
 1

Computational and methodological aspects

of the Corpus Taurinense disambiguation process

Marco Tomatis

This article deals with the development of a morphosyntactic disambiguation system for the Corpus

Taurinense, a corpus of old Italian Florentine texts. The aim of this project is building a reference

corpus suitable to be used for training any stochastic tagging system. After presenting its general

working principles, the internal structure and the error control methodology of the disambiguation

program will be explained.

Introduction

The Part of Speech (POS) disambiguation of the Corpus Taurinense has represented the final phase

of a broad project which was born with the aim of providing philologists and language historians a

new, innovative tool for carrying on linguistic research about the origins of the Italian language.

The usage of a representative corpus of the Florentine variety of Italian texts of the XIIIth Century

published online in a markupped and Part-Of-Speech (POS) tagged electronic format and freely

accessible to any scholar as a reference source, was the main element of innovation this project

brought forth. However, notwithstanding the positive aspects, such a project required a big effort in

terms of time and organization needed to prepare the tagset and all the related linguistic tools. For

such reason, during its development, the important role that an accurately disambiguated version of

the Corpus Taurinense could play as training corpus for a HMM (Hidden Markov Models)

stochastic tagging systems emerged vigorously. Yet, the total lack of any previous work developed

for managing old Italian texts in electronic format, forced us to treat the language contained in the

Corpus Taurinense as a totally unknown entity from a computational point of view. Therefore, after

evaluating all the possible ways to design and manage the disambiguation process, we realized the

only feasible solution was to build a rule-based disambiguation engine. In order to avoid the need to

develop a specific formalism for properly managing all our linguistic rules, we decided to adopt

“GAWK”, a scripting language whose syntax is very similar to the language “C”, to design the

whole disambiguation procedure.

The disambiguation system

As stated before, since the disambiguation program was developed using a scripting language, it

works in a procedural way. Unfortunately, due to the very idiosynchratic nature of old Italian, the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302008233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

disambiguation rules have to manage not only general, context-free linguistic patterns, but also

quite a large amount of specific, context-bound patterns. For such reason, the whole system of rules

was divided into six different independent modules acting in accordance to a specific hierarchical

sequence. The first of the disambiguation modules operates on an input text which must be fully

tokenized, POS-tagged and markupped. All the remaining modules run sequentially in cascade; they

get as input text the result of the previous block of rules. In general terms, the first three modules

are devoted to manage all the different exceptions, while the last ones contain the most general

rules. In this way, the filtering action the disambiguator is able to carry on is optimized and its

flexibility is improved.

Fig. 1 - Program data flow

Within the whole corpus the disambiguation rules may face three different kinds of general

ambiguous patterns, which are defined as external, internal and inter-POS. The first one of these

patterns is related to the different POS the token may assume (e.g.

la_(lem=la,60,0,5,6,0,0);(lem=la,39,3,5,6,0,0);(lem=là,45,0,0,0,8,0)); the second one refers to POS

specific morphologic data such as gender, number, person, etc. (e.g.

che_(lem=che,36,0,4;5,6;7,0,0)), while the third one is related to different morphologic information

tied to the same POS type (i.e. verb mode, tense, etc.). Despite the hierarchical organization of the

different modules, the rules they contain may operate, even simultaneously if needed, on any of the

three patterns described above. As regards the internal representation of the part of speech and

morphosyntactic data associated to a particular token, a numeric codification has been chosen, as

shown by the examples above. Though at first glance such a solution may be considered in some

Module 1 Module 2 Module 3

Module 6 Module 5 Module 4

Input Text

Unambiguous Text

 3

ways awkward because of the lack of immediate intelligibility of the linguistic information the

corpus contains, in facts it revealed to be the most functional in terms of computational efficiency

and textual compactness.

The following example is a little fragment of ambiguous input text. The first three lines represent

markup and metadata, which are never analyzed by the disambiguation rules.

Fig. 2 - Example of non-disambiguated input

As regards in particular the internal organization of the whole disambiguation engine, each module

is made of a number of mutually excluded blocks of rules. This means that inside any module a

specific text pattern can be managed by a single set of rules only. The whole text is scanned by a

number of pointers that match the tokens they are pointing at with those defined inside each

disambiguation rule. Only one of the said pointers is responsible for selecting the current token to

disambiguate; all the other ones have auxiliary functions because they are just used to define the

exact pattern the rule should match for entering into action. As the textual pattern matches, the rule

is supposed to take the control and select the correct part of speech. Then, like a radio tuner, all the

pointers will move on synchronously to the next token until a new correspondence between the

token pattern and the one defined by the rules is found. If no matching is available, the system will

automatically move the pointers forward, to the next token on their right. Since the text contains

both lexical tokens and markup code, the pointer control system is designed to automatically

recognize and avoid all the non-lexical elements in the text. In such a way it is possible for the rules

to take into account the lexical structure only, without being influenced by any external code.

