 ab NS 10 50 

R. x pulchrum ‘Oomurasaki’ 1.20 bc 2.0 cdef NS 0.95 abc 0.2 ab NS 10 20 

R. x pulchrum ‘Sen-e-oomurasaki’ 0.80 bc 1.4 ef NS 0.60 abc -0.5 bc NS 0 20 

R. scabrum 1.10 bc 0.9 f NS 0.75 abc -0.3 abc *** 0 0 

R. obtusum ‘Susogo-no-ito’ 1.40 bc 3.6 abc ** 1.40 a 0.0 ab *** 10 90 

R. tosaense 2.60 ab 4.0 ab * 0.00 c 0.1 ab NS 60 100 

P * **  ** **   

Note: z rating scale: 0 (no damage) -> 4 (severe damage 75% above); y Data are means of ten replications. Different letters indicate significant differences within columns 
according to REGWF post-hoc test. Mean effect within line are reported. NS,*,**,*** Non significant or significant at p = 0.05, 0.01, and 0.001, respectively. 
 

Fig. 1..Scatter diagram of 11 azalea genotypes obtained performing the Principal Component Analysis (PCA) on iron deficiency response parameters 
(leaf damage, mortality rate and variation of root length) recorded after 21 days of cultivation in solution at pH 9. The first two components explain 
99.96% and 0.03% of the total variation 
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Plant root systems perform many essential adaptive functions 
and structural changes can deeply affect the nutrients absorption 
capacity of plants. Under iron deficiency conditions, root 
elongation usually increases. However, some studies report that 
alkaline pH inhibits root growth both in tolerant and sensitive 
plants, while others describe unaffected root elongation, even 
among sensitive genotypes (Chaanin and Preil, 1994; Preil and 
Ebbinghaus, 1994; Alcántara et al., 2000; Valdez-Aguilar and 
Reed, 2006; Wulandari et al., 2014). The tolerance to alkalinity 
we observed in iron-efficient evergreen azaleas seems not related 
to root system development, but other physiological factors 
could be involved, such as enhanced proton extrusion 
(Wulandari et al., 2014), ethylene or auxin synthesis (Schmidt et 
al., 2000), or iron chelate reductase activity of the roots (Bienfait, 
1988). 

 

Conclusions 

The present trial represents the first attempt to 
discriminate evergreen azaleas tolerant to iron deficiency 
that would allow selection of five putative iron-efficient 
genotypes (R. ‘Juko’, R. macrosepalum ‘Hanaguruma’, R. 
scabrum, R. x pulchrum ‘Oomurasaki’ and R. x pulchrum 
‘Sen-e-oomurasaki’). These plants might be used for 
cultivation and gardening in calcareous soils, or as breeding 
materials for iron deficiency tolerance breeding. 
Nevertheless, further experimentation on commonly used 
substrates is necessary to test azalea responses under 
authentic cultivation practices. Furthermore, investigation 
to unravel the mechanism beyond iron deficiency tolerance 
of this acidophilic plant could improve selection protocols. 
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