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SUMMARY 

 

An overactive endocannabinoid system(ECS) is a key factor in the development of diabetes, as it 

promotes energy intake and storage, alters both glucose and lipid metabolism, and has pro-apoptotic 

effects on pancreatic β cells. In addition, compelling evidence from preclinical studies indicates that 

the ECS also influences diabetes-induced oxidative stress, inflammation, fibrosis, and subsequent 

tissue injury in target organs for diabetic complications. In this review, we provide an update on the 

contribution of the ECS to the pathogenesis of diabetes and diabetic microvascular (retinopathy, 

nephropathy, and neuropathy) and cardiovascular complications. The therapeutic potential of 

targeting the ECS is also discussed. 

 

 

Abbreviations: ECS-endocannabinoid system; AEA-anandamide;2-AG-2-arachidonoylglycerol; 

T2DM-type 2 diabetes mellitus;ROS/RNS-reactive oxygen/nitrogen species;DN-diabetic 

nephropathy;CB1/2R-cannabinoid receptor 1/2;MAPK-mitogen activated protein kinase;DNR-

diabetic neuropathy. 
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INTRODUCTION 

 

The major psychoactive component of Cannabis sativa, delta9-tetra-hydrocannabinol (THC), was 

identified 50 years ago. Since then, great effort has been directed to identifying the endogenous 

compounds whose biological actions are mimicked by THC and to clarify their role in various 

physiological and pathological processes. The endogenous cannabinoid system (ECS) comprises the 

endocannabinoids(ECs), the enzymes that regulate their production and degradation, and the 

receptors through which they signal. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG), the 

most studied ECs, are bioactive lipid mediators produced from cell membrane phospholipids. ECs 

are synthesized “on demand”, AEA predominantly via hydrolysis of N-

arachidonoylphosphatidylethanolamine by a phospholipase D, and 2-AG from diacylglycerol by 

diacylglycerol lipase, although parallel biosynthetic pathways also exist. Once synthesized, AEA or 

2-AG are immediately released to target their receptors and then rapidly degraded by fatty acid 

amide hydrolase or monoacylglycerol lipase, respectively. The effects of ECs are mediated 

primarily by the Gi/o-coupled cannabinoid receptor 1 or 2(CB1R/CB2R), with the possible 

involvement of additional receptors, such as GPR-55. AEA signals predominantly via CB1R, while 

2-AG is a full agonist at both CB1R and CB2R. Receptor activation results in a variety of 

biochemical responses, including inhibition of voltage-gated Ca
++

 channels and adenylate cyclase 

activity, leading to lower cAMP levels, as well as activation of K
+
 channels, phospholipases, and 

mitogen-activated protein kinase(MAPK) pathways, the latter via G protein-independent 

mechanisms(Howlett et al., 2010; Horvath et al., 2012).  

CB1R are expressed at very high levels in the central nervous system, whereas CB2R are 

predominantly found in immune, inflammatory, and hematopoietic cells(Pacher and Mechoulam, 

2012). However, these receptors are present in several other cell types and the ECS has been 

implicated in a growing number of pathophysiologic processes. Thus, pharmacological modulation 

of the ECS emerges as a promising therapeutic strategy in a variety of pathological conditions, 
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including neurodegenerative, cardiovascular, gastrointestinal, liver, and renal diseases(Pacher and 

Kunos, 2006, 2013). Here we provide a brief overview of emerging evidence suggesting an 

important role of the ECS in the pathogenesis of type-2 diabetes (T2DM) and its chronic 

complications. The therapeutic potential of targeting the ECS in diabetes and diabetic complications 

will also be discussed. 

 

DIABETES AND DIABETIC COMPLICATIONS 

 

Diabetes mellitus affects 382 million people worldwide and this number is expected to rise to 

592 million by 2035. The diabetes pandemic has been attributed to the growing prevalence of 

obesity, a major risk factor for T2DM. It has been estimated that almost 80% of T2DM cases could 

be prevented by adequate control of body weight. Diabetes is the seventh leading cause of death in 

the United States and both macrovascular and microvascular complications are the major cause of 

morbidity and mortality in diabetic patients. People with diabetes are two to six times more likely to 

develop macrovascular complications. Nearly half of all diabetic patients develop diabetic 

retinopathy and diabetes is the leading cause of blindness in adults, being responsible for 10,000 

new cases of blindness every year in the United States alone. Diabetic nephropathy affects ∼30% of 

patients with diabetes and diabetes is known to account for over 50% of all patients receiving renal 

transplants in the United States. About 60% of non-traumatic lower-limb amputations among 

people aged 20 years or older occur in people with diabetes and diabetic neuropathy is a major 

underlying cause(International Diabetes Federation, 2014).  