The picture below (fig. 3) is a graphical representation of the just described working flow.

@Rinuccino@@Sonetti@@@Lir
%001
&V_lem=versesection,71,0,0,0,0,0 0035 #001@
D'_(lem=da,56,0,0,0,0,0);(lem=di,56,0,0,0,0,0);(lem=di,51,0,0,0,0,0);(lem=di;da,56,0,0,0,0,0)
amore_lem=amore,20,0,4,6,0,0 abiendo_lem=avere,224,0,0,0,0,0 gioia_lem=gioia,20,0,5,6,0,0
interamente_lem=interamente,45,0,0,0,8,0 ,_lem=comma,71,0,0,0,0,0
lasso_lem=lasso,26,0,4,6,8,0 ,_lem=comma,71,0,0,0,0,0 nonn¬_lem=non,45,0,0,0,8,0
aio_lem=avere,211,1,0,6,0,0 in_(lem=in,56,0,0,0,0,0);(lem=in,51,0,0,0,0,0);(lem=in,75,0,0,0,0,0)
altro_lem=altro,32,0,4,6,0,0 intendimento_lem=intendimento,20,0,4,6,0,0
né_lem=né,50,0,0,0,0,0
che_(lem=che,36,0,4;5,6;7,0,0);(lem=che,51,0,0,0,0,0);(lem=ché,51,0,0,0,0,0);(lem=che,35,0,4;5,6,0,0)
;(lem=che,40,0,4;5,6,0,0);(lem=che,32,0,4,6,0,0);(lem=che,45,0,0,0,8,0) partisse_lem=partire/-
si/,116,3,0,6,0,0 lo_(lem=lo,60,0,4,6,0,0);(lem=lo,39,3,4,6,0,0)
cor_(lem=cuore,20,0,4,6,0,0);(lem=cor,75,0,0,6,0,0) né_lem=né,50,0,0,0,0,0
la_(lem=la,60,0,5,6,0,0);(lem=la,39,3,5,6,0,0);(lem=là,45,0,0,0,8,0)
mente_(lem=mente,20,0,5,6,0,0);(lem=mentire,115,2,0,6,0,0)

 4

Fig. 3 - The pointers working principle

Organization of the rules

As already mentioned before, within the six modules the set of linguistic rules are strictly organized

in a hierarchical structure. More specifically, the first three modules have been designed for taking

into account all the particular, context sensitive word patterns, the fourth module contains a mixture

of ad-hoc and general rules, while the last two modules host context-free, general rules only. In

particular, the whole set of rules is grouped into 1059 different blocks, each of which is designed to

manage one specific ambiguity only. Yet, since different tokens may show a variable number of

ambiguous POS values they are tied to, any disambiguation block may contain up to seven different

POS selecting rules. The following is an example of a block of rules written in GAWK, taken from

the second module:

(2) Regola vera e propria

Regola per la disambiguazione esterna di 'piano'

 else
 if (campo ~ /^piano_/ && campo ~ /\);\(/)
 {
 if (campo ~ /¥$/)
 end = "¥"
 else
 end = ""
 nf++
 if ($bw ~ /^troppo_/ || $bw ~ /^e_/ || $fw ~ /^che_/)
 {
 assegna(campo, "45", end)
 }
 else
 if ($bw ~ /^÷l_/ || $bw ~ /^a_/ || $bw ~ /^di_/)
 {
 assegna(campo, "20", end)
 }
 else
 {
 assegna(campo, "26", end)
 }
 }

Fig. 4 - The disambiguation rules for piano

che la passata . #002@ E però che la cagione de la nuova

Pt. 1 Pt. 2 Pt. 3

che la passata . #002@ E però che la cagione de la nuova

Pt. 1 Pt. 2 Pt. 3

 5

Translated into current English, the three rules above mean:

1. The word “piano” is an adverb (POS “45”) if the token before it is “troppo” or “e” or if the

following token is “che”.

2. The same word is a noun (POS “20”) if the token before it is “÷l” or “a” or “di”

3. “piano” is an adjective (POS “26”) in all the other cases.

Within the six modules, the block of rules are distributed in the following way:

Module typology Ambiguous POS managed Block of rules

1 – ad-hoc rules verbs, nouns, adjectives 547

2 – ad-hoc rules nouns, adjectives, adverbs 265

3 – ad-hoc rules prepositions, conjunctions, adverbs 150

4 – ad-hoc and general rules verbs, prepositions, conjunctions 57

5 – general rules determiners 19

6 – general rules nouns, adjectives 21

Fig. 5 - The program modules organization scheme

The table above shows a far lower presence of rules in the last three modules if compared with the

first three ones. This can be easily explained by examining the scope of the general rules, which are

able to take into account a broader variety of possible ambiguous cases if compared with the ones

designed for managing specific ambiguities only. Related to this aspect, it is also worth highlighting

that in comparison with nouns or adjectives, the verbs disambiguation process resulted to be the

most expensive in terms of overall quantity of rules involved.