Intervention studies have convincingly demonstrated that hyperglycemia is a major pathogenic 

factor for diabetic complications. The underlying mechanisms are not fully understood; however, 

formation of advanced glycation end products, activation of the polyol, the hexosamine and the 

protein kinase C pathways have been implicated. Oxidative stress through formation of both 

reactive oxygen and nitrogen(ROS/RNS) species is a common upstream event in the activation of 
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these deleterious metabolic/signalling pathways. Furthermore, inflammatory processes orchestrated 

by infiltrating monocytes/macrophages also contribute to target organ damage (Forbes and Cooper, 

2013).  

 

THE ROLE OF THE ECS IN THE PATHOGENESIS OF T2DM  

 

Both insulin resistance in peripheral tissues and a relative deficiency in insulin secretion by islet β 

cells are key components in the development of T2DM. Studies performed in the last two decades 

have highlighted the central role of the ECS in the development of obesity and its deleterious effects 

on both glucose and lipid metabolism that can contribute to the development of insulin-resistance 

and T2DM. The well-established role of the ECS in metabolism has been recently 

reviewed(Silvestri and Di Marzo, 2013) and will only be briefly summarized. Recent emerging data 

suggest that the ECS also contributes to beta cell loss in T2DM by modulating inflammatory and 

cell death processes. These novel findings which may open an entirely new avenue to target the 

ECS in T2DM will be highlighted and discussed. 

 

ECS in obesity and insulin resistance 

In the CNS, activation of CB1R enhances food intake by modulating the activity of hypothalamic 

neurons and, subsequently, the release of orexigenic and anorexigenic neuropeptides. Furthermore, 

CB1R signalling affects reward and reinforcement circuits in the mesolimbic system, leading to a 

preference for highly palatable food. CB1R is also present in peripheral organs important in the 

control of metabolism and activate anabolic pathways, favoring energy storage. In white adipocytes, 

CB1R activation increases de novo fatty acid synthesis, enhances triglyceride accumulation and 

reduces lipolysis, whereas in brown adipose tissue CB1R counteracts the uncoupling of respiration 

from from ATP production. Furthermore, CB1R increases hepatic lipogenesis and drives defective 

oxidative metabolism through impaired mitochondrial oxidative phosphorylation in skeletal 
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muscle(Silvestri and Di Marzo, 2013;Boon et al., 2014;Kunos and Tam, 2011). The ECS has thus 

been proposed to be “part of a thrifty phenotype selected to cope with food shortage and make the 

best out of periods of plenty”(Di Marzo, 2012). 

In abdominal obesity, the ECS is generally up-regulated in both central and peripheral tissues, as 

indicated by high EC levels and/or CB1R overexpression. The exact underlying mechanisms are 

unclear; however, ECs are lipid mediators and their biosynthesis can be directly influenced by 

dietary fat intake. This hyperactive ECS can contribute to further fat accumulation by enhancing 

food intake as well as by favoring lipogenesis and reducing energy expenditure in peripheral 

organs(Silvestri and Di Marzo, 2013;Kunos and Tam, 2011;Tedesco et al. 2010;Blüher et al., 

2006;Silvestri et al., 2011). Consistently, both pharmacological and genetic CB1R blockade reduces 

body weight in animal models of obesity(Kunos and Tam, 2011). The effect of CB1R inhibition on 

food intake is transient and weight loss occurs predominantly through blockade of peripheral CB1R. 

However, recent data suggests that central ECS also controls peripheral energy metabolism(O’Hare  

et al., 2011). As visceral adiposity is a major determinant of insulin resistance, it is not surprising 

that ECS over-activity favors the development of obesity-associated metabolic abnormalities.  

Emerging data suggest that a deranged ECS has also direct deleterious effects on insulin 

sensitivity and glucose metabolism independently of weight gain. In adipose tissue, activation of the 

ECS enhances glucose uptake to increase energy storage in the form of de novo synthesized lipids, 

downregulates adiponectin thereby affecting insulin-sensitivity at distant organs, and may favor 

local inflammation(Ge et al., 2013;Murumalla et al., 2011). In skeletal muscle, CB1R interferes 

with glucose uptake by inhibiting signalling pathways activated by insulin, including those required 

for plasma-membrane translocation of glucose transporters. In the liver, activation of hepatic CB1R 

can reduce systemic insulin sensitivity independently from body weight. Indeed, mice that express 

CB1R exclusively on hepatocytes remain lean when fed a high fat diet, but they develop hepatic 

and systemic insulin resistance, whereas mice with hepatocyte-specific CB1R deletion become 

obese, but remain insulin-sensitive(Liu et al., 2012). Several mechanisms may underlie these 
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findings: hepatic CB1R activation reduces insulin clearance by reducing the hepatic expression of 

the insulin-degrading enzyme and inhibits insulin signaling through IRS1 and akt-2, resulting in 

increased hepatic glucose production due primarily to increased glycogenolysis(Liu et al., 2012). 

Furthermore, CB1R activation induces ER stress resulting in elevated hepatic levels of long-chain 

ceramides that in turn inhibit insulin signaling(Cinar et al., 2014). Collectively, these data provide 

strong evidence that a deranged ECS due to conditions leading to obesity, such as a high fat diet, 

may then contribute to further fat accumulation and insulin-resistance through excess CB1R activity 

and thus set the stage for the development of T2DM.  

There is relatively little knowledge on the role of CB2R in the control of metabolic processes; 

however, recent studies suggest CB2R may affect inflammatory aspects of both obesity and T2DM. 

Surprisingly, CB2R agonists potentiated obesity-associated inflammation, insulin resistance, and 

hepatic steatosis and CB2R deficiency improved insulin sensitivity(Deveaux et al., 2009;Agudo et 

al., 2010). Furthermore, CB2R overexpression in the brain induces hyperglycaemia and a lean 

phenotype in adult mice(Romero-Zerbo et al., 2012). However, these studies need additional 

confirmation with improved CB2 selective ligands (particularly given the potent anti-inflammatory 

role of CB2 agonists reported in numerous pathological disease models(Pacher and Mechoulam, 

2012). 

 

ECS and pancreatic beta cells 

Data on the expression of ECS components in pancreatic islet cells are contradictory and vary 

among species; however, most studies agree that beta cells express both ECs and CB1R and that 

CBR1 activation enhances insulin release(Horváth et al., 2012;Malenczyk et al., 2013). Recent 

studies have explored the possibility that the ECS may favor the development of T2DM by inducing 

beta cell apoptosis. ZDF rats are a valuable animal model to address this issue because they 

replicate T2DM natural history. Indeed, young ZDF rats are insulin resistant and normoglycemic, 

while older ZDF become hyperglycemic because of progressive beta cell failure. In this model, 

Page 8 of 29

British Pharmacological Society

British Journal of Pharmacology



For Peer Review

8 

 

ibipinabant, a global CB1R antagonist, attenuates beta cell loss independently of its effects on body 

weight(Rohrbach et al., 2012). Furthermore, a peripherally restricted CB1R antagonist JD5037 

delays the progression of T2DM and beta cell function loss, confirming that EC acting through 

peripheral CB1R can contribute to beta cell failure(Jourdan et al., 2013).  

In beta cells insulin itself positively regulates beta-cell survival and resistance to apoptosis in an 

autocrine manner and recent in vitro studies suggest that CB1R forms a heteromeric complex with 

the insulin receptor and thus inhibits insulin signaling by blocking insulin receptor kinase activity. 

This causes reduced phosphorylation of the pro-apoptotic Bad, thereby causing beta cell death(Kim 

et al., 2012). Although these in vitro findings suggest that EC may induce beta cell death by acting 

directly on beta cells, a recent study has convincingly shown that beta cell failure in adult ZDF rats 

is not associated with CB1R signaling in beta cells, but rather in proinflammatory macrophages 

infiltrating pancreatic islets. Specifically, CB1R activation in macrophages induced activation of the 

Nlrp3-ASC inflammasome, resulting in the proteolytic activation and release of IL-1β and IL-18, 

which act as paracrine signals to induce beta cell apoptosis(Jourdan et al., 2013). The dominant role 

of macrophages in progressive beta cell death does not, however, exclude the possibility that high 

glucose acting on beta cells may trigger the inflammatory process by inducing IL-1β and MCP-1 

release and thus macrophage infiltration. Data on CB2R expression in beta cells are controversial; 

however, given the key role of the CB2R in inhibiting inflammatory processes, it would be of 

interest to explore the potential protective role of signalling through this receptor in inflammatory 

cell-mediated beta cell death. 

 

Intervention studies in humans and future perspectives 

Clinical trials in obese and T2DM patients have proven the efficacy of the global CB1R inverse 

agonist rimonabant in reducing body weight and waist circumference and ameliorating both lipid 

and glucose control. Based on these promising data, rimonabant was licensed in over 50 countries 

worldwide for the treatment of obesity. However, the drug was subsequently withdrawn from the 
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market because of an increased risk of psychiatric adverse events, such as anxiety, depression and 

suicidal ideation, and the therapeutic development of this class of compounds was 

discontinued(Christensen et al., 2007). 