The error tracking system

Altough the technical framework we adopted provided us a convenient way to design the different

linguistic rules, during the development of the disambiguation system a number of organizational

problem raised. In particular, we had to face various issues related to the development of both a

hierarchical control flow and an error control method the different rules had to be subject to.

Whereas the first aspect was quite easily solved by grouping together within the same module all

the rules dealing with a particular POS, the development of an error control method required a more

considerable effort. Indeed, because of the large amount of rules the disambiguation system is made

of, a single solution revealed not to be sufficient enough for managing all the possible errors the

developer involuntarily could make during his work. As a matter of fact, any mistake inside the

disambiguation rules may produce two different kind of errors. The first one, the most nasty and

hard to pinpoint inside the output text, is produced by the system any time a discrepancy between

 6

the POS selected by a rule and the POS grabbed by the main pointer occurs. In such a case, due to

the lack of matching between the said values, the program would be forced to select and print a

non-existent entity. Consequently, the resulting text would be affected by the absence of specific

tokens. Since such a problem could involve the output of any module, we found the most feasible

solution was to compare the output of two consecutive modules and check that the number of

tokens present in each line of both files was exactly the same. Doing so, the control program would

be able to find one or more missing tokens in one or more different lines, providing the developer

all the information needed to track and solve the program errors.

The second kind of problem affecting the disambiguation rules is related to the definition of their

very scope. Usually, before realizing an effective linguistic rule, it is necessary to spend lots of time

in a trial-and-error testing process involving the whole set of modules. We aimed at avoiding that

time losing activity, therefore we had to completely change our methodological approach. For

testing the scope effectiveness of a specific rule, a testing module called “PEX” was prepared.

Differently from the standard module structure, the PEX allowed the developer to run only one rule

per time. In this way, it was easier for the user to understand when a new rule was not working

properly or when its scope had to be adjusted or modified in some ways. The great advantage of

adopting such a different methodology was the huge amount of time earned by the developer, who

was not forced to wait for the completion of the whole disambiguation process to analyse the results

of his work.

Future developments

Altought the system described in this paper would be ready to prepare a training corpus able to feed

a stochastic POS tagging procedure, in fact the representativeness of the current version of the

Corpus Taurinense is still too low. For overcoming such limitation, we are planning to increase the

amount of linguistic data inside the corpus by enhancing it with other Florentine XIIIth Century

selected texts. Consequently, for taking into account all the grammatical changes the new tokens

will produce inside the whole text structure, specific new disambiguation rules will be created,

while the old ones will be modified consequently, in accordance to any specific need that from time

to time may rise.

 7

Bibliography

BARBERA, Manuel / CORINO, Elisa / ONESTI, Cristina, 2007, “Cosa è un corpus? Per una definizione più

rigorosa di corpus, token, markup”. In: BARBERA, Manuel / CORINO, Elisa / ONESTI, Cristina (a c. di),

Corpora e linguistica in rete, Perugia, Guerra Edizioni. (‘L’officina della lingua. Strumenti’): 25-88.

BARBERA, Manuel, 2007, “Un tagset per il Corpus Taurinense”. In: BARBERA, Manuel / CORINO, Elisa /

ONESTI, Cristina (a c. di), Corpora e linguistica in rete, Perugia, Guerra Edizioni. (‘L’officina della lingua.

Strumenti’): 135-168.

BARBERA, Manuel / MARELLO, Carla (a c. di), 2001, Linguistica dei corpora per l’italiano antico.

Annotazione morfosintattica di testi fiorentini del Duecento, Alessandria, Edizioni dell’Orso (‘Gli argomenti

umani’ 6).

BRENNAN, Michael, 2000, GAWK: Effective AWK Programming: A User’s Guide for GNU AWK, 2nd

edition, Free Software Foundation Inc.

TOMATIS, Marco, 2007, “La disambiguazione del Corpus Taurinense. Problemi teorici e pratici”. In:

BARBERA, Manuel / CORINO, Elisa / ONESTI, Cristina (a c. di), Corpora e linguistica in rete, Perugia, Guerra

Edizioni. (‘L’officina della lingua. Strumenti’): pp. 169-181.

TOMATIS, Marco, 2009, “La disambiguazione. Trattamento finale”. In: BARBERA, Manuel, Schema e storia

del “Corpus Taurinense”. Linguistica dei corpora dell’italiano antico, Alessandria, Edizioni dell’Orso: 171-

191.