More recently, peripherally restricted CB1R antagonists that poorly cross the blood-brain barrier 

and are thus devoid of centrally mediated psychiatric side effects have been developed to assess if 

peripheral CB1R inhibition preserves the metabolic benefit of global CB1R blockade. A proof of 

principle study by Tam et al.(2010) demonstrated that treatment of diet-induced obese mice with 

the peripherally restricted neutral CB1R antagonist AM6545 improved glucose tolerance, insulin 

sensitivity, plasma lipid profile, and also reversed fatty liver, though it was less effective than 

rimonabant in reducing body weight and it did not affect caloric intake. Subsequent studies have 

shown that a highly potent, selective and brain impermeable CB1R inverse agonist, JD5037, is even 

more effective in improving metabolic parameters in rodent models of obesity/diabetes, has 

hypophagic effects by reversing leptin resistance(Tam et al., 2012), abolishes obesity-induced 

hepatic insulin-resistance(Cinar et al., 2014), and preserves beta cell function in ZDF rats(Jourdan 

et al., 2013). These results raise hope that CB1R blockade may still be a viable option to combat 

dysmetabolism and JD5037 is currently undergoing toxicology screening and may move to clinical 

testing in the near future. 

 

DIABETIC NEPHROPATHY 

 

Diabetic nephropathy(DN) is a leading cause of end-stage renal failure and significantly enhances 

the cardiovascular risk of diabetic patients. The complication is characterized by both increased 

glomerular permeability to proteins and a relentless decline in renal functions. Structural changes 

comprise podocyte abnormalities, including nephrin loss, mesangial expansion, and tubulo-

interstitial fibrosis. It is well established that oxidative stress, inflammation, and fibrogenesis play a 

pivotal role in the development and progression of DN(Forbes and Cooper, 2013). Given the pro-
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oxidative, pro-inflammatory and pro-fibrotic effects of CB1R signalling and the opposing effects of 

signalling through CB2R, there is growing interest on the potential role of the ECS in the 

pathogenesis of DN. 

A full ECS is present within the normal kidney. In healthy animals, CB1R is expressed by 

endothelial cells of the renal arteries and weakly by podocytes and tubular epithelial cells (TEC); 

while CB2R is strongly expressed by podocytes. This pattern of expression changes profoundly in 

diabetes. CB1R is overexpressed by podocytes in animal models of in both type 1(T1DM) and 2 

diabetes(Barutta et al., 2010; Tam et al., 2012; Jourdan et al., 2014). On the contrary, there is a 

deficiency of 2-AG, the main CB2R ligand, in the renal cortex from mice with early STZ-induced 

diabetes and podocyte CB2R expression is markedly downregulated in human biopsies from 

patients with advanced DN(Barutta et al., 2011). Taken together these data indicate that a shift in 

the balance of EC signalling to favor the deleterious effects of CB1R over the protective effects of 

CB2R occurs. It is likely that both hyperglycemia and hypertension are important determinants of  

these alterations as in cultured podocytes exposure to high glucose was shown to increase CB1R 

expression(Nam et al., 2012), while mechanical stress, mimicking glomerular capillary 

hypertension, downregulates CB2R(Barutta et al., 2014). Moreover, proteinuria may lower 

constitutive tubular CB2R expression in advanced DN as exposure of tubular epithelial cells to 

albumin downregulates CB2R expression(Jenkin et al., 2013). 

Intervention studies in animal models of DN have uncovered a potentially important role of the 

ECS in the pathogenesis of DN. The first evidence was provided in murine models of the metabolic 

syndrome. Treatment with rimonabant prevented proteinuria, ameliorated renal function, and 

reduced the glomerular damage in obese Zucker diabetic fatty rats and improved both albumin-

creatinine ratio and glomerulosclerosis in JCR:LA-cp rats(Janiak et al., 2007;Russell et al., 2010). 

More recently, a study performed in db/db mice, a model of T2DM, has shown that rimonabant 

markedly decreases urinary albumin excretion and mesangial expansion and suppresses synthesis of 

profibrotic and proinflammatory cytokines(Nam et al., 2012). However, CB1R blockade also 
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significantly improved insulin resistance and lipid profile in these animals, and the observed 

renoprotetion may be due, at least in part, to improvement of metabolic abnormalities. Convincing 

proof for the direct role of CB1R in the development of DN arose from a study performed in STZ-

induced diabetes, a model of T1DM, in which protective metabolic effects of CB1R blockade 

cannot confound outcomes. In this model, treatment with the selective CB1R reverse agonist 

AM251 significantly reduced albuminuria and prevented downregulation of nephrin and podocin, 

suggesting that enhanced podocyte CB1R signalling may contribute to the development of 

albuminuria by lowering the expression of podocyte proteins crucial to maintaining glomerular 

permselectivity(Barutta et al., 2010). There was no effect of CB1R blockade on markers of renal 

fibrosis and it is unclear whether the differential effect on fibrogenesis observed in animal models 

of T1DM versus T2DM reflects true differences in underlying mechanisms or whether it is animal 

strain-related. In vitro, CB1R activation is profibrotic, as it mediates the effects of high glucose both 

in inducing podocyte collagen overexpression(Nam et al., 2012) and promoting mesangial cell 

apoptosis(Lim et al., 2011); however, it is still controversial if CB1R are present in mesangial cells 

in vivo(Barutta et al., 2014). A recent study using ZDF rats(Jourdan et al., 2014) provided 

additional mechanistic insight on the role of CB1R in the pathogenesis of diabetic nephropathy. 

This study demonstrated that peripheral CB1R blockade was not only effectively in preventing the 

characteristic hallmarks/symptoms of diabetic nephropathy(albuminuria, reduced glomerular 

filtration, activation of renin-angiotensin system, oxidative/nitrative stress, podocyte loss and 

increased CB1R expression in glomeruli), but could also reverse these changes after they 

developed. This study also provided evidence that the enhanced CB1R signaling in diabetic kidneys 

promotes upregulation of the local angiotensine II receptor-NADPH oxidase signalling promoting 

ROS generation in podocytes and cell death(Jourdan et al., 2014).  

Recent studies have highlighted an important protective role for CB2R in DN. In STZ-induced 

diabetes, activation of CB2R by the selective CB2 agonist AM1241 reduced albuminuria, 

glomerular monocyte accrual, and nephrin downregulation(Barutta et al., 2011). Conversely, 
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knocking-down CB2R worsened slit diaphragm protein downregulation, proteinuria, 

overexpression of extracellular matrix components, mesangial matrix expansion, monocyte 

infiltration, and renal function loss in diabetic mice(Barutta et al., 2014). CB2R activation reduced 

MCP-1 signalling, whereas CB2R deficiency markedly increased the expression of the MCP-1 

receptor CCR2 in the renal cortex, as well as in both cultured podocytes and 

monocytes(Montecucco et al., 2008;Barutta et al., 2011;Barutta et al., 2014). By lowering CCR2 

expression in monocytes, CB2R agonists may reduce the recruitment of inflammatory cells that can 

contribute to renal injury through the release of ROS, toxic products and cytokines. On the other 

hand, CB2R-induced CCR2 downregulation on podocytes may prevent the direct deleterious effects 

of MCP-1 on this cell type, including nephrin downregulation(Giunti et al., 2010;Tarabra et al., 

2009). Of interest, recent experiments employing adoptive transfer of bone marrow have clarified 

that the worsening of DN in CB2R-deficient mice is mainly due to CB2R loss on podocytes rather 

than on monocytes(Barutta et al., 2014). 

Studies performed in experimental cisplatin-induced nephropathy have shown that both CB1R 

blockade and CB2R activation reduce tissue injury, cell death, and interrelated inflammation and 

oxidative/nitrosative stress(Mukhopadhyay et al., 2010a and b). This suggests that CB1R and CB2R 

also have opposing effects on tubular epithelial cells that may be of relevance in the pathogenesis of 

diabetes-induced tubulo-interstitial injury. In keeping with this notion, palmitic acid, that promotes 

of tubulointerstitial damage in T2DM, induces CB1R expression in cultured proximal tubular 

epithelial cells and CB1R mediates palmitic acid-induced endoplasmic reticulum stress and 

apoptosis. Furthermore, AEA causes proximal tubular epithelial cell hypertrophy and this effect is 

reduced by CB1R antagonists and enhanced by CB2R antagonists. Although, tubular hypertrophy 

initially leads to increased capacity of the proximal tubules to reabsorb albumin, an increase in 

albumin reabsorption can activate fibrotic cytokines, contributing to tubulo-interstitial injury(Jenkin 

et al., 2012).  
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Collectively these data suggest a beneficial effect of both CB1R blockade and CB2R activation in 

DN. This is of significant therapeutic relevance since 20% of patients with incipient DN still 

progress to overt nephropathy despite optimal treatment, and there is increasing need for novel 

therapeutic strategies. Further studies are required to establish the therapeutic potential of peripheral 

restricted CB1R antagonists or CB2R agonists in DN and to find out whether the addition of these 

compounds to current DN treatment protocols results in extra benefit.  

 

DIABETIC NEUROPATHY 

 

Diabetic neuropathy (DNR) affects as many as 60% of patients with long-standing diabetes. Distal 

symmetrical polyneuropathy (DSP), the most common type of DNR, is due to axon degeneration 

secondary to both metabolic abnormalities and injury of endoneural microvessels. Almost a third of 

patients with DSP describe burning, electric, or stabbing pain(allodynia/hyperalgesia)(Peltier et al., 

2014) and there is considerable interest in the possibility of exploiting the anti-nociceptive 

properties of the ECS for therapeutic gain. 

Treatment with CB1R agonists has anti-nociceptive effects in STZ-induced diabetes(Horváth et al., 

2012;Vera et al., 2012). Peripherally-restricted CB1R agonists, devoid of central side effects, are 

likely to be equally effective as analgesia is predominantly due to activation of CB1R on peripheral 

nociceptors(Agarwal et al., 2007). However, as discussed above, CB1R activation contributes to the 

development of T2DM and its complications in addition to deletorious cardiovascular effects, 

which is a major obstacle to their therapeutic use(Pacher and Kunos, 2013). CB2R agonists also 

exert anti-nociceptive effects in diabetic mice, which appear to be predominantly related to 

inhibition of microglia-driven inflammation(Vincenzi et al., 2013). In contrast to CB1R agonists, 

CB2R agonists do not have unwanted central side effects and appear to be protective in most of 

diabetic complications. However, CB2R agonism has been reported to have deleterious effects on 

metabolism(Deveaux et al., 2009;Agudo et al., 2010), which is still a matter of debate and require 
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further clarification. Furthermore, positive results in animals do not imply efficacy in humans, as 

some mixed CB1/2R agonists have so far performed poorly in patients, despite efficacy in rodents 

(in part because of the metabolic and cardiovascular adverse effects attributable to CB1R 

stimulation). A clinical trial performed in 30 patients with painful DNR randomised to either 

Sativex, containing both THC and cannabidiol, or placebo, has failed to show any benefit of 

Sativex(Selvarajah et al., 2010), though depression was a major confounding factor during the 

study. 

Besides the potential importance of the ECS as a therapeutic target in painful DNR, there is also 

evidence for its potential role in the pathogenesis of DNR, although the data are often conflicting. 

Expression of CB1R was found to be reduced in dorsal root ganglia of diabetic rats and CB1R 

activation attenuated neural damage and normalised neurite outgrowth in cells exposed to a high 

glucose milieu(Zhang et al., 2009). On the other hand, in vivo studies suggest that inhibition rather 

than activation of CB1R may be beneficial. In STZ-induced diabetes, treatment with rimonabant 

partially prevented loss of intraepidermal nerve fiber density and increased current perception 

threshold. These effects were paralleled by reduced skin capillary loss, increased blood flow, and 

diminished tissue TNF-alpha levels, suggesting that the observed effects may be related to the anti-

inflammatory and vasoprotective properties of rimonabant(Liu et al., 2010). Furthermore, in 

diabetic mice, rimonabant attenuated mechanical allodynia, reduced oxidative stress in peripheral 

nerves, inhibited TNF-alpha overexpression in the spinal cord, and moderated NGF deficiency, 

suggesting that CB1R blockade interferes with mechanisms leading to nerve injury and favours 

nerve regeneration. Accordingly, the histological analysis of sciatic nerves showed a marked 

degeneration of myelinated fibers in diabetic mice that were reduced by rimonabant 

treatment(Comelli et al., 2010).  

Taken together, the studies summarised above suggest that CB1R signalling enhances the 

inflammatory and oxidative processes leading to both neuronal and microvessel damage, in addition 

to having some neuroprotective and anti-nociceptive properties. Therefore, CB1R effects may vary 
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substantially in different experimental settings and species, which may underlie the conflicting data. 

Further research is required to reconcile controversies and to establish whether and what type of 

modulation of ECS activity is a feasible therapeutic strategy in DNR. 

 

DIABETIC CARDIOMYOPATHY AND RETINOPATHY 

 

Both major cannabinoid receptors as well as endocannabinoid synthetic and metabolising enzymes 

are expressed in the myocardium and vasculature. Based on preclinical studies, under normal 

physiological conditions the ECS appears to play only a very limited, if any, role in cardiovascular 

regulation. However, it emerges as an important player in triggering or promoting disease 

pathology/progression in cardiovascular disease(Pacher and Kunos, 2006). Similarly to the diabetic 

nephropathy discussed above, it appears that activation of CB1 and CB2 receptors have opposing 

consequences in various major cardiovascular pathologies. ECs acting via CB1R generally promote 

hypotension, bradycardia and negative inotropy via receptors located on sympathetic and 

parasympathetic nerve terminals, cardiomyocytes and endothelial cells(Pacher and Kunos, 2006). In 

addition, endocannabinoids through CB1 receptor-dependent/independent pathways may also 

promote ROS generation and activation of pro-apoptotic stress signalling pathways(e.g. p38 and 

JNK mitogen-activated protein kinases) in murine and human cardiomyocytes, endothelial and 

smooth muscle cells, and promote pro-fibrotic signalling in fibroblasts/myofibroblasts(Rajesh et al., 

2010,2012;Mukhopadhyay et al., 2010c;Tiyerili et al., 2010). Emerging evidence also suggests that 

endocannabinoid activation of CB1 receptors promotes pro-inflammatory signalling in 

macrophages and enhance recruitment of various inflammatory cells to the site of insult, facilitating 

cardiovascular inflammation, vascular or myocardial remodelling and tissue injury(Steffens and 

Pacher, 2014). In agreement with this, ECs and CB1R have been implicated in the pathogenesis of 

cardiac dysfunction, cell death, and inflammation in various forms of shock, heart failure, and 

atherosclerosis(Pacher and Kunos, 2006). In contrast, activation of CB2R in immune cells 
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attenuates chemotaxis, adhesion of inflammatory cells to the activated endothelium, and activation 

of these immune cells. CB2R activation also attenuates endothelial cell activation and pro-

inflammatory response, decreases smooth muscle proliferation, and may exert protective effects in 

cardiomyocytes(Pacher and Steffens, 2012). These effects are responsible for the benefits of CB2R 

agonists reported in myocardial, cerebral and other models of ischemic/reperfusion injury(Pacher 

and Hasko, 2008). However, the role of CB2 in cardiomyocytes requires additional confirmation in 

light of concern with the specificity of the commercially available CB2R antibodies(Pacher and 

Steffens, 2012). Endocannabinoids may also exert numerous CB1/2R independent effects (e.g. 

vasodilation/vasoconstriction, anti-inflammatory/pro-inflammatory, etc.) in the cardiovascular or 

other organ systems via degradation to arachidonic acid metabolites or through putative novel 

cannabinoid or other (e.g. TRPV1) receptors) depending on the context and concentration/dose 

used(Pacher and Kunos, 2013;Stanley and O’Sullivan, 2014).   

Although diabetes is a well-recognized risk factor for cardiovascular disease and heart failure, the 

mechanisms of the development and progression of diabetic cardiomyopathy, which involve 

complex interplay of oxidative/nitrative stress with metabolic, proinflammatory and cell death 

pathways, are still not completely understood(Varga et al., 2014). 

Using a mouse model of type 1 diabetic cardiomyopathy, Rajesh et al.,(2012) investigated the role 

of EC-CB1R signaling in myocardial dysfunction, inflammation, remodelling and cell death. They 

found increased levels of anandamide  and increased CB1R expression in diabetic hearts, 

accompanied by enhanced accumulation of advanced glycation end products(AGEs), 

oxidative/nitrative stress, inflammation, cell death and fibrosis. This also paralleled with enhanced 

angiotensin II type 1 receptors-p47(phox) NADPH oxidase signalling, β-myosin heavy chain 

isozyme switch, decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 

(SERCA2a) and both diastolic and systolic cardiac dysfunction(Rajesh et al., 2012). These 

pathological processes were markedly attenuated by CB1R blockade with globally acting CB1R 

antagonists or by genetic deletion of CB1R. These effects were glucose-independent, as CB1 
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inhibition had no effect on the elevated blood glucose levels following destruction of pancreatic 

beta cells by multiple injections of streptozotocin, yet CB1R blockade not only prevented but also 

reversed the pathological remodelling and diabetic cardiac dysfunction in this type I diabetes model. 

In db/db mice, chronic CB1R inhibition attenuated myocardial fibrosis and remodelling, similar to 

its earlier described beneficial effects in diabetic nephropathy(Nam et al., 2012). CB1 receptor 

inhibition also improved cardiac function and remodelling after experimental myocardial infarction 

and metabolic syndrome by mechanisms similar to those described above Slavic et al.,(2013). 

Furthermore, acute and chronic systemic CB1 cannabinoid receptor blockade improved blood 

pressure regulation and metabolic profile in an angiotensin II-dependent hypertensive(mRen2)27 rat 

model(Schaich et al., 2014). 

Supporting the pathological function of an overactive ECS in cardimetabolic diseases, increased 

plasma levels of AEA and 2-AG were strongly correlated with adverse coronary circulatory events 

or impaired coronary endothelial function in human obese subjects(Quercioli et al., 2011; Pacher 

and Kunos, 2013). These studies even suggested that plasma EC levels be considered as biomarkers 

of cardiovascular risk in obese populations. 

Collectively, the above studies strongly suggest that activation of CB1R by endocannabinoids 

contributes to the pathogenesis of diabetic cardiovascular dysfunction by facilitating AT1R 

expression/AT1R-NADPH oxidase-ROS signallin, MAPK activation,  AGE accumulation, 

oxidative/nitrative stress, inflammation and fibrosis. These mechanisms are also critical in the 

development of other microvascular complications of diabetes (e.g. diabetic nephropathy (discussed 

in the earlier parts) and retinopathy(El-Remessy et al., 2011; Horvath et al., 2012), as indicated by 

the beneficial effects of CB1R inhibition or genetic deletion. 

Thus, inhibition of peripheral CB1R with a new generation of peripherally restricted 

antagonists/inverse agonists may represent a promising strategy in the treatment of diabetic 

cardiovascular complications.    
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CONCLUSION AND PERSPECTIVES 

 

CB1R blockade is beneficial in animal models of obesity and metabolic syndrome, and these 

findings have been confirmed in humans. Furthermore, recent preclinical studies suggest that 

“peripherally restricted” CB1R antagonists may represent a novel therapeutic strategy to minimize 

or avoid neuropsychiatric liability while retaining metabolic efficacy in obesity, insulin resistance, 

and beta cell loss. These new compounds deserve further development and clinical testing as they 

might have a significant clinical impact. Alternative strategies to counteract EC over-activity would 

be to develop drugs that lower EC levels through modulating their biosynthesis and/or degradation, 

or to develop dietary interventions that would lower the abundance of endocannabinoid precursors. 

Future studies will clarify if these new approaches are feasible.  

Cannabinoid-based therapies may also protect against diabetic complications. The opposing effects 

of CB1R and CB2R on inflammation, oxidative stress and fibrogenesis likely explain the beneficial 

effects of CB1R blockade and CB2R activation in the setting of diabetic complications. Although 

data on the functional consequences of CB1R gene polymorphism are still lacking, an association 

between a common CB1R polymorphism and the presence of both nephropathy and retinopathy has 

been recently reported in T2DM patients(Buraczynska et al., 2014). Thus, second generation CB1R 

antagonists may have promise in the treatment of diabetic complications.  

Regarding the therapeutic potential of CB2R agonists, it is important to emphasize that their effect 

on worsening insulin-resistance, if confirmed by other studies using more specific ligands, may 

hamper their use in the treatment of T2DM complications. It is important to note that the CB2R 

agonists used in studies so far may not have been entirely specific, particularly at high doses, and 

may have induced unwanted, CB1R-mediated effects(Pacher and Mechoulam, 2011). Therefore, it 

is very important to develop more selective CB2R agonists.  

In conclusion, modulation of the ECS in diabetes and diabetic complications with peripherally 

restricted synthetic CB1 antagonists and/or CB2 agonists holds therapeutic promise. Furthermore, 
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marijuana-derived substances such as cannabidiol, which does not interact with classical 

cannabinoid receptors but has been reported to exert beneficial effects in diabetes and diabetic 

complications, may also have therapeutic utility(Horvath and Pacher, 2012), the discussion of 

which is beyond the scope of this review. 
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FIGURE LEGENDS 

 

Figure 1: Role of the Endocannabinoid System (ECS) in the Development of Type 2 Diabetes. 

Excess food intake and obesity enhance the ECS tone. A hyperactive ECS further contributes to 

visceral fat accumulation and obesity by reducing energy expenditure and by enhancing both food 

intake and lipogenesis. Therefore, the ECS is involved in the development of obesity-dependent 

insulin resistance. Moreover, an overactive ECS has direct deleterious effects on insulin sensitivity 

independent of weight gain in peripheral organ of metabolism (liver, adipose tissue, skeletal 

muscle). Finally, the ECS indirectly contribute to beta cell failure through activation of the Nlrp3-

ASC inflammasome in infiltrating macrophages, resulting in beta cell apoptosis. Both insulin 

resistance and relative insulin deficiency lead to the development of type 2 diabetes. 

 

Figure 2: Opposing Effects of CB1R and CB2R in Diabetic Nephropathy 

The CB1R has deleterious pro-oxidative and pro-inflammatory effects, while opposing protective 

effects are induced by CB2R activation. In diabetes hyperglycemia and hypertension alter the 

balance between CB1R and CB2R signalling as CB1R expression is enhanced, while CB2R is 

downregulated. This unbalance favors oxidative stress, inflammatory, and profibrotic processes and 

contributes to development of proteinuria by enhancing nephrin loss and of renal function loss by 

exacerbating fibrogenesis in both the mesangium and tubulo-interstitium. 

 

Figure 3: Role of the Endocannabinoid-CB1R Signalling in Diabetic Cardiovascular 

Complications. Hyperglycemia and hyperlipidemia associated with diabetes promotes increased 

reactive oxygen and nitrogen species (ROS/RNS) generation in endothelium, vascular smooth 

muscle and cardiomyocytes, induces stress signalling, pro-fibrotic changes and cell death in the 

myocardial cells, as well as leads to activation and recruitment of inflammatory cells with 

consequent pro-inflammatory response. Hyperglycemia also directly or inderectly leads to enhanced 

EC-CB1 receptor signalling, which in turn amplifies these pathological processes facilitating tissue 

injury, cardiovascular dysfunction and eventualy development of diabetic cardiovascular 

complications such as cardiomyopathy, nephropathy, retinopathy and enhanced atherosclerosis.   
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